
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Project 1 due on Oct 7th
•  Homework 2 is out (due Oct 13th)
•  Readings from Silberchatz [6th chapter]

3

Producer/Consumer Problem using Semaphores

semaphore mutex = 1
semaphore full = 0
semaphore empty =

BUFFER_SIZE

procedure producer() {
 while (true) {
 item = produceItem()
 down(empty)
 down(mutex)
 putItemIntoBuffer(item)
 up(mutex)
 up(full)
 }
 }

procedure	 consumer()	 {	
	 	 	 	 while	 (true)	 {	
	 	 	 	 	 	 	 	 down(full)	
	 	 	 	 	 	 	 	 down(mutex)	
	 	 	 	 	 	 	 	 item	 =	 removeItemFromBuffer()	
	 	 	 	 	 	 	 	 up(mutex)	
	 	 	 	 	 	 	 	 up(empty)	
	 	 	 	 	 	 	 	 consumeItem(item)	
	 	 	 	 }	
}	

4

How is a semaphore really implemented

  Implementation of wait or down:
 wait(semaphore *S) {

 S->value--;
 if (S->value < 0) {
 add this process to S->list;
 block();
 }
 }

  Implementation of signal or up:
 signal(semaphore *S) {
 S->value++;
 if (S->value <= 0) {
 remove a process P from S->list;
 wakeup(P);
 }
 }

5

Example of using Semaphores in linux

sem_t * sem = sem_open(“filename”, flags, mode, initial value)
sem_wait(sem); //decrement
sem_post(sem) //increment

Named semaphore used for synchronization between processes

Unnamed semaphore used for synchronization between threads
Sem_init(sem_t *sem, 0, initial_value)

 Lets look at a demonstration

6

Example of using pthread_barriers

pthread_barrier_init(barrier);
pthread_barrier_wait(barrier);

 Barrier impose an ordering in your code
 If a barrier is initialized with say 2

 you call barrier_wait --- then execution would stop till
two threads have called barrier_wait.

7

Reader writer problem
  A data set is shared among a number of concurrent processes

  Readers – only read the data set; they do not perform any updates

  Writers – can both read and write

  Problem – allow multiple readers to read at the same time

  Only one single writer can access the shared data at the same time

  Several variations of how readers and writers are treated – all involve
priorities

8

Reader writer problem

thread A

lock(&l)
Read data
unlock(&l)

thread B

lock(&l)
Modify data
unlock(&l)

thread C

lock(&l)
Read data
unlock(&l)

thread A

rlock(&rw)
Read data
unlock(&rw)

thread B

wlock(&rw)
Modify data
unlock(&rw)

thread C

rlock(&rw)
Read data
unlock(&rw)

9

First solution

  Single lock: safe, but limits concurrency
–  Only one thread at a time, but…

  Safe to have simultaneous readers
–  Must guarantee mutual exclusion for writers

10

Second solution --- reader/writer locks

  Increases concurrency
  When readers and writers both queued up, who gets

lock?
–  Favor readers

•  Improves concurrency
• Can starve writers

–  Favor writers
–  Alternate

• Avoids starvation

11

Exercise: How do you implement reader writer locks?

Shared Data
Data set
Semaphore mutex initialized to 1
Semaphore wrt initialized to 1
Integer readcount initialized to 0

Readers-Writers Problem (Cont.)

•  The structure of a writer process

 do {
 wait (wrt) ;

 // writing is performed

 signal (wrt) ;
 } while (TRUE);

Readers-Writers Problem (Cont.)

•  The structure of a reader process

 do {
 wait (mutex) ;
 readcount ++ ;
 if (readcount == 1)

 wait (wrt) ;
 signal (mutex)

 // reading is performed

 wait (mutex) ;
 readcount - - ;
 if (readcount == 0)

 signal (wrt) ;
 signal (mutex) ;
 } while (TRUE);

14

Monitors

  A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

  Abstract data type, internal variables only accessible by code
within the procedure

  Only one process may be active within the monitor at a time

monitor monitor-name
{

 // shared variable declarations
 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }
 }

}

15

Monitors

16

Implementing Locks using Swap

void Swap (bool *a, bool *b)
 {
 bool temp = *a;
 *a = *b;
 *b = temp:
 }

  Shared Boolean variable lock
initialized to FALSE;

  Each process has a local Boolean
variable key

  Solution:
 do {
 key = TRUE;
 while (key == TRUE)
 Swap (&lock, &key);
 // critical section
 lock = FALSE;

 } while (TRUE);

17

Atomic Transactions (Just a Primer!)

  Assures that operations happen as a single logical unit of work, in its entirety,
or not at all

  Related to field of database systems

  Challenge is assuring atomicity despite computer system failures

  Transaction - collection of instructions or operations that performs single
logical function

  Here we are concerned with changes to stable storage – disk

  Transaction is series of read and write operations

  Terminated by commit (transaction successful) or abort (transaction
failed) operation

  Aborted transaction must be rolled back to undo any changes it
performed

Dining-Philosophers Problem

•  Philosophers spend their lives thinking and eating
•  Don’t interact with their neighbors, occasionally try to pick up

2 chopsticks (one at a time) to eat from bowl
–  Need both to eat, then release both when done

•  In the case of 5 philosophers
–  Shared data

•  Bowl of rice (data set)
•  Semaphore chopstick [5] initialized to 1

 Dining-Philosophers Problem Algorithm

•  The structure of Philosopher i:

do {
 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);
 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

•  What is the problem with this algorithm?

20

 An in-class discussion
 (surprise : Java swapping)

