CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Assistant Professor, University of Maryland
Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery
Berger’s OS course at Umass Amherst 1

Announcements

« Homework 2 is out (due Oct 13th)
« Readings from Silberchatz [7t" chapter]

Exercise: How do you implement reader writer locks?

Shared Data
Data set
Semaphore mutex initialized to 1
Semaphore wrt initialized to 1
Integer readcount 1nitialized to 0

Readers-Writers Problem (Cont.)

e The structure of a writer process

do {
wait (wrt) ;

/1 writing is performed

signal (wrt) ;
} while (TRUE);

Readers-Writers Problem (Cont.)

e The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)
wait (wrt) ;
signal (mutex)

// reading is performed

wait (mutex) ;
readcount - - ;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;
} while (TRUE);

Monitors

B A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

M Abstract data type, internal variables only accessible by code
within the procedure

B Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations
procedure P1 (...) { }

procedure Pn (...) {......}

Initialization code (...) { ... }

}

Monitors

entry queue

shared data

v

operations

initialization
code

Implementing Locks using Swap

B Shared Boolean variable lock

void Swap (bool *a, bool *b) initialized to FALSE;

f M Each process has a local Boolean
variable key
bool temp = "a; B Solution:
@ ="b; do{
b = temp: key = TRUE;
} while (key == TRUE)

Swap (&lock, &key);
// critical section
lock = FALSE;

} while (TRUE);

Atomic Transactions (Just a Primer!)

Assures that operations happen as a single logical unit of work, in its entirety,
or not at all

Related to field of database systems

Challenge is assuring atomicity despite computer system failures

Transaction - collection of instructions or operations that performs single
logical function

Here we are concerned with changes to stable storage - disk
Transaction is series of read and write operations

Terminated by commit (transaction successful) or abort (transaction
failed) operation

Aborted transaction must be rolled back to undo any changes it
performed

Dining-Philosophers Problem

« Philosophers spend their lives thinking and eating

« Don’t interact with their neighbors, occasionally try to pick up
2 chopsticks (one at a time) to eat from bowl

- Need both to eat, then release both when done
e In the case of 5 philosophers
- Shared data
e Bowl of rice (data set)
« Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem Algorithm

e The structure of Philosopher i:

do {
wait (chopstick[i]);
wait (chopStick[(i + 1) % 5]);
/] eat

signal (chopstick][i]);
signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

e What is the problem with this algorithm?

Deadlock teminology

= Deadlock

= Deadlock detection

Finds instances of deadlock when threads stop making
progress

Tries to recover

* Deadlock prevention algorithms
Check resource requests & availability

Rules for Deadlock

e All necessary and none sufficient

Rules for Deadlock

e All necessary and none sufficient
e Finite resource
- Resource can be exhausted causing waiting

Rules for Deadlock

e All necessary and none sufficient
e Finite resource

- Resource can be exhausted causing waiting
« Hold and wait

- Hold resource while waiting for another

Rules for Deadlock

All necessary and none sufficient
Finite resource
- Resource can be exhausted causing waiting
Hold and wait
- Hold resource while waiting for another
No preemption
- Thread can only release resource voluntarily

- No other thread or OS can force thread to
release

Rules for Deadlock

All necessary and none sufficient

Finite resource

- Resource can be exhausted causing waiting
Hold and wait

- Hold resource while waiting for another

No preemption

- Thread can only release resource voluntarily

- No other thread or OS can force thread to
release

Circular wait
- Circular chain of waiting threads

Circular Waiting

e If no way to free resources (preemption)

Owned

Warting Resource
ﬁ:/ X N;B
Process Process
A B
me,d\ Resource ‘/Waifr'ng

by A w for¥

Deadlock Detection

e Define graph with vertices:
- Resources = {r1, ..., rmj}
- Threads or processes = {t1, ..., tn}
e Request edge from thread to resource
- (U= n))
e Assignment edge from resource to thread
- (r] = 1)
- 0S has allocated resource to thread
e Result:
- No cycles = no deadlock
- Cycle = may deadlock

Example

e« Deadlock or not?

e Request edge from
thread to resource ti ->
r]

- Thread: requested
resource but not
acquired it (waiting)

e Assighment edge from

resource to thread rj ->
ti

- 0S has allocated
resource to thread

rl

r3

Graph With A Cycle But No Deadlock

/N

d

Quick Exercise

e Draw a graph for the
following event:

e Request edge from thread
to resource

- ti->n

e Assignment edge from
resource to thread

- rj->ti

Resource Allocation Graph

e Draw a graph for the following event:

Quadrant S——
2

Quadrant

Quadrant _.‘—
1

Quadrant
4

Detecting Deadlock

e Scan resource allocation graph for cycles
- Then break them!

