
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Midterm (29th of October in class)
•  Project 2 is out (there are several submission dates)
•  Readings from Silberchatz [6th chapter]

Example of the Banker’s Algorithm

  5 processes P0 through P4;

 3 resource types:

 A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

Example of the Banker’s Algorithm

  The content of the matrix Need is defined to be Max – Allocation

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

  The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

Example of the Banker’s Algorithm

  Process P0 requests (1,0,2)

  Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 2 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

  Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement

  Can request for (3,3,0) by P4 be granted?

  Can request for (0,2,0) by P0 be granted?

Graph With A Cycle But No Deadlock

Safety Algorithm

1. Let Work and Finish be vectors of length m and
n, respectively. Initialize:

Work = Available
Finish [i] = false for i = 0, 1, …, n- 1

2. Find an i such that both:
(a) Finish [i] = false
(b) Needi ≤ Work
If no such i exists, go to step 4

3. Work = Work + Allocationi
Finish[i] = true
go to step 2

4. If Finish [i] == true for all i, then the system is in
a safe state

Scheduling (what is it?)

  Some number of tasks

  Threads or processes

  One of more CPU cores to use

  CPU Scheduler decides on two things

  How much time should each task execute on the CPU

  In which order does the set of tasks execute

  In a multi-core system

  Defacto: You take a set of tasks and always execute those set of
tasks on one core

  On a single core: you use more fine grained policies to decide
which process to execute

Scheduling (Why do we need scheduling)

  Interactivity or multitasking

  You cannot have one thread/process running on the CPU all the
time

  E.g. mouse pointer

  Performance

  Processes might be waiting for stuff to happen

  I/O bursts

  Waiting on a sleep?

  If you have a compute intensive task (e.g., prime number
calculation), scheduling will not yield any benefit

Ordinary task execution

How do you do scheduling?

  Cooperative Scheduling

  A set of tasks cooperative amongst each other to do stuff

  sched_yield();

  Preemptive Scheduling

  The kernel schedules the process/thread on the CPU

  The OS scheduler code determines the amount of time a task
should be running on the CPU and the ordering of the task
execution

  How does the OS determine when to schedule a task

  Timer interrupts

  Interrupt the CPU

  CPU executes an timer interrupt handler

  Invokes the scheduler code

Cooperative Scheduling

  Pros

  Very efficient

  Easy to implement

  Don’t need timers

  Don’t need to be in the kernel

  Green threads --- Java uses

  Cons

  Greedy processes will take all the CPU time

  Difficult to work with tight timing constraints

  Real time system

Modern Operating Systems--- preemptive scheduling
•  Selects from among the processes in ready queue, and

allocates the CPU to one of them
–  Queue may be ordered in various ways

•  CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4.  Terminates

•  Scheduling under 1 and 4 is nonpreemptive
•  All other scheduling is preemptive

–  Consider access to shared data
–  Consider preemption while in kernel mode
–  Consider interrupts occurring during crucial OS activities

Dispatcher

•  Dispatcher module gives control of the CPU to the process selected by
the short-term scheduler; this involves:
–  switching context
–  switching to user mode
–  jumping to the proper location in the user program to restart that

program

•  Dispatch latency – time it takes for the dispatcher to stop one process
and start another running

Scheduling policy

•  CPU utilization – keep the CPU as busy as possible

•  Throughput – # of processes that complete their execution per time
unit

•  Turnaround time – amount of time to execute a particular process

•  Waiting time – amount of time a process has been waiting in the
ready queue

•  Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)

Scheduling Algorithm Optimization Criteria

•  Max CPU utilization
•  Max throughput
•  Min turnaround time
•  Min waiting time
•  Min response time

First-Come, First-Served (FCFS) Scheduling

 Process Burst Time
 P1 24
 P2 3
 P3 3

•  Suppose that the processes arrive in the order: P1 ,
P2 , P3
The Gantt Chart for the schedule is:

•  Waiting time for P1 = 0; P2 = 24; P3 = 27
•  Average waiting time: (0 + 24 + 27)/3 = 17

P1" P2" P3"
24" 27" 30"0"

FCFS Scheduling (Cont.)

