CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Assistant Professor, University of Maryland
Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery
Berger’s OS course at Umass Amherst 1

Announcements

o Project 1 due on Oct 7t
« Homework 2 is out (due Oct 13th)
« Readings from Silberchatz [6t" chapter]

Producer/Consumer Problem using Semaphores

semaphore mutex = 1 procedure consumer() {
semaphore full = 0 while (true) {
semaphore empty = down(full)
BUFFER_SIZE down(mutex)
item = removeltemFromBuffer()
up(mutex)

procedure producer() {

while (true) {
item = produceltem()
down(empty)
down(mutex)
putltemIntoBuffer(item)
up(mutex)
up(full)

up(empty)
consumeltem(item)

How is a semaphore really implemented

B Implementation of wait or down:

wait(semaphore *S) {
S->value--;
if (S->value <0) {
add this process to S->list;
block();

3
B Implementation of signal or up:

signal(semaphore *S) {
S->value++;
if (S->value <=0) {
remove a process P from S->list;
wakeup(P);

Example of using Semaphores in linux

Lets look at a demonstration

sem_t * sem = sem_open(“filename”, flags, mode, initial value)
sem_wait(sem); //decrement
sem_post(sem) //increment

Named semaphore used for synchronization between processes

Unnamed semaphore used for synchronization between threads
Sem_init(sem_t *sem, 0, initial_value)

Example of using pthread_barriers

Barrier impose an ordering in your code
If a barrier is initialized with say 2

you call barrier_wait --- then execution would stop till
two threads have called barrier_wait.

pthread_barrier_init(barrier);
pthread_barrier_wait(barrier);

Reader writer problem

B A data set is shared among a number of concurrent processes
® Readers - only read the data set; they do not perform any updates
® Writers - can both read and write

B Problem - allow multiple readers to read at the same time
® Only one single writer can access the shared data at the same time

B Several variations of how readers and writers are treated - all involve
priorities

Reader writer problem

thread A thread B thread C
lock (&1) lock (&l) lock (&1)
Read data Read data
unlock (&1) unlock (&1) unlock (&1)
thread A thread B thread C

rlock (&rw)

Read data
unlock (&rw)

wlock (&rw)

unlock (&rw)

rlock (&rw)
Read data
unlock (&rw)

First solution

= Single lock: safe, but limits concurrency
Only one thread at a time, but...

= Safe to have simultaneous readers
Must guarantee mutual exclusion for writers

Second solution --- reader/writer locks

* |ncreases concu rrency

= When readers and writers both queued up, who gets
lock?

Favor readers
e Improves concurrency
o Can starve writers
Favor writers
Alternate
« Avoids starvation

10

Exercise: How do you implement reader writer locks?

Shared Data
Data set
Semaphore mutex initialized to 1
Semaphore wrt initialized to 1
Integer readcount 1nitialized to 0

11

Readers-Writers Problem (Cont.)

e The structure of a writer process

do {
wait (wrt) ;

/1 writing is performed

signal (wrt) ;
} while (TRUE);

Readers-Writers Problem (Cont.)

e The structure of a reader process

do {
wait (mutex) ;
readcount ++ ;
if (readcount == 1)
wait (wrt) ;
signal (mutex)

// reading is performed

wait (mutex) ;
readcount - - ;
if (readcount == 0)
signal (wrt) ;
signal (mutex) ;
} while (TRUE);

Monitors

B A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

M Abstract data type, internal variables only accessible by code
within the procedure

B Only one process may be active within the monitor at a time

monitor monitor-name

{

// shared variable declarations
procedure P1 (...) { }

procedure Pn (...) {......}

Initialization code (...) { ... }

}

14

Monitors

shared data

v

operations

initialization
code

entry queue

15

Implementing Locks using Swap

B Shared Boolean variable lock

void Swap (bool *a, bool *b) initialized to FALSE;

f M Each process has a local Boolean
variable key
bool temp = "a; B Solution:
@ ="b; do{
b = temp: key = TRUE;
} while (key == TRUE)

Swap (&lock, &key);
// critical section
lock = FALSE;

} while (TRUE);

Atomic Transactions (Just a Primer!)

Assures that operations happen as a single logical unit of work, in its entirety,

or not at all

Related to field of database systems

Challenge is assuring atomicity despite computer system failures

Transaction - collection of instructions or operations that performs single
logical function

Here we are concerned with changes to stable storage - disk
Transaction is series of read and write operations

Terminated by commit (transaction successful) or abort (transaction
failed) operation

Aborted transaction must be rolled back to undo any changes it
performed

17

Dining-Philosophers Problem

« Philosophers spend their lives thinking and eating

« Don’t interact with their neighbors, occasionally try to pick up
2 chopsticks (one at a time) to eat from bowl

- Need both to eat, then release both when done
e In the case of 5 philosophers
- Shared data
e Bowl of rice (data set)
« Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem Algorithm

e The structure of Philosopher i:

do {
wait (chopstick[i]);
wait (chopStick[(i + 1) % 5]);
/] eat

signal (chopstick][i]);
signal (chopstick[(i + 1) % 5]);

// think

} while (TRUE);

e What is the problem with this algorithm?

An in-class discussion
(surprise : Java swapping)

20

