
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Homework 2 is out (due Oct 13th)
•  Readings from Silberchatz [7th chapter]

3

Exercise: How do you implement reader writer locks?

Shared Data
Data set
Semaphore mutex initialized to 1
Semaphore wrt initialized to 1
Integer readcount initialized to 0

Readers-Writers Problem (Cont.)

•  The structure of a writer process

 do {
 wait (wrt) ;

 // writing is performed

 signal (wrt) ;
 } while (TRUE);

Readers-Writers Problem (Cont.)

•  The structure of a reader process

 do {
 wait (mutex) ;
 readcount ++ ;
 if (readcount == 1)

 wait (wrt) ;
 signal (mutex)

 // reading is performed

 wait (mutex) ;
 readcount - - ;
 if (readcount == 0)

 signal (wrt) ;
 signal (mutex) ;
 } while (TRUE);

6

Monitors

  A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

  Abstract data type, internal variables only accessible by code
within the procedure

  Only one process may be active within the monitor at a time

monitor monitor-name
{

 // shared variable declarations
 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }
 }

}

7

Monitors

8

Implementing Locks using Swap

void Swap (bool *a, bool *b)
 {
 bool temp = *a;
 *a = *b;
 *b = temp:
 }

  Shared Boolean variable lock
initialized to FALSE;

  Each process has a local Boolean
variable key

  Solution:
 do {
 key = TRUE;
 while (key == TRUE)
 Swap (&lock, &key);
 // critical section
 lock = FALSE;

 } while (TRUE);

9

Atomic Transactions (Just a Primer!)

  Assures that operations happen as a single logical unit of work, in its entirety,
or not at all

  Related to field of database systems

  Challenge is assuring atomicity despite computer system failures

  Transaction - collection of instructions or operations that performs single
logical function

  Here we are concerned with changes to stable storage – disk

  Transaction is series of read and write operations

  Terminated by commit (transaction successful) or abort (transaction
failed) operation

  Aborted transaction must be rolled back to undo any changes it
performed

Dining-Philosophers Problem

•  Philosophers spend their lives thinking and eating
•  Don’t interact with their neighbors, occasionally try to pick up

2 chopsticks (one at a time) to eat from bowl
–  Need both to eat, then release both when done

•  In the case of 5 philosophers
–  Shared data

•  Bowl of rice (data set)
•  Semaphore chopstick [5] initialized to 1

 Dining-Philosophers Problem Algorithm

•  The structure of Philosopher i:

do {
 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);
 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

•  What is the problem with this algorithm?

Deadlock teminology

  Deadlock

  Deadlock detection
–  Finds instances of deadlock when threads stop making

progress
–  Tries to recover

  Deadlock prevention algorithms
–  Check resource requests & availability

13	

Rules for Deadlock

•  All necessary and none sufficient

14	

Rules for Deadlock

•  All necessary and none sufficient
•  Finite resource

–  Resource can be exhausted causing waiting

15	

Rules for Deadlock

•  All necessary and none sufficient
•  Finite resource

–  Resource can be exhausted causing waiting
•  Hold and wait

–  Hold resource while waiting for another

16	

Rules for Deadlock

•  All necessary and none sufficient
•  Finite resource

–  Resource can be exhausted causing waiting
•  Hold and wait

–  Hold resource while waiting for another
•  No preemption

–  Thread can only release resource voluntarily
–  No other thread or OS can force thread to

release

17	

Rules for Deadlock

•  All necessary and none sufficient
•  Finite resource

–  Resource can be exhausted causing waiting
•  Hold and wait

–  Hold resource while waiting for another
•  No preemption

–  Thread can only release resource voluntarily
–  No other thread or OS can force thread to

release
•  Circular wait

–  Circular chain of waiting threads

18	

Circular Waiting

•  If no way to free resources (preemption)

19	

Deadlock Detection

•  Define graph with vertices:
–  Resources = {r1, …, rm}
–  Threads or processes = {t1, …, tn}

•  Request edge from thread to resource
–  (ti → rj)

•  Assignment edge from resource to thread
–  (rj → ti)
–  OS has allocated resource to thread

•  Result:
–  No cycles ⇒ no deadlock
–  Cycle ⇒ may deadlock

20	

Example

•  Deadlock or not?
•  Request edge from

thread to resource ti ->
rj
–  Thread: requested

resource but not
acquired it (waiting)

•  Assignment edge from
resource to thread rj ->
ti
–  OS has allocated

resource to thread

Graph With A Cycle But No Deadlock

22	

Quick Exercise

•  Draw a graph for the
following event:

•  Request edge from thread
to resource
–  ti -> rj

•  Assignment edge from
resource to thread
–  rj -> ti

23	

Resource Allocation Graph

•  Draw a graph for the following event:

24	

Detecting Deadlock

•  Scan resource allocation graph for cycles
–  Then break them!

•  Different ways to break cycles:
–  Kill all threads in cycle
–  Kill threads one at a time

•  Force to give up resources

–  Preempt resources one at a time
•  Roll back thread state to before acquiring resource
•  Common in database transactions

25	

Deadlock Prevention

•  Instead of detection, ensure at least one of
necessary conditions doesn’t hold
–  Mutual exclusion
–  Hold and wait
–  No preemption
–  Circular wait

26	

Deadlock Prevention

•  Mutual exclusion
–  Make resources shareable (but not all resources can be

shared)

•  Hold and wait
–  Guarantee that thread cannot hold one resource when

it requests another
–  Make threads request all resources they need first and

release all before requesting more

27	

Deadlock Prevention, continued

•  No preemption
–  If thread requests resource that cannot be immediately

allocated to it
•  OS preempts (releases) all resources thread currently

holds

–  When all resources available:
•  OS restarts thread

•  Not all resources can be preempted!