Suppose that the processes arrive in the order:
 P2 , P3 , P1

•  The Gantt chart for the schedule is:

•  Waiting time for P1 = 6; P2 = 0; P3 = 3
•  Average waiting time: (6 + 0 + 3)/3 = 3
•  Much better than previous case
•  Convoy effect - short process behind long process

–  Consider one CPU-bound and many I/O-bound processes

P1"P3"P2"
6"3" 30"0"

Shortest-Job-First (SJF) Scheduling

•  Associate with each process the length of its next
CPU burst
–  Use these lengths to schedule the process with the

shortest time

•  SJF is optimal – gives minimum average waiting
time for a given set of processes
–  The difficulty is knowing the length of the next CPU

request
–  Could ask the user

Example of SJF

 ProcessArriva l Burst Time
 P1 0.0 6
 P2 2.0 8
 P3 4.0 7
 P4 5.0 3

•  SJF scheduling chart

•  Average waiting time = (3 + 16 + 9 + 0) / 4 = 7

P4" P3"P1"
3" 16"0" 9"

P2"
24"

Determining Length of Next CPU Burst

•  Can only estimate the length – should be similar to
the previous one
–  Then pick process with shortest predicted next CPU burst

•  Can be done by using the length of previous CPU
bursts, using exponential averaging

•  Commonly, α set to ½
€

τn=1 = α tn + 1−α()τn .

Example of Shortest-remaining-time-first
•  Now we add the concepts of varying arrival times

and preemption to the analysis
 ProcessA arArrival TimeT Burst Time
 P1 0 8
 P2 1 4
 P3 2 9
 P4 3 5

•  Preemptive SJF Gantt Chart

•  Average waiting time = [(10-1)+(1-1)+(17-2)+5-3)]/4
= 26/4 = 6.5 msec

P1" P1"P2"
1" 17"0" 10"

P3"
26"5"

P4"

Priority Scheduling

•  A priority number (integer) is associated with each
process

•  The CPU is allocated to the process with the highest
priority (smallest integer ≡ highest priority)
–  Preemptive
–  Nonpreemptive

•  SJF is priority scheduling where priority is the
inverse of predicted next CPU burst time

•  Problem ≡ Starvation – low priority processes may
never execute

•  Solution ≡ Aging – as time progresses increase the
priority of the process

Example of Priority Scheduling

 ProcessA arri Burst TimeT Priority
 P1 10 3
 P2 1 1
 P3 2 4
 P4 1 5
 P5 5 2

•  Priority scheduling Gantt Chart

•  Average waiting time = 8.2 msec

P2" P3"P5"
1" 18"0" 16"

P4"
19"6"

P1"

Round Robin (RR)

•  Each process gets a small unit of CPU time (time
quantum q), usually 10-100 milliseconds. After this
time has elapsed, the process is preempted and added
to the end of the ready queue.

•  If there are n processes in the ready queue and the time
quantum is q, then each process gets 1/n of the CPU
time in chunks of at most q time units at once. No
process waits more than (n-1)q time units.

•  Timer interrupts every quantum to schedule next
process

•  Performance
–  q large ⇒ FIFO
–  q small ⇒ q must be large with respect to context switch,

otherwise overhead is too high

Example of RR with Time Quantum = 4

 Process Burst Time
 P1 24
 P2 3
 P3 3

•  The Gantt chart is:

•  Typically, higher average turnaround than SJF, but better
response

•  q should be large compared to context switch time
•  q usually 10ms to 100ms, context switch < 10 usec

P1" P2" P3" P1" P1" P1" P1" P1"
0" 4" 7" 10" 14" 18" 22" 26" 30"

Time Quantum and Context Switch Time

Multilevel Queue

•  Ready queue is partitioned into separate queues, eg:
–  foreground (interactive)
–  background (batch)

