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Announcements 

•  Homework 2 is out (due Oct 13th) 
•  Readings from Silberchatz [7th chapter] 



3 

Exercise: How do you implement reader writer locks? 

Shared Data 
Data set 
Semaphore mutex initialized to 1 
Semaphore wrt initialized to 1 
Integer readcount initialized to 0 



Readers-Writers Problem (Cont.) 

•  The structure of a writer process 

              do { 
                        wait (wrt) ; 

                             //    writing is performed 

                        signal (wrt) ; 
             } while (TRUE); 



Readers-Writers Problem (Cont.) 

•  The structure of a reader process 

 do { 
                       wait (mutex) ; 
                       readcount ++ ; 
                       if (readcount == 1)   

             wait (wrt) ; 
                       signal (mutex) 

                               // reading is performed 

                        wait (mutex) ; 
                        readcount  - - ; 
                        if (readcount  == 0)   

            signal (wrt) ; 
                        signal (mutex) ; 
              } while (TRUE); 
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Monitors 

  A high-level abstraction that provides a convenient and effective 
mechanism for process synchronization 

  Abstract data type, internal variables only accessible by code 
within the procedure 

  Only one process may be active within the monitor at a time 

monitor monitor-name 
{ 

 // shared variable declarations 
 procedure P1 (…) { …. } 

 procedure Pn (…) {……} 

    Initialization code (…) { … } 
 } 

} 
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Monitors 
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Implementing Locks using Swap 

void Swap (bool *a, bool *b) 
          { 
                  bool temp = *a; 
                  *a = *b; 
                  *b = temp: 
          } 

  Shared Boolean variable lock 
initialized to FALSE;  

  Each process has a local Boolean 
variable key 

  Solution: 
          do { 
                    key = TRUE; 
                    while ( key == TRUE) 
                             Swap (&lock, &key ); 
          //    critical section 
                     lock = FALSE; 

           } while (TRUE); 
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Atomic Transactions (Just a Primer!) 

  Assures that operations happen as a single logical unit of work, in its entirety, 
or not at all 

  Related to field of database systems 

  Challenge is assuring atomicity  despite computer system failures 

  Transaction - collection of instructions or operations that performs single 
logical function 

  Here we are concerned with changes to stable storage – disk 

  Transaction is series of read and write operations 

  Terminated by commit  (transaction successful) or abort (transaction 
failed) operation 

  Aborted transaction must be rolled back to undo any changes it 
performed 



Dining-Philosophers Problem 

•  Philosophers spend their lives thinking and eating 
•  Don’t interact with their neighbors, occasionally try to pick up 

2 chopsticks (one at a time) to eat from bowl 
–  Need both to eat, then release both when done 

•  In the case of 5 philosophers 
–  Shared data  

•  Bowl of rice (data set) 
•  Semaphore chopstick [5] initialized to 1 



  Dining-Philosophers Problem Algorithm 

•  The structure of Philosopher i: 

do  {  
          wait ( chopstick[i] ); 

      wait ( chopStick[ (i + 1) % 5] ); 

              //  eat 

      signal ( chopstick[i] ); 
      signal (chopstick[ (i + 1) % 5] ); 

                 //  think 

} while (TRUE); 

•  What is the problem with this algorithm? 



Deadlock teminology 

  Deadlock 

  Deadlock detection 
–  Finds instances of deadlock when threads stop making 

progress 
–  Tries to recover 

  Deadlock prevention algorithms 
–  Check resource requests & availability 
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Rules for Deadlock 

•  All necessary and none sufficient 
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Rules for Deadlock 

•  All necessary and none sufficient 
•  Finite resource 

–  Resource can be exhausted causing waiting 
•  Hold and wait 

–  Hold resource while waiting for another 
•  No preemption 

–  Thread can only release resource voluntarily 
–  No other thread or OS can force thread to 

release 
•  Circular wait 

–  Circular chain of waiting threads 
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Circular Waiting 

•  If no way to free resources (preemption) 
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Deadlock Detection 

•  Define graph with vertices: 
–  Resources = {r1, …, rm} 
–  Threads or processes = {t1, …, tn} 

•  Request edge from thread to resource 
–  (ti → rj) 

•  Assignment edge from resource to thread  
–  (rj → ti) 
–  OS has allocated resource to thread 

•  Result: 
–  No cycles ⇒ no deadlock 
–  Cycle ⇒ may deadlock 
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Example 

•  Deadlock or not? 
•  Request edge from 

thread to resource ti -> 
rj 
–  Thread: requested 

resource but not 
acquired it (waiting) 

•  Assignment edge from 
resource to thread rj -> 
ti 
–  OS has allocated 

resource to thread 



Graph With A Cycle But No Deadlock 
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Quick Exercise 

•  Draw a graph for the 
following event: 

•  Request edge from thread 
to resource  
–  ti -> rj 

•  Assignment edge from 
resource to thread  
–  rj -> ti 
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Resource Allocation Graph 

•  Draw a graph for the following event: 
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Detecting Deadlock 

•  Scan resource allocation graph for cycles   
–  Then break them! 