28	

Deadlock Prevention, continued

•  Circular wait
–  Impose ordering (numbering) on resources and request

them in order
–  Most important trick to correct programming with

locks!

29	

Avoiding Deadlock

•  Cycle in locking graph = deadlock
•  Typical solution: canonical order for locks

–  Acquire in increasing order
•  E.g., lock_1, lock_2, lock_3

–  Release in decreasing order

•  Ensures deadlock-freedom
–  but not always easy to do

30	

lock	
 (a);	

lock	
 (b);	

unlock	
 (b);	

unlock	
 (a);	

lock	
 (b);	

lock	
 (a);	

unlock	
 (a);	

unlock	
 (b);	

Avoiding Deadlock

•  Avoiding deadlock: is this ok?

31	

lock	
 (a);	

lock	
 (b);	

unlock	
 (b);	

unlock	
 (a);	

lock	
 (b);	

lock	
 (a);	

unlock	
 (a);	

unlock	
 (b);	

lock	
 (a);	

lock	
 (b);	

unlock	
 (b);	

unlock	
 (a);	

lock	
 (a);	

lock	
 (b);	

unlock	
 (b);	

unlock	
 (a);	

Avoiding Deadlock

•  Not ok – may deadlock.

•  Solution: impose canonical order (acyclic)

Deadlock Avoidance

•  Simplest and most useful model requires that
each process declare the maximum number of
resources of each type that it may need

•  The deadlock-avoidance algorithm dynamically
examines the resource-allocation state to ensure
that there can never be a circular-wait condition

•  Resource-allocation state is defined by the
number of available and allocated resources, and
the maximum demands of the processes

 Requires that the system has some additional a
!priori information available"

Safe State

•  When a process requests an available resource, system must decide
if immediate allocation leaves the system in a safe state

•  System is in safe state if there exists a sequence <P1, P2, …, Pn> of
ALL the processes in the systems such that for each Pi, the
resources that Pi can still request can be satisfied by currently
available resources + resources held by all the Pj, with j < I

•  That is:
–  If Pi resource needs are not immediately available, then Pi can

wait until all Pj have finished
–  When Pj is finished, Pi can obtain needed resources, execute,

return allocated resources, and terminate
–  When Pi terminates, Pi +1 can obtain its needed resources, and so

on

Basic Facts

•  If a system is in safe state ⇒ no deadlocks

•  If a system is in unsafe state ⇒ possibility of
deadlock

•  Avoidance ⇒ ensure that a system will never
enter an unsafe state.

Safe, Unsafe, Deadlock State

Avoidance algorithms

•  Single instance of a resource type
–  Use a resource-allocation graph

•  Multiple instances of a resource type
–  Use the banker’s algorithm

Resource-Allocation Graph Scheme

•  Claim edge Pi → Rj indicated that process Pj may request
resource Rj; represented by a dashed line

•  Claim edge converts to request edge when a process
requests a resource

•  Request edge converted to an assignment edge when the
resource is allocated to the process

•  When a resource is released by a process, assignment edge
reconverts to a claim edge

•  Resources must be claimed a priori in the system

Resource-Allocation Graph

Unsafe State In Resource-Allocation Graph

Resource-Allocation Graph Algorithm

•  Suppose that process Pi requests a resource Rj

•  The request can be granted only if converting the
request edge to an assignment edge does not result
in the formation of a cycle in the resource
allocation graph

Banker’s Algorithm

•  Multiple instances

•  Each process must a priori claim maximum use

•  When a process requests a resource it may have
to wait

•  When a process gets all its resources it must
return them in a finite amount of time

Example of the Banker’s Algorithm

  5 processes P0 through P4;

 3 resource types:

 A (10 instances), B (5instances), and C (7 instances)

 Snapshot at time T0:

 Allocation Max Available

 A B C A B C A B C

 P0 0 1 0 7 5 3 3 3 2

 P1 2 0 0 3 2 2

 P2 3 0 2 9 0 2

 P3 2 1 1 2 2 2

 P4 0 0 2 4 3 3

Example of the Banker’s Algorithm

  The content of the matrix Need is defined to be Max – Allocation

 Need

 A B C

 P0 7 4 3

 P1 1 2 2

 P2 6 0 0

 P3 0 1 1

 P4 4 3 1

  The system is in a safe state since the sequence < P1, P3, P4, P2, P0>
satisfies safety criteria

Example of the Banker’s Algorithm

  Check that Request ≤ Available (that is, (1,0,2) ≤ (3,3,2) ⇒ true

 Allocation Need Available

 A B C A B C A B C

 P0 0 1 0 7 4 3 2 3 0

 P1 3 0 2 0 2 0

 P2 3 0 2 6 0 0

 P3 2 1 1 0 1 1

 P4 0 0 2 4 3 1

  Executing safety algorithm shows that sequence < P1, P3, P4, P0, P2>
satisfies safety requirement

  Can request for (3,3,0) by P4 be granted?

  Can request for (0,2,0) by P0 be granted?

45

 An in-class discussion
 (surprise : Java swapping)