o Different ways to break cycles:
- Kill all threads in cycle
- Kill threads one at a time
e Force to give up resources

- Preempt resources one at a time
e Roll back thread state to before acquiring resource
« Common in database transactions

Deadlock Prevention

o |nstead of detection, ensure at least one of
necessary conditions doesn’t hold
- Mutual exclusion
- Hold and wait
- No preemption
- Circular wait

Deadlock Prevention

e Mutual exclusion
- Make resources shareable (but not all resources can be
shared)
e Hold and wait

- Guarantee that thread cannot hold one resource when
it requests another

- Make threads request all resources they need first and
release all before requesting more

Deadlock Prevention, continued

« No preemption
- If thread requests resource that cannot be immediately
allocated to it

e OS preempts (releases) all resources thread currently
holds

- When all resources available:
e OS restarts thread

e Not all resources can be preempted!

Deadlock Prevention, continued

e Circular wait

- Impose ordering (numbering) on resources and request
them in order

- Most important trick to correct programming with
locks!

Avoiding Deadlock

e Cycle in locking graph = deadlock

« Typical solution: canonical order for locks

- Acquire in increasing order
e E.g., lock_1, lock_2, lock_3
- Release in decreasing order

e« Ensures deadlock-freedom
- but not always easy to do

Avoiding Deadlock

e Avoiding deadlock: is this ok?

lock (a); lock (b);
lock (b); lock (a);
unlock (b); unlock (a);

unlock (a); unlock (b);

Avoiding Deadlock

e Not ok - may deadlock.

lock (a);
lock (b);
unlock (b);
unlock (a);

lock (b);
lock (a);
unlock (a);
unlock (b);

e Solution: impose canonical order (acyclic)

lock (a);
lock (b);
unlock (b);
unlock (a);

lock (a);
lock (b);
unlock (b);
unlock (a);

Deadlock Avoidance

Requires that the system has some additional a
priori information available

o Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need

e The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition

e Resource-allocation state is defined by the
number of available and allocated resources, and
the maximum demands of the processes

Safe State

When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state

System is in safe state if there exists a sequence <P,, P,, ..., P> of
ALL the processes in the systems such that for each P;, the
resources that P; can still request can be satisfied by currently
available resources + resources held by all the P;, with j < |

That is:

- If P, resource needs are not immediately available, then P; can
wait until all P; have finished

- When P; is finished, P; can obtain needed resources, execute,
return allocated resources, and terminate

- When P, terminates, P;,, can obtain its needed resources, and so
on

Basic Facts

e If a system is in safe state = no deadlocks

e If a system is in unsafe state = possibility of
deadlock

e Avoidance = ensure that a system will never
enter an unsafe state.

Safe, Unsafe, Deadlock State

Avoidance algorithms

« Single instance of a resource type
- Use a resource-allocation graph

e Multiple instances of a resource type
- Use the banker’s algorithm

Resource-Allocation Graph Scheme

 Claim edge P; — R; indicated that process P; may request
resource R;; represented by a dashed line

« Claim edge converts to request edge when a process
requests a resource

e Request edge converted to an assighment edge when the
resource is allocated to the process

« When a resource is released by a process, assighment edge
reconverts to a claim edge

e Resources must be claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

A;

Resource-Allocation Graph Algorithm

e Suppose that process P; requests a resource R;

e The request can be granted only if converting the
request edge to an assignment edge does not result
in the formation of a cycle in the resource
allocation graph

Banker’s Algorithm

e Multiple instances
e Each process must a priori claim maximum use

« When a process requests a resource it may have
to wait

« When a process gets all its resources it must
return them in a finite amount of time

Example of the Banker’s Algorithm

B 5 processes P, through P,;
3 resource types:

A (10 instances), B (5instances), and C (7 instances)
Snapshot at time T,:

Allocation Max Available
ABC ABC ABC
P, 010 753 332
P, 200 322
P, 302 902
P, 211 222

P, 002 433

Example of the Banker’s Algorithm

B The content of the matrix Need is defined to be Max - Allocation

Need

ABC
P, 743
P, 122
P, 600
P, 011
P, 431

B The system is in a safe state since the sequence < P,, P;, P,, P,, Py>
satisfies safety criteria

Example of the Banker’s Algorithm

B Check that Request < Available (that is, (1,0,2) < (3,3,2) = true
Allocation Need Available

ABC ABC ABC
P, 010 743 230
P, 302 020
P, 302 600
P, 211 011
P, 002 431

B Executing safety algorithm shows that sequence < P, P, P,, P,, P,>
satisfies safety requirement

B Can request for (3,3,0) by P, be granted?

B Can request for (0,2,0) by P, be granted?

An in-class discussion
(surprise : Java swapping)

45

