
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Homework 2 is out (due Oct 13th)
•  Readings from Silberchatz [7th chapter]

3

Exercise: How do you implement reader writer locks?

Shared Data
Data set
Semaphore mutex initialized to 1
Semaphore wrt initialized to 1
Integer readcount initialized to 0

Readers-Writers Problem (Cont.)

•  The structure of a writer process

 do {
 wait (wrt) ;

 // writing is performed

 signal (wrt) ;
 } while (TRUE);

Readers-Writers Problem (Cont.)

•  The structure of a reader process

 do {
 wait (mutex) ;
 readcount ++ ;
 if (readcount == 1)

 wait (wrt) ;
 signal (mutex)

 // reading is performed

 wait (mutex) ;
 readcount - - ;
 if (readcount == 0)

 signal (wrt) ;
 signal (mutex) ;
 } while (TRUE);

6

Monitors

  A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

  Abstract data type, internal variables only accessible by code
within the procedure

  Only one process may be active within the monitor at a time

monitor monitor-name
{

 // shared variable declarations
 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }
 }

}

7

Monitors

8

Implementing Locks using Swap

void Swap (bool *a, bool *b)
 {
 bool temp = *a;
 *a = *b;
 *b = temp:
 }

  Shared Boolean variable lock
initialized to FALSE;

  Each process has a local Boolean
variable key

  Solution:
 do {
 key = TRUE;
 while (key == TRUE)
 Swap (&lock, &key);
 // critical section
 lock = FALSE;

 } while (TRUE);

9

Atomic Transactions (Just a Primer!)

  Assures that operations happen as a single logical unit of work, in its entirety,
or not at all

  Related to field of database systems

  Challenge is assuring atomicity despite computer system failures

  Transaction - collection of instructions or operations that performs single
logical function

  Here we are concerned with changes to stable storage – disk

  Transaction is series of read and write operations

  Terminated by commit (transaction successful) or abort (transaction
failed) operation

  Aborted transaction must be rolled back to undo any changes it
performed

Dining-Philosophers Problem

•  Philosophers spend their lives thinking and eating
•  Don’t interact with their neighbors, occasionally try to pick up

2 chopsticks (one at a time) to eat from bowl
–  Need both to eat, then release both when done

•  In the case of 5 philosophers
–  Shared data

•  Bowl of rice (data set)
•  Semaphore chopstick [5] initialized to 1

 Dining-Philosophers Problem Algorithm

•  The structure of Philosopher i:

do {
 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);
 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

•  What is the problem with this algorithm?

Deadlock teminology

  Deadlock

  Deadlock detection
–  Finds instances of deadlock when threads stop making

progress
–  Tries to recover

  Deadlock prevention algorithms
–  Check resource requests & availability

13	

Rules for Deadlock

•  All necessary and none sufficient

14	

Rules for Deadlock

•  All necessary and none sufficient
•  Finite resource

–  Resource can be exhausted causing waiting

15	

Rules for Deadlock

•  All necessary and none sufficient
•  Finite resource

–  Resource can be exhausted causing waiting
•  Hold and wait

–  Hold resource while waiting for another

16	

Rules for Deadlock

•  All necessary and none sufficient
•  Finite resource

–  Resource can be exhausted causing waiting
•  Hold and wait

–  Hold resource while waiting for another
•  No preemption

–  Thread can only release resource voluntarily
–  No other thread or OS can force thread to

release

17	

Rules for Deadlock

•  All necessary and none sufficient
•  Finite resource

–  Resource can be exhausted causing waiting
•  Hold and wait

–  Hold resource while waiting for another
•  No preemption

–  Thread can only release resource voluntarily
–  No other thread or OS can force thread to

release
•  Circular wait

–  Circular chain of waiting threads

18	

Circular Waiting

•  If no way to free resources (preemption)

19	

Deadlock Detection

•  Define graph with vertices:
–  Resources = {r1, …, rm}
–  Threads or processes = {t1, …, tn}

•  Request edge from thread to resource
–  (ti → rj)

•  Assignment edge from resource to thread
–  (rj → ti)
–  OS has allocated resource to thread

•  Result:
–  No cycles ⇒ no deadlock
–  Cycle ⇒ may deadlock

20	

Example

•  Deadlock or not?
•  Request edge from

thread to resource ti ->
rj
–  Thread: requested

resource but not
acquired it (waiting)

•  Assignment edge from
resource to thread rj ->
ti
–  OS has allocated

resource to thread

Graph With A Cycle But No Deadlock

22	

Quick Exercise

•  Draw a graph for the
following event:

•  Request edge from thread
to resource
–  ti -> rj

•  Assignment edge from
resource to thread
–  rj -> ti

23	

Resource Allocation Graph

•  Draw a graph for the following event:

24	

Detecting Deadlock

•  Scan resource allocation graph for cycles
–  Then break them!