•  Process permanently in a given queue

•  Each queue has its own scheduling algorithm:
–  foreground – RR
–  background – FCFS

•  Scheduling must be done between the queues:
–  Fixed priority scheduling; (i.e., serve all from foreground

then from background). Possibility of starvation.
–  Time slice – each queue gets a certain amount of CPU time

which it can schedule amongst its processes; i.e., 80% to
foreground in RR

–  20% to background in FCFS

Multilevel Queue Scheduling

Multilevel Feedback Queue

•  A process can move between the various queues;
aging can be implemented this way

•  Multilevel-feedback-queue scheduler defined by
the following parameters:
–  number of queues
–  scheduling algorithms for each queue
–  method used to determine when to upgrade a process
–  method used to determine when to demote a process
–  method used to determine which queue a process will

enter when that process needs service

Example of Multilevel Feedback Queue

•  Three queues:
–  Q0 – RR with time quantum 8 milliseconds
–  Q1 – RR time quantum 16 milliseconds
–  Q2 – FCFS

•  Scheduling
–  A new job enters queue Q0 which is served FCFS

•  When it gains CPU, job receives 8 milliseconds
•  If it does not finish in 8 milliseconds, job is moved to queue

Q1

–  At Q1 job is again served FCFS and receives 16 additional
milliseconds

•  If it still does not complete, it is preempted and moved to
queue Q2

Multilevel Feedback Queues

Thread Scheduling

•  Distinction between user-level and kernel-level
threads

•  When threads supported, threads scheduled, not
processes

•  Many-to-one and many-to-many models, thread
library schedules user-level threads to run on LWP
–  Known as process-contention scope (PCS) since

scheduling competition is within the process
–  Typically done via priority set by programmer

•  Kernel thread scheduled onto available CPU is
system-contention scope (SCS) – competition
among all threads in system

Pthread Scheduling

•  API allows specifying either PCS or SCS during
thread creation
–  PTHREAD_SCOPE_PROCESS schedules threads using PCS

scheduling
–  PTHREAD_SCOPE_SYSTEM schedules threads using SCS

scheduling

•  Can be limited by OS – Linux and Mac OS X only
allow PTHREAD_SCOPE_SYSTEM

Pthread Scheduling API

#include <pthread.h>	
#include <stdio.h>	
#define NUM THREADS 5	
int main(int argc, char *argv[])	
{	
	int i;	
	pthread_t tid[NUM THREADS];	
	pthread_attr_t attr;	
	/* get the default attributes */	
	pthread_attr_init(&attr);	
	/* set the scheduling algorithm to PROCESS or
SYSTEM */	
	pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);	
	/* set the scheduling policy - FIFO, RT, or OTHER */	
	pthread attr setschedpolicy(&attr, SCHED_OTHER);	
	/* create the threads */	
	for (i = 0; i < NUM THREADS; i++)	
	 	pthread create(&tid[i],&attr,runner,NULL);	

Pthread Scheduling API

	/* now join on each thread */	
	for (i = 0; i < NUM THREADS; i++)	
	 	pthread_join(tid[i], NULL);	

}	
 /* Each thread will begin control in this

function */	
void *runner(void *param)	
{ 	
	printf("I am a thread\n");	
	pthread exit(0);	

}

Multiple-Processor Scheduling

•  CPU scheduling more complex when multiple CPUs are available

•  Asymmetric multiprocessing – only one processor accesses the system
data structures, alleviating the need for data sharing

•  Symmetric multiprocessing (SMP) – each processor is self-scheduling, all
processes in common ready queue, or each has its own private queue of
ready processes
–  Currently, most common

•  Processor affinity – process has affinity for processor on which it is
currently running
–  soft affinity
–  hard affinity
–  Variations including processor sets

Multicore Processors

•  Recent trend to place multiple processor cores on
same physical chip

•  Faster and consumes less power

•  Multiple threads per core also growing
–  Takes advantage of memory stall to make progress on

another thread while memory retrieve happens

Multithreaded Multicore System

40

 An in-class discussion

