
CMSC 341 Lists, Stacks &Queues 1

CMSC 341

Linked Lists, Stacks and Queues

CMSC 341 Lists, Stacks &Queues 2

Goal of the Lecture

  To complete iterator implementation for
ArrayList

  Briefly talk about implementing a LinkedList
  Introduce special Lists

  Stacks (LIFO Data Structure)
  Queues (FIFO Data Structure)
  Simple Adapters to implement Stacks and Queues

CMSC 341 Lists, Stacks &Queues 3

Implementing A Linked List

  To create a doubly linked list as seen below
  MyLinkedList class
  Node class
  LinkedListIterator class
  Sentinel nodes at head and tail

CMSC 341 Lists, Stacks &Queues 4

Empty Linked List

  An empty double linked list with sentinel
nodes.

CMSC 341 Lists, Stacks &Queues 5

Inner classes

  Inner class objects require the construction of
an outer class object before they are
instantiated.

  Compiler adds an implicit reference to outer
class in an inner class (MyArrayList.this).

  Good for when you need several inner
objects to refer to exactly one outer object (as
in an Iterator object).

CMSC 341 Lists, Stacks &Queues 6

Nested classes

  Considered part of the outer class, thus no
issues of visibility.

  Making an inner class private means that
only the outer class may access the data
fields within the nested class.

  Is Node a prime candidate for nested or inner
class? public or private?

CMSC 341 Lists, Stacks &Queues 7

Implementation for MyLinkedList
1.  Let take a simple implementation of a LinkedList

1.  Look at the Node definition, Add method.
2.  Your Goal: As homework assignment is to implement an

Iterator Inner class

CMSC 341 Lists, Stacks &Queues 8

Stacks

  A restricted list where insertions and
deletions can only be performed at one
location, the end of the list (top).

  LIFO – Last In First Out
  Laundry Basket – last thing you put in is the first

thing you remove
  Plates – remove from the top of the stack and add

to the top of the stack

CMSC 341 Lists, Stacks &Queues 9

Stack ADT

  Basic operations are
push, pop, and top

Stack Model

CMSC 341 Lists, Stacks &Queues 10

Adapting Lists to Implement Stacks

  Adapter Design Pattern
  Allow a client to use a class whose interface

is different from the one expected by the
client

  Do not modify client or class, write adapter
class that sits between them

  In this case, the List is an adapter for the
Stack. The client (user) calls methods of the
Stack which in turn calls appropriate List
method(s).

CMSC 341 Lists, Stacks &Queues 11

Client (Stack user)

Stack (adapter)

List (adaptee)

theStack.push(10)

theList.add(0, 10) ;

Adapter Model for Stack

CMSC 341 Lists, Stacks &Queues 12

Queues
  Restricted List

  only add to head
  only remove from tail

  Examples
  line waiting for service
  jobs waiting to print

  Implement as an adapter of List

CMSC 341 Lists, Stacks &Queues 13

Queue ADT

  Basic Operations are enqueue and dequeue

CMSC 341 Lists, Stacks &Queues 14

Client (Queue user)

List (adaptee)

theQ.enqueue(10)

theList.add(theList.size() -1, 10)

Queue (adapter)

Adapter Model for Queue

CMSC 341 Lists, Stacks &Queues 15

Circular Queue

•  Adapter pattern may be impractical
•  Overhead for creating, deleting nodes
•  Max size of queue is often known

•  A circular queue is a fixed size array
•  Slots in array reused after elements dequeued

CMSC 341 Lists, Stacks &Queues 16

Circular Queue Data
•  A fixed size array
•  Control Variables

arraySize
 the fixed size (capacity) of the array

currentSize
 the current number of items in the queue
 Initialized to 0

front
 the array index from which the next item will be dequeued.
 Initialized to 0

back
 the array index last item that was enqueued
 Initialized to -1

CMSC 341 Lists, Stacks &Queues 17

Project 1 (squarelist)
LinkedList of LinkedList

Traversal time = O(sqrt(n))
Only if finding the number of elements
In an inner list is O(1)

Finding the top level list

CMSC 341 Lists, Stacks &Queues 18

Project 1 (squarelist)

CMSC 341 Lists, Stacks &Queues 19

Project 1 (squarelist) – Merging list

CMSC 341 Lists, Stacks &Queues 20

Project 1 (squarelist) – split long list

CMSC 341 Lists, Stacks &Queues 21

Project 1 (squarelist) – consolidation

CMSC 341 Lists, Stacks &Queues 22

Discuss the implementation

