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Announcements 

•  Midterm (29th of October in class) 
•  Project 2 is out (there are several submission dates) 
•  Readings from Silberchatz [6th chapter] 



Example of the Banker’s Algorithm  

  5 processes P0  through P4;  

      3 resource types: 

              A (10 instances),  B (5instances), and C (7 instances) 

 Snapshot at time T0: 

   Allocation    Max  Available 

   A B C         A B C  A B C 

  P0  0 1 0           7 5 3  3 3 2 

   P1  2 0 0          3 2 2   

   P2  3 0 2          9 0 2 

   P3  2 1 1          2 2 2 

   P4  0 0 2           4 3 3     



Example of the Banker’s Algorithm  

  The content of the matrix Need is defined to be Max – Allocation 

   Need 

   A B C 

   P0  7 4 3  

   P1  1 2 2  

   P2  6 0 0  

   P3  0 1 1 

   P4  4 3 1  

  The system is in a safe state since the sequence < P1, P3, P4, P2, P0> 
satisfies safety criteria 



Example of the Banker’s Algorithm  

  Process P0 requests (1,0,2) 

  Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true 

   Allocation  Need  Available 

   A B C  A B C  A B C  

  P0  0 1 0  7 4 3  2 3 0 

  P1        3 0 2             0 2 0   

  P2  3 0 2    6 0 0  

  P3  2 1 1      0 1 1 

  P4  0 0 2      4 3 1  

  Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> 
satisfies safety requirement 

  Can request for (3,3,0) by P4 be granted? 

  Can request for (0,2,0) by P0 be granted? 



Graph With A Cycle But No Deadlock 



Safety Algorithm 

1. Let Work and Finish be vectors of length m and 
n, respectively.  Initialize: 

Work = Available 
Finish [i] = false for i = 0, 1, …, n- 1 

2. Find an i such that both:  
(a) Finish [i] = false 
(b) Needi ≤ Work 
If no such i exists, go to step 4 

3.  Work = Work + Allocationi 
Finish[i] = true 
go to step 2 

4. If Finish [i] == true for all i, then the system is in 
a safe state 



Scheduling (what is it?) 

  Some number of tasks  

  Threads or processes 

  One of more CPU cores to use 

  CPU Scheduler decides on two things 

  How much time should each task execute on the CPU 

  In which order does the set of tasks execute 

  In a multi-core system 

  Defacto: You take a set of tasks and always execute those set of 
tasks on one core 

  On a single core: you use more fine grained policies to decide 
which process to execute 

   



Scheduling (Why do we need scheduling) 

  Interactivity or multitasking 

  You cannot have one thread/process running on the CPU all the 
time 

  E.g. mouse pointer 

  Performance 

  Processes might be waiting for stuff to happen 

  I/O bursts 

  Waiting on a sleep? 

  If you have a compute intensive task (e.g., prime number 
calculation), scheduling will not yield any benefit 

   



Ordinary task execution 



How do you do scheduling? 

  Cooperative Scheduling 

  A set of tasks cooperative amongst each other to do stuff 

  sched_yield(); 

  Preemptive Scheduling 

  The kernel schedules the process/thread on the CPU 

  The OS scheduler code determines the amount of time a task 
should be running on the CPU and the ordering of the task 
execution 

  How does the OS determine when to schedule a task 

  Timer interrupts 

  Interrupt the CPU 

  CPU executes an timer interrupt handler 

  Invokes the scheduler code 

   



Cooperative Scheduling 

  Pros 

  Very efficient 

  Easy to implement 

  Don’t need timers 

  Don’t need to be in the kernel 

  Green threads --- Java uses  

  Cons 

  Greedy processes will take all the CPU time 

  Difficult to work with tight timing constraints 

  Real time system 

   



Modern Operating Systems--- preemptive scheduling 
•  Selects from among the processes in ready queue, and 

allocates the CPU to one of them 
–  Queue may be ordered in various ways 

•  CPU scheduling decisions may take place when a process: 
1.  Switches from running to waiting state 
2.  Switches from running to ready state 
3.  Switches from waiting to ready 
4.  Terminates 

•  Scheduling under 1 and 4 is nonpreemptive 
•  All other scheduling is preemptive 

–  Consider access to shared data 
–  Consider preemption while in kernel mode 
–  Consider interrupts occurring during crucial OS activities 



Dispatcher 

•  Dispatcher module gives control of the CPU to the process selected by 
the short-term scheduler; this involves: 
–  switching context 
–  switching to user mode 
–  jumping to the proper location in the user program to restart that 

program 

•  Dispatch latency – time it takes for the dispatcher to stop one process 
and start another running 



