
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Homework 2 (due Oct 13th)
•  Midterm (29th of October in class)
•  Readings from Silberchatz [7th chapter]

3	

Deadlock Prevention

•  Instead of detection, ensure at least one of
necessary conditions doesn’t hold
–  Mutual exclusion
–  Hold and wait
–  No preemption
–  Circular wait

4	

lock	 (a);	
lock	 (b);	
unlock	 (b);	
unlock	 (a);	

lock	 (b);	
lock	 (a);	
unlock	 (a);	
unlock	 (b);	

lock	 (a);	
lock	 (b);	
unlock	 (b);	
unlock	 (a);	

lock	 (a);	
lock	 (b);	
unlock	 (b);	
unlock	 (a);	

Avoiding Deadlock

•  Not ok – may deadlock.

•  Solution: impose canonical order (acyclic)

Deadlock Avoidance

•  Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need

•  The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition

•  Resource-allocation state is defined by the
number of available and allocated resources, and
the maximum demands of the processes

 Requires that the system has some additional a
!priori information available"

Safe State

•  When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state

•  System is in safe state if there exists a sequence <P1, P2, …, Pn> of
ALL the processes in the systems such that for each Pi, the
resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj, with j < I

•  That is:
–  If Pi resource needs are not immediately available, then Pi can

wait until all Pj have finished
–  When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate
–  When Pi terminates, Pi +1 can obtain its needed resources, and so

on

Basic Facts

•  If a system is in safe state ⇒ no deadlocks

•  If a system is in unsafe state ⇒ possibility of
deadlock

•  Avoidance ⇒ ensure that a system will never
enter an unsafe state.

Safe, Unsafe, Deadlock State

Avoidance algorithms

•  Single instance of a resource type
–  Use a resource-allocation graph

•  Multiple instances of a resource type
–  Use the banker’s algorithm

Resource-Allocation Graph Scheme

•  Claim edge Pi → Rj indicated that process Pj may request
resource Rj; represented by a dashed line

•  Claim edge converts to request edge when a process
requests a resource

•  Request edge converted to an assignment edge when the
resource is allocated to the process

•  When a resource is released by a process, assignment edge
reconverts to a claim edge

•  Resources must be claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

Resource-Allocation Graph Algorithm

•  Suppose that process Pi requests a resource Rj

•  The request can be granted only if converting the
request edge to an assignment edge does not result
in the formation of a cycle in the resource
allocation graph

Banker’s Algorithm

•  Multiple instances

•  Each process must a priori claim maximum use

•  When a process requests a resource it may have
to wait

•  When a process gets all its resources it must
return them in a finite amount of time

Example of the Banker’s Algorithm

  5 processes P0 through P4;

 3 resource types:

 A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

Example of the Banker’s Algorithm

  The content of the matrix Need is defined to be Max – Allocation

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

  The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

Example of the Banker’s Algorithm

  Process P0 requests (1,0,2)

  Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 2 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

  Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement

  Can request for (3,3,0) by P4 be granted?

  Can request for (0,2,0) by P0 be granted?

Scheduling (what is it?)

  Some number of tasks

  Threads or processes

  One of more CPU cores to use

  CPU Scheduler decides on two things

  How much time should each task execute on the CPU

  In which order does the set of tasks execute

  In a multi-core system

  Defacto: You take a set of tasks and always execute those set of
tasks on one core

  On a single core: you use more fine grained policies to decide
which process to execute

Scheduling (Why do we need scheduling)

  Interactivity or multitasking

  You cannot have one thread/process running on the CPU all the
time

  E.g. mouse pointer

  Performance

  Processes might be waiting for stuff to happen

  I/O bursts

  Waiting on a sleep?

  If you have a compute intensive task (e.g., prime number
calculation), scheduling will not yield any benefit

Ordinary task execution

How do you do scheduling?

  Cooperative Scheduling

  A set of tasks cooperative amongst each other to do stuff

  sched_yield();

  Preemptive Scheduling

  The kernel schedules the process/thread on the CPU

  The OS scheduler code determines the amount of time a task
should be running on the CPU and the ordering of the task
execution

  How does the OS determine when to schedule a task

  Timer interrupts

  Interrupt the CPU

  CPU executes an timer interrupt handler

  Invokes the scheduler code

Cooperative Scheduling

  Pros

  Very efficient

  Easy to implement

  Don’t need timers

  Don’t need to be in the kernel

  Green threads --- Java uses

  Cons

  Greedy processes will take all the CPU time

  Difficult to work with tight timing constraints

  Real time system

Modern Operating Systems--- preemptive scheduling
•  Selects from among the processes in ready queue, and

allocates the CPU to one of them
–  Queue may be ordered in various ways

•  CPU scheduling decisions may take place when a process:
1. Switches from running to waiting state
2. Switches from running to ready state
3. Switches from waiting to ready
4.  Terminates

•  Scheduling under 1 and 4 is nonpreemptive
•  All other scheduling is preemptive

–  Consider access to shared data
–  Consider preemption while in kernel mode
–  Consider interrupts occurring during crucial OS activities

Dispatcher

•  Dispatcher module gives control of the CPU to the process selected by
the short-term scheduler; this involves:
–  switching context
–  switching to user mode
–  jumping to the proper location in the user program to restart that

program

•  Dispatch latency – time it takes for the dispatcher to stop one process
and start another running

Scheduling policy

•  CPU utilization – keep the CPU as busy as possible

•  Throughput – # of processes that complete their execution per time
unit

•  Turnaround time – amount of time to execute a particular process

•  Waiting time – amount of time a process has been waiting in the
ready queue

•  Response time – amount of time it takes from when a request was
submitted until the first response is produced, not output (for time-
sharing environment)

26

 An in-class discussion

