
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Midterm (29th of October in class)
•  Project 2 is out (there are several submission dates)
•  Readings from Silberchatz [5th chapter]
•  Towards the end of class today--- I will talk about

project 2

Multilevel Queue

•  Ready queue is partitioned into separate queues, eg:
–  foreground (interactive)
–  background (batch)

•  Process permanently in a given queue

•  Each queue has its own scheduling algorithm:
–  foreground – RR
–  background – FCFS

•  Scheduling must be done between the queues:
–  Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
–  Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR

–  20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

•  A process can move between the various queues;
aging can be implemented this way

•  Multilevel-feedback-queue scheduler defined by
the following parameters:
–  number of queues
–  scheduling algorithms for each queue
–  method used to determine when to upgrade a process
–  method used to determine when to demote a process
–  method used to determine which queue a process will

enter when that process needs service

Example of Multilevel Feedback Queue

•  Three queues:
–  Q0 – RR with time quantum 8 milliseconds
–  Q1 – RR time quantum 16 milliseconds
–  Q2 – FCFS

•  Scheduling
–  A new job enters queue Q0 which is served FCFS

•  When it gains CPU, job receives 8 milliseconds
•  If it does not finish in 8 milliseconds, job is moved to queue

Q1

–  At Q1 job is again served FCFS and receives 16 additional
milliseconds

•  If it still does not complete, it is preempted and moved to
queue Q2

Multilevel Feedback Queues

Thread Scheduling

•  Distinction between user-level and kernel-level
threads

•  When threads supported, threads scheduled, not
processes

•  Many-to-one and many-to-many models, thread
library schedules user-level threads to run on LWP
–  Known as process-contention scope (PCS) since

scheduling competition is within the process
–  Typically done via priority set by programmer

•  Kernel thread scheduled onto available CPU is
system-contention scope (SCS) – competition
among all threads in system

Pthread Scheduling

•  API allows specifying either PCS or SCS during
thread creation
–  PTHREAD_SCOPE_PROCESS schedules threads using PCS

scheduling
–  PTHREAD_SCOPE_SYSTEM schedules threads using SCS

scheduling

•  Can be limited by OS – Linux and Mac OS X only
allow PTHREAD_SCOPE_SYSTEM

Pthread Scheduling API

#include <pthread.h>	
#include <stdio.h>	
#define NUM THREADS 5	
int main(int argc, char *argv[])	
{	
	int i;	
	pthread_t tid[NUM THREADS];	
	pthread_attr_t attr;	
	/* get the default attributes */	
	pthread_attr_init(&attr);	
	/* set the scheduling algorithm to PROCESS or
SYSTEM */	
	pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);	
	/* set the scheduling policy - FIFO, RT, or OTHER */	
	pthread_attr_setschedpolicy(&attr, SCHED_OTHER);	
	/* create the threads */	
	for (i = 0; i < NUM THREADS; i++)	
	 	pthread create(&tid[i],&attr,runner,NULL);	

Pthread Scheduling API

	/* now join on each thread */	
	for (i = 0; i < NUM THREADS; i++)	
	 	pthread_join(tid[i], NULL);	

}	
 /* Each thread will begin control in this

function */	
void *runner(void *param)	
{ 	
	printf("I am a thread\n");	
	pthread exit(0);	

}

Multiple-Processor Scheduling

•  CPU scheduling more complex when multiple CPUs are available

•  Asymmetric multiprocessing – only one processor accesses the system
data structures, alleviating the need for data sharing

•  Symmetric multiprocessing (SMP) – each processor is self-scheduling, all
processes in common ready queue, or each has its own private queue of
ready processes
–  Currently, most common

•  Processor affinity – process has affinity for processor on which it is
currently running
–  soft affinity
–  hard affinity

Multicore Processors (Scheduling is an open problem)

•  Recent trend to place multiple processor cores on
same physical chip

•  Faster and consumes less power

•  Multiple threads per core also growing
–  Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

Multithreaded Multicore System (Heuristic)

Linux Kernel Scheduler (CFS – completely Fair)

  CFS a very simple scheduler

  Intuition behind the scheduler “ideal, precise
multitasking CPU” – one that could run multiple
processes simultaneously, giving each equal processing
power.