Scheduling policy 

•  CPU utilization – keep the CPU as busy as possible 

•  Throughput – # of processes that complete their execution per time 
unit 

•  Turnaround time – amount of time to execute a particular process 

•  Waiting time – amount of time a process has been waiting in the 
ready queue 

•  Response time – amount of time it takes from when a request was 
submitted until the first response is produced, not output  (for time-
sharing environment) 



Scheduling Algorithm Optimization Criteria 

•  Max CPU utilization 
•  Max throughput 
•  Min turnaround time  
•  Min waiting time  
•  Min response time 



First-Come, First-Served (FCFS) Scheduling 

  Process  Burst Time  
   P1  24 
   P2  3 
   P3   3  

•  Suppose that the processes arrive in the order: P1 , 
P2 , P3   
The Gantt Chart for the schedule is: 

•  Waiting time for P1  = 0; P2  = 24; P3 = 27 
•  Average waiting time:  (0 + 24 + 27)/3 = 17 

P1" P2" P3"
24" 27" 30"0"



FCFS Scheduling (Cont.) 

Suppose that the processes arrive in the order: 
   P2 , P3 , P1  

•  The Gantt chart for the schedule is: 

•  Waiting time for P1 = 6; P2 = 0; P3 = 3 
•  Average waiting time:   (6 + 0 + 3)/3 = 3 
•  Much better than previous case 
•  Convoy effect - short process behind long process 

–  Consider one CPU-bound and many I/O-bound processes 

P1"P3"P2"
6"3" 30"0"



Shortest-Job-First (SJF) Scheduling 

•  Associate with each process the length of its next 
CPU burst 
–   Use these lengths to schedule the process with the 

shortest time 

•  SJF is optimal – gives minimum average waiting 
time for a given set of processes 
–  The difficulty is knowing the length of the next CPU 

request 
–  Could ask the user 



Example of SJF 

             ProcessArriva l          Burst Time 
   P1  0.0  6 
   P2  2.0  8 
   P3  4.0  7 
   P4  5.0  3 

•  SJF scheduling chart 

•  Average waiting time = (3 + 16 + 9 + 0) / 4 = 7 

P4" P3"P1"
3" 16"0" 9"
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24"



Determining Length of Next CPU Burst 

•  Can only estimate the length – should be similar to 
the previous one 
–  Then pick process with shortest predicted next CPU burst 

•  Can be done by using the length of previous CPU 
bursts, using exponential averaging 

•  Commonly, α set to ½ 
€ 

τn=1 = α tn + 1−α( )τn .



Example of Shortest-remaining-time-first 
•  Now we add the concepts of varying arrival times 

and preemption to the analysis 
           ProcessA arArrival TimeT  Burst Time 
   P1  0  8 
   P2  1  4 
   P3  2  9 
   P4  3  5 

•  Preemptive SJF Gantt Chart 

•  Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4 
= 26/4 = 6.5 msec 
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Priority Scheduling 

•  A priority number (integer) is associated with each 
process 

•  The CPU is allocated to the process with the highest 
priority (smallest integer ≡ highest priority) 
–  Preemptive 
–  Nonpreemptive 

•  SJF is priority scheduling where priority is the 
inverse of predicted next CPU burst time 

•  Problem ≡ Starvation – low priority processes may 
never execute 

•  Solution ≡ Aging – as time progresses increase the 
priority of the process 



Example of Priority Scheduling 

           ProcessA arri Burst TimeT Priority 
   P1  10  3 
   P2  1  1 
   P3  2  4 
   P4  1  5 
  P5  5  2 

•  Priority scheduling Gantt Chart 

•  Average waiting time = 8.2 msec 
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Round Robin (RR) 

•  Each process gets a small unit of CPU time (time 
quantum q), usually 10-100 milliseconds.  After this 
time has elapsed, the process is preempted and added 
to the end of the ready queue. 

•  If there are n processes in the ready queue and the time 
quantum is q, then each process gets 1/n of the CPU 
time in chunks of at most q time units at once.  No 
process waits more than (n-1)q time units. 