•  Different ways to break cycles:
–  Kill all threads in cycle
–  Kill threads one at a time

•  Force to give up resources

–  Preempt resources one at a time
•  Roll back thread state to before acquiring resource
•  Common in database transactions

25	

Deadlock Prevention

•  Instead of detection, ensure at least one of
necessary conditions doesn’t hold
–  Mutual exclusion
–  Hold and wait
–  No preemption
–  Circular wait

26	

Deadlock Prevention

•  Mutual exclusion
–  Make resources shareable (but not all resources can be

shared)

•  Hold and wait
–  Guarantee that thread cannot hold one resource when

it requests another
–  Make threads request all resources they need first and

release all before requesting more

27	

Deadlock Prevention, continued

•  No preemption
–  If thread requests resource that cannot be immediately

allocated to it
•  OS preempts (releases) all resources thread currently

holds

–  When all resources available:
•  OS restarts thread

•  Not all resources can be preempted!

28	

Deadlock Prevention, continued

•  Circular wait
–  Impose ordering (numbering) on resources and request

them in order
–  Most important trick to correct programming with

locks!

29	

Avoiding Deadlock

•  Cycle in locking graph = deadlock
•  Typical solution: canonical order for locks

–  Acquire in increasing order
•  E.g., lock_1, lock_2, lock_3

–  Release in decreasing order

•  Ensures deadlock-freedom
–  but not always easy to do

30	

lock	 (a);	
lock	 (b);	
unlock	 (b);	
unlock	 (a);	

lock	 (b);	
lock	 (a);	
unlock	 (a);	
unlock	 (b);	

Avoiding Deadlock

•  Avoiding deadlock: is this ok?

31	

lock	 (a);	
lock	 (b);	
unlock	 (b);	
unlock	 (a);	

lock	 (b);	
lock	 (a);	
unlock	 (a);	
unlock	 (b);	

lock	 (a);	
lock	 (b);	
unlock	 (b);	
unlock	 (a);	

lock	 (a);	
lock	 (b);	
unlock	 (b);	
unlock	 (a);	

Avoiding Deadlock

•  Not ok – may deadlock.

•  Solution: impose canonical order (acyclic)

Deadlock Avoidance

•  Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need

•  The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition

•  Resource-allocation state is defined by the
number of available and allocated resources, and
the maximum demands of the processes

 Requires that the system has some additional a
!priori information available"

Safe State

•  When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state

•  System is in safe state if there exists a sequence <P1, P2, …, Pn> of
ALL the processes in the systems such that for each Pi, the
resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj, with j < I

•  That is:
–  If Pi resource needs are not immediately available, then Pi can

wait until all Pj have finished
–  When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate
–  When Pi terminates, Pi +1 can obtain its needed resources, and so

on

Basic Facts

•  If a system is in safe state ⇒ no deadlocks

•  If a system is in unsafe state ⇒ possibility of
deadlock

•  Avoidance ⇒ ensure that a system will never
enter an unsafe state.

Safe, Unsafe, Deadlock State

Avoidance algorithms

•  Single instance of a resource type
–  Use a resource-allocation graph

•  Multiple instances of a resource type
–  Use the banker’s algorithm

Resource-Allocation Graph Scheme

•  Claim edge Pi → Rj indicated that process Pj may request
resource Rj; represented by a dashed line

•  Claim edge converts to request edge when a process
requests a resource

•  Request edge converted to an assignment edge when the
resource is allocated to the process

•  When a resource is released by a process, assignment edge
reconverts to a claim edge

•  Resources must be claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

Resource-Allocation Graph Algorithm

•  Suppose that process Pi requests a resource Rj

•  The request can be granted only if converting the
request edge to an assignment edge does not result
in the formation of a cycle in the resource
allocation graph

Banker’s Algorithm

•  Multiple instances

•  Each process must a priori claim maximum use

•  When a process requests a resource it may have
to wait

•  When a process gets all its resources it must
return them in a finite amount of time

Example of the Banker’s Algorithm

  5 processes P0 through P4;

 3 resource types:

 A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

Example of the Banker’s Algorithm

  The content of the matrix Need is defined to be Max – Allocation

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

  The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

Example of the Banker’s Algorithm

  Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 2 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

  Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement

  Can request for (3,3,0) by P4 be granted?

  Can request for (0,2,0) by P0 be granted?

45

 An in-class discussion
 (surprise : Java swapping)