CFS scheduling

  CFS measures how much runtime each task has had and
try and ensure that everyone gets their fair share of
time.

  This value is held in the vruntime variable for each task,
and is recorded at the nanosecond level. A lower
vruntime indicates that the task has had less time to
compute, and therefore has more need of the processor.

  Furthermore, instead of a queue, CFS uses a Red-Black
tree to store, sort, and schedule tasks.

Red Black Trees

  A red-black tree is a binary search tree, which means
that for each node, the left subtree only contains keys
less than the node's key, and the right subtree contains
keys greater than or equal to it.

  A red-black tree has further restrictions which guarantee
that the longest root-leaf path is at most twice as long
as the shortest root-leaf path. This bound on the height
makes RB Trees more efficient than normal BSTs.

  Operations are in O(log n) time.

Red Black Trees

  A red-black tree is a binary search tree, which means
that for each node, the left subtree only contains keys
less than the node's key, and the right subtree contains
keys greater than or equal to it.

  A red-black tree has further restrictions which guarantee
that the longest root-leaf path is at most twice as long
as the shortest root-leaf path. This bound on the height
makes RB Trees more efficient than normal BSTs.

  Operations are in O(log n) time.

CFS Tree

  The key for each node is
the vruntime of the
corresponding task.

  To pick the next task to
run, simply take the
leftmost node.

http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/

20

Kernel Dive to understand entry points for the scheduler

A Bit about Project 2 (Goal)

Well behaved process Malicious process

close

 close

mmap

getpid

open
mmap

getpid

open

System call sequence = <open, close, mmap, getpid>
Well behaved case = <1, 1, 1, 1>
 Malicious case = <0, 0, 0, 0>
 Distance between these two = 4

22

Flow of control during a system call invocation

system call
invocation

entry_32.S

Saves registers
 on stack
Save return address
 of user process
 (thread_info)

syscall_table.S

 table of
function pointers

system call
 execution

Kernel space

User space

 your
application

library (libc)

int 0x80

 restore
registers

 return value stored
 in the stack location
corresponding to %eax

iret

Return value
Error = -1
Errorcode = errorno

23

Simplified view of sysenter/sysexit in Linux > 2.5

_ _kernel_vsyscall

entry_32.S

Saves user mode
 stack
Save return address
 of user process
 (thread_info)

syscall_table.S

 table of
function pointers

system call
 execution

Kernel space

User space

 your
application

library (libc)

sysenter

 restore
registers

 return value stored
 in the stack location
corresponding to %eax

sysexit

Return value
Error = -1
Errorcode = errorno

Key goal: how to trap the system calls in the kernel

To make your life easier:
 you need to disable one of the two system call invocation ---
choose which ever you want
 hint in the text on how to disable sysenter/sysexit

25

Flow of control during a system call invocation

system call
invocation

entry_32.S

Saves registers
 on stack
Save return address
 of user process
 (thread_info)

syscall_table.S

 table of
function pointers

system call
 execution

Kernel space

User space

 your
application

library (libc)

int 0x80

 restore
registers

 return value stored
 in the stack location
corresponding to %eax

iret

Return value
Error = -1
Errorcode = errorno

 Trap the
system call
 invocation
 here

What does trapping a sys call mean

Interrupt Descriptor Table

int 0x80 Entry point in the entry_32.S
 ENTRY(system_call)

Your function (logging)

Save the registers

Restore the registers
Make a call to ENTRY

What are the things you have to think about?

(1) Finding where the IDT is?
(2) Finding which entry in the IDT to hook?
(3) How to replace the entry with your function
(4) Proper saving/restoring of register