•  Timer interrupts every quantum to schedule next 
process 

•  Performance 
–  q large ⇒ FIFO 
–  q small ⇒ q must be large with respect to context switch, 

otherwise overhead is too high 



Example of RR with Time Quantum = 4 

      Process           Burst Time 
    P1         24 
    P2       3 
    P3       3 
   

•  The Gantt chart is:  

•  Typically, higher average turnaround than SJF, but better 
response 

•  q should be large compared to context switch time 
•  q usually 10ms to 100ms, context switch < 10 usec 

P1" P2" P3" P1" P1" P1" P1" P1"
0" 4" 7" 10" 14" 18" 22" 26" 30"



Time Quantum and Context Switch Time 



Multilevel Queue 

•  Ready queue is partitioned into separate queues, eg: 
–  foreground (interactive) 
–  background (batch) 

•  Process permanently in a given queue 

•  Each queue has its own scheduling algorithm: 
–  foreground – RR 
–  background – FCFS 

•  Scheduling must be done between the queues: 
–  Fixed priority scheduling; (i.e., serve all from foreground 

then from background).  Possibility of starvation. 
–  Time slice – each queue gets a certain amount of CPU time 

which it can schedule amongst its processes; i.e., 80% to 
foreground in RR 

–  20% to background in FCFS  



Multilevel Queue Scheduling 



Multilevel Feedback Queue 

•  A process can move between the various queues; 
aging can be implemented this way 

•  Multilevel-feedback-queue scheduler defined by 
the following parameters: 
–  number of queues 
–  scheduling algorithms for each queue 
–  method used to determine when to upgrade a process 
–  method used to determine when to demote a process 
–  method used to determine which queue a process will 

enter when that process needs service 



Example of Multilevel Feedback Queue 

•  Three queues:  
–  Q0 – RR with time quantum 8 milliseconds 
–  Q1 – RR time quantum 16 milliseconds 
–  Q2 – FCFS 

•  Scheduling 
–  A new job enters queue Q0 which is served FCFS 

•  When it gains CPU, job receives 8 milliseconds 
•  If it does not finish in 8 milliseconds, job is moved to queue 

Q1 

–  At Q1 job is again served FCFS and receives 16 additional 
milliseconds 

•  If it still does not complete, it is preempted and moved to 
queue Q2 



Multilevel Feedback Queues 



Thread Scheduling 

•  Distinction between user-level and kernel-level 
threads 

•  When threads supported, threads scheduled, not 
processes 

•  Many-to-one and many-to-many models, thread 
library schedules user-level threads to run on LWP 
–  Known as process-contention scope (PCS) since 

scheduling competition is within the process 
–  Typically done via priority set by programmer 

•  Kernel thread scheduled onto available CPU is 
system-contention scope (SCS) – competition 
among all threads in system 



Pthread Scheduling 

•  API allows specifying either PCS or SCS during 
thread creation 
–  PTHREAD_SCOPE_PROCESS schedules threads using PCS 

scheduling 
–  PTHREAD_SCOPE_SYSTEM schedules threads using SCS 

scheduling 

•  Can be limited by OS – Linux and Mac OS X only 
allow PTHREAD_SCOPE_SYSTEM 



Pthread Scheduling API 

#include <pthread.h>	
#include <stdio.h>	
#define NUM THREADS 5	
int main(int argc, char *argv[])	
{	
	int i;	
	pthread_t tid[NUM THREADS];	
	pthread_attr_t attr;	
	/* get the default attributes */	
	pthread_attr_init(&attr);	
	/* set the scheduling algorithm to PROCESS or 
SYSTEM */	
	pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);	
	/* set the scheduling policy - FIFO, RT, or OTHER */	
	pthread attr setschedpolicy(&attr, SCHED_OTHER);	
	/* create the threads */	
	for (i = 0; i < NUM THREADS; i++)	
	 	pthread create(&tid[i],&attr,runner,NULL);	



Pthread Scheduling API 

	/* now join on each thread */	
	for (i = 0; i < NUM THREADS; i++)	
	 	pthread_join(tid[i], NULL);	

}	
 /* Each thread will begin control in this 

function */	
void *runner(void *param)	
{ 	
	printf("I am a thread\n");	
	pthread exit(0);	

} 



Multiple-Processor Scheduling 

•  CPU scheduling more complex when multiple CPUs are available 

•  Asymmetric multiprocessing – only one processor accesses the system 
data structures, alleviating the need for data sharing 

•  Symmetric multiprocessing (SMP) – each processor is self-scheduling, all 
processes in common ready queue, or each has its own private queue of 
ready processes 
–  Currently, most common 

•  Processor affinity – process has affinity for processor on which it is 
currently running 
–  soft affinity 
–  hard affinity 
–  Variations including processor sets 



Multicore Processors 

•  Recent trend to place multiple processor cores on 
same physical chip 

•  Faster and consumes less power 

•  Multiple threads per core also growing 
–  Takes advantage of memory stall to make progress on 

another thread while memory retrieve happens 



Multithreaded Multicore System 
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  An in-class discussion 


