CMSC 341

Linked Lists, Stacks and Queues

CMSC 341 Lists, Stacks &Queues

Goal of the Lecture

To complete iterator implementation for
ArrayList

Briefly talk about implementing a LinkedList

Introduce special Lists
Stacks (LIFO Data Structure)
Queues (FIFO Data Structure)
Simple Adapters to implement Stacks and Queues

CMSC 341 Lists, Stacks &Queues 2

Implementing A Linked List

To create a doubly linked list as seen below
o MyLinkedList class

Node class

|
o LinkedListlterator class
o Sentinel nodes at head and tai

R

1 <1

e

<

\ head

tail /

CMSC 341 Lists, Stacks &Queues

Empty Linked List

An empty double linked list with sentinel
nodes.

i <

hel /tail

CMSC 341 Lists, Stacks &Queues

Inner classes

Inner class objects require the construction of
an outer class object before they are
instantiated.

Compiler adds an implicit reference to outer
class in an inner class (MyArrayList.this).

Good for when you need several inner
objects to refer to exactly one outer object (as
In an lterator object).

CMSC 341 Lists, Stacks &Queues 5

Nested classes

Considered part of the outer class, thus no
iIssues of visibility.

Making an inner class private means that
only the outer class may access the data
fields within the nested class.

Is Node a prime candidate for nested or inner
class? public or private?

CMSC 341 Lists, Stacks &Queues 6

Implementation for MylLinkedList

Let take a simple implementation of a LinkedList
Look at the Node definition, Add method.

Your Goal: As homework assignment is to implement an
Iterator Inner class

CMSC 341 Lists, Stacks &Queues

Stacks

A restricted list where insertions and
deletions can only be performed at one
location, the end of the list (top).

LIFO — Last In First Out

o Laundry Basket — last thing you put in is the first
thing you remove

o Plates — remove from the top of the stack and add
to the top of the stack

CMSC 341 Lists, Stacks &Queues 8

Stack ADT

Basic operations are Stack Model
push, pop, and top

pop push top

Stack

top

(@) w — N \]

CMSC 341 Lists, Stacks &Queues

Adapting Lists to Implement Stacks

s Adapter Design Pattern

m Allow a client to use a class whose interface
Is different from the one expected by the
client

s Do not modify client or class, write adapter
class that sits between them

m |n this case, the List is an adapter for the
Stack. The client (user) calls methods of the
Stack which in turn calls appropriate List
method(s).

CMSC 341 Lists, Stacks &Queues 10

Adapter Model for Stack

Client (Stack user)

I theStack.push(10)

Stack (adapter)

I theList.add(0, 10) ;
List (adaptee)

CMSC 341 Lists, Stacks &Queues

11

Queues

Restricted List
o only add to head
o only remove from tail

Examples
o line waiting for service
o Jobs waiting to print

Implement as an adapter of List

CMSC 341 Lists, Stacks &Queues

12

Queue ADT

Basic Operations are enqueue and dequeue

dequeue engqueue

Queue ~=

-

CMSC 341 Lists, Stacks &Queues

13

Adapter Model for Queue

Client (Queue user)
1 theQ.enqueue(10)
Queue (adapter)

1 theList.add(theList.size() -1, 10)

List (adaptee)

CMSC 341 Lists, Stacks &Queues

14

Circular Queue

o Adapter pattern may be impractical
e Overhead for creating, deleting nodes
 Max size of queue is often known

e A circular queue is a fixed size array
e Slots in array reused after elements dequeued

CMSC 341 Lists, Stacks &Queues

15

Circular Queue Data

« A fixed size array

« Control Variables

arraySize
the fixed size (capacity) of the array

currentSize
the current number of items in the queue
Initialized to O

front
the array index from which the next item will be dequeued.
Initialized to 0

back
the array index last item that was enqueued
Initialized to -1

CMSC 341 Lists, Stacks &Queues

16

‘ Project 1 (squarelist)

Finding the top level list top-level list

A

LinkedList of LinkedList

) >

—

C— U E— N — W
— 0 Neeb «—
= w
s R
_
«—B <= 5 <0 I < €
|

Traversal time = O(sqrt(n))
Only if finding the number of elements
~In-an nner list is O(1)

«— R R 1N > «—

J

inner
lists

\

17

‘ Project 1 (squarelist)

Condition 1:
Every inner list has < 2 vn items.

Condition 2:
There are no adjacent short inner lists, where short is defined as having < vn/2 items.

CMSC 341 Lists, Stacks &Queues 18

‘ Project 1 (squarelist) — Merging list

R R
B T
n e e

19

CMSC 341 Lists, Stacks &Queues

‘ Project 1 (squarelist) — split long list

E-§

N

w

= |

i° l

[y

|
i

split into
s two lists
Y
Wil

CMSC 341 Lists, Stacks &Queues

20

‘ Project 1 (squarelist) — consolidation

Consolidate:
1. Traverse the top-level list.
2. Whenever an empty inner list is encountered, remove that inner list.

3. Whenever two adjacent short inner lists are encountered, merge them into a single inner list.
(See Figures 2 and 3.)

4. Whenever an inner list is found to have more than 2 vn items, split them into two lists of
equal length. (See Figure 4.)

CMSC 341 Lists, Stacks &Queues 21

Discuss the implementation

CMSC 341 Lists, Stacks &Queues

22