•  Different ways to break cycles: 
–  Kill all threads in cycle 
–  Kill threads one at a time 

•  Force to give up resources 

–  Preempt resources one at a time 
•  Roll back thread state to before acquiring resource 
•  Common in database transactions 
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Deadlock Prevention 

•  Instead of detection, ensure at least one of 
necessary conditions doesn’t hold 
–  Mutual exclusion 
–  Hold and wait 
–  No preemption 
–  Circular wait 
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Deadlock Prevention 

•  Mutual exclusion 
–  Make resources shareable (but not all resources can be 

shared) 

•  Hold and wait 
–  Guarantee that thread cannot hold one resource when 

it requests another 
–  Make threads request all resources they need first and 

release all before requesting more 
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Deadlock Prevention, continued 

•  No preemption 
–  If thread requests resource that cannot be immediately 

allocated to it 
•  OS preempts (releases) all resources thread currently 

holds 

–  When all resources available: 
•  OS restarts thread 

•  Not all resources can be preempted! 



28	
  

Deadlock Prevention, continued 

•  Circular wait 
–  Impose ordering (numbering) on resources and request 

them in order 
–  Most important trick to correct programming with 

locks! 



29	
  

Avoiding Deadlock 

•  Cycle in locking graph = deadlock 
•  Typical solution: canonical order for locks 

–  Acquire in increasing order 
•  E.g., lock_1, lock_2, lock_3 

–  Release in decreasing order 

•  Ensures deadlock-freedom 
–  but not always easy to do 
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lock	
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Avoiding Deadlock 

•  Avoiding deadlock: is this ok? 
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Avoiding Deadlock 

•  Not ok – may deadlock. 

•  Solution: impose canonical order (acyclic) 



Deadlock Avoidance 

•  Simplest and most useful model requires that 
each process declare the maximum number of 
resources of each type that it may need 

•  The deadlock-avoidance algorithm dynamically 
examines the resource-allocation state to ensure 
that there can never be a circular-wait condition 

•  Resource-allocation state is defined by the 
number of available and allocated resources, and 
the maximum demands of the processes 

     Requires that the system has some additional a 
!priori information available"



Safe State 

•  When a process requests an available resource, system must decide 
if immediate allocation leaves the system in a safe state 

•  System is in safe state if there exists a sequence <P1, P2, …, Pn> of 
ALL the  processes  in the systems such that  for each Pi, the 
resources that Pi can still request can be satisfied by currently 
available resources + resources held by all the Pj, with j < I 

•  That is: 
–  If Pi resource needs are not immediately available, then Pi can 

wait until all Pj have finished 
–  When Pj is finished, Pi can obtain needed resources, execute, 

return allocated resources, and terminate 
–  When Pi terminates, Pi +1 can obtain its needed resources, and so 

on  



Basic Facts 

•  If a system is in safe state ⇒ no deadlocks 

•  If a system is in unsafe state ⇒ possibility of 
deadlock 

•  Avoidance ⇒ ensure that a system will never 
enter an unsafe state. 



Safe, Unsafe, Deadlock State  



Avoidance algorithms 

•  Single instance of a resource type 
–  Use a resource-allocation graph 

•  Multiple instances of a resource type 
–   Use the banker’s algorithm 



Resource-Allocation Graph Scheme 

•  Claim edge Pi → Rj indicated that process Pj may request 
resource Rj; represented by a dashed line 

•  Claim edge converts to request edge when a process 
requests a resource 

•  Request edge converted to an assignment edge when the  
resource is allocated to the process 

•  When a resource is released by a process, assignment edge 
reconverts to a claim edge 

•  Resources must be claimed a priori in the system 



Resource-Allocation Graph 



Unsafe State In Resource-Allocation Graph 



Resource-Allocation Graph Algorithm 

•  Suppose that process Pi requests a resource Rj 

•  The request can be granted only if converting the 
request edge to an assignment edge does not result 
in the formation of a cycle in the resource 
allocation graph 



Banker’s Algorithm 

•  Multiple instances 

•  Each process must a priori claim maximum use 

•  When a process requests a resource it may have 
to wait   

•  When a process gets all its resources it must 
return them in a finite amount of time 



Example of the Banker’s Algorithm  

  5 processes P0  through P4;  

      3 resource types: 

              A (10 instances),  B (5instances), and C (7 instances) 

 Snapshot at time T0: 

   Allocation    Max  Available 

   A B C         A B C  A B C 

  P0  0 1 0           7 5 3  3 3 2 

   P1  2 0 0          3 2 2   

   P2  3 0 2          9 0 2 

   P3  2 1 1          2 2 2 

   P4  0 0 2           4 3 3     



Example of the Banker’s Algorithm  

  The content of the matrix Need is defined to be Max – Allocation 

   Need 

   A B C 

   P0  7 4 3  

   P1  1 2 2  

   P2  6 0 0  

   P3  0 1 1 

   P4  4 3 1  

  The system is in a safe state since the sequence < P1, P3, P4, P2, P0> 
satisfies safety criteria 



Example of the Banker’s Algorithm  

  Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true 

   Allocation  Need  Available 

   A B C  A B C  A B C  

  P0  0 1 0  7 4 3  2 3 0 

  P1        3 0 2             0 2 0   

  P2  3 0 2    6 0 0  

  P3  2 1 1      0 1 1 

  P4  0 0 2      4 3 1  

  Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2> 
satisfies safety requirement 

  Can request for (3,3,0) by P4 be granted? 

  Can request for (0,2,0) by P0 be granted? 
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  An in-class discussion 
      (surprise : Java swapping) 


