
1

CMSC421: Principles of Operating Systems

Nilanjan Banerjee

Principles of Operating Systems
Acknowledgments: Some of the slides are adapted from Prof. Mark Corner and Prof. Emery

Berger’s OS course at Umass Amherst

Assistant Professor, University of Maryland

Baltimore County
nilanb@umbc.edu

http://www.csee.umbc.edu/~nilanb/teaching/421/

2

Announcements

•  Project 1 due on Oct 7th
•  Homework 2 is out (due Oct 13th)
•  Readings from Silberchatz [6th chapter]

3

Producer/Consumer Problem using Semaphores

semaphore mutex = 1
semaphore full = 0
semaphore empty =

BUFFER_SIZE

procedure producer() {
 while (true) {
 item = produceItem()
 down(empty)
 down(mutex)
 putItemIntoBuffer(item)
 up(mutex)
 up(full)
 }
 }

procedure	
 consumer()	
 {	

	
 	
 	
 	
 while	
 (true)	
 {	

	
 	
 	
 	
 	
 	
 	
 	
 down(full)	

	
 	
 	
 	
 	
 	
 	
 	
 down(mutex)	

	
 	
 	
 	
 	
 	
 	
 	
 item	
 =	
 removeItemFromBuffer()	

	
 	
 	
 	
 	
 	
 	
 	
 up(mutex)	

	
 	
 	
 	
 	
 	
 	
 	
 up(empty)	

	
 	
 	
 	
 	
 	
 	
 	
 consumeItem(item)	

	
 	
 	
 	
 }	

}	

4

How is a semaphore really implemented

  Implementation of wait or down:
 wait(semaphore *S) {

 S->value--;
 if (S->value < 0) {
 add this process to S->list;
 block();
 }
 }

  Implementation of signal or up:
 signal(semaphore *S) {
 S->value++;
 if (S->value <= 0) {
 remove a process P from S->list;
 wakeup(P);
 }
 }

5

Example of using Semaphores in linux

sem_t * sem = sem_open(“filename”, flags, mode, initial value)
sem_wait(sem); //decrement
sem_post(sem) //increment

Named semaphore used for synchronization between processes

Unnamed semaphore used for synchronization between threads
Sem_init(sem_t *sem, 0, initial_value)

 Lets look at a demonstration

6

Example of using pthread_barriers

pthread_barrier_init(barrier);
pthread_barrier_wait(barrier);

 Barrier impose an ordering in your code
 If a barrier is initialized with say 2

 you call barrier_wait --- then execution would stop till
two threads have called barrier_wait.

7

Reader writer problem
  A data set is shared among a number of concurrent processes

  Readers – only read the data set; they do not perform any updates

  Writers – can both read and write

  Problem – allow multiple readers to read at the same time

  Only one single writer can access the shared data at the same time

  Several variations of how readers and writers are treated – all involve
priorities

8

Reader writer problem

thread A

lock(&l)
Read data
unlock(&l)

thread B

lock(&l)
Modify data
unlock(&l)

thread C

lock(&l)
Read data
unlock(&l)

thread A

rlock(&rw)
Read data
unlock(&rw)

thread B

wlock(&rw)
Modify data
unlock(&rw)

thread C

rlock(&rw)
Read data
unlock(&rw)

9

First solution

  Single lock: safe, but limits concurrency
–  Only one thread at a time, but…

  Safe to have simultaneous readers
–  Must guarantee mutual exclusion for writers

10

Second solution --- reader/writer locks

  Increases concurrency
  When readers and writers both queued up, who gets

lock?
–  Favor readers

•  Improves concurrency
• Can starve writers

–  Favor writers
–  Alternate

• Avoids starvation

11

Exercise: How do you implement reader writer locks?

Shared Data
Data set
Semaphore mutex initialized to 1
Semaphore wrt initialized to 1
Integer readcount initialized to 0

Readers-Writers Problem (Cont.)

•  The structure of a writer process

 do {
 wait (wrt) ;

 // writing is performed

 signal (wrt) ;
 } while (TRUE);

Readers-Writers Problem (Cont.)

•  The structure of a reader process

 do {
 wait (mutex) ;
 readcount ++ ;
 if (readcount == 1)

 wait (wrt) ;
 signal (mutex)

 // reading is performed

 wait (mutex) ;
 readcount - - ;
 if (readcount == 0)

 signal (wrt) ;
 signal (mutex) ;
 } while (TRUE);

14

Monitors

  A high-level abstraction that provides a convenient and effective
mechanism for process synchronization

  Abstract data type, internal variables only accessible by code
within the procedure

  Only one process may be active within the monitor at a time

monitor monitor-name
{

 // shared variable declarations
 procedure P1 (…) { …. }

 procedure Pn (…) {……}

 Initialization code (…) { … }
 }

}

15

Monitors

16

Implementing Locks using Swap

void Swap (bool *a, bool *b)
 {
 bool temp = *a;
 *a = *b;
 *b = temp:
 }

  Shared Boolean variable lock
initialized to FALSE;

  Each process has a local Boolean
variable key

  Solution:
 do {
 key = TRUE;
 while (key == TRUE)
 Swap (&lock, &key);
 // critical section
 lock = FALSE;

 } while (TRUE);

17

Atomic Transactions (Just a Primer!)

  Assures that operations happen as a single logical unit of work, in its entirety,
or not at all

  Related to field of database systems

  Challenge is assuring atomicity despite computer system failures

  Transaction - collection of instructions or operations that performs single
logical function

  Here we are concerned with changes to stable storage – disk

  Transaction is series of read and write operations

  Terminated by commit (transaction successful) or abort (transaction
failed) operation

  Aborted transaction must be rolled back to undo any changes it
performed

Dining-Philosophers Problem

•  Philosophers spend their lives thinking and eating
•  Don’t interact with their neighbors, occasionally try to pick up

2 chopsticks (one at a time) to eat from bowl
–  Need both to eat, then release both when done

•  In the case of 5 philosophers
–  Shared data

•  Bowl of rice (data set)
•  Semaphore chopstick [5] initialized to 1

 Dining-Philosophers Problem Algorithm

•  The structure of Philosopher i:

do {
 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);
 signal (chopstick[(i + 1) % 5]);

 // think

} while (TRUE);

•  What is the problem with this algorithm?

20

 An in-class discussion
 (surprise : Java swapping)

