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ABSTRACT
Home energy management is increasingly important. Though
there are a plethora of tools for aiding home energy manage-
ment, few provide concrete suggestions for helping users to
manage energy demand. A key component in developing
automated energy management schemes is drawing a con-
nection between energy usage and a user’s context. Exist-
ing approaches either rely on users to annotate data after the
fact, or rely on intrusive and costly sensing systems deployed
in the home. This work presents a system for collecting in
situ annotations using a mobile application coupled with an
existing home energy measurement infrastructure. We use
a novel power profiling approach to determine when appli-
ances transition from an idle to active state and aggressively
prompt users to provide annotations of their current context.
In a five-week study, we were able to collect an average of
over 2 annotations per day and users provided a wide range
of annotations, however the overall response rate was lower
than expected leading to a sparse data set. We conclude by
examining the utility of sparse energy data annotations. We
first demonstrate that our data set confirms that end user an-
notation is necessary—a completely automated activity in-
ferencing scheme is implausible. We further demonstrate
that sparse annotation data can be used to predict a user’s
activity with an accuracy of more than 50% in hours where
our data set contains an annotation from the user. We fi-
nally consider the feasibility of using annotations to predict
a user’s energy needs.

1. INTRODUCTION
A key component of creating a sustainable world is

managing energy in the home. Recent years have seen
a marked increase in the number of tools that end users
can employ to monitor their energy consumption, but
most tools simply provide access to raw numbers. Users
can, for example, install energy meters that provide
readouts of the watt hours consumed by a particular
appliance, however this basic information can be diffi-
cult to interpret for a user who simply wants to know

how to reduce an energy bill or be friendlier to the en-
vironment.

The overarching goal of our work is to provide users
with targeted suggestions for reducing home energy con-
sumption, and an important element of our approach is
understanding not only how much energy is consumed
but why a home exhibits a particular energy profile at
a given time. Understanding the connection between
energy consumed and the activities a resident performs
is critical both for developing intelligent energy man-
agement algorithms on the system side and presenting
helpful information on the user side. Collecting or de-
riving these annotations, however, is a difficult problem.
Existing approaches typically rely on the user to anno-
tate an energy consumption timeline after the fact using
a visualization tool—relying on the user to remember
what he or she was doing at a particular point in the
past [1]—or can require costly and intrusive sensing sys-
tems to identify user behavior.

The goal of this work is to collect annotations in situ
using a mobile application integrated with an energy
measurement system used broadly for energy manage-
ment in the home. Our system requires only the sensors
necessary for our Green Homes infrastructure [2]. Green
Homes collects energy usage data of several appliances
in the home and provides a visualization and control
framework. Our energy annotation component sends a
push notification to a user’s smartphone when the user
has likely begun a new activity and the user may reply
with an annotation of his/her current context. In this
work we explore both annotation collection as well as
the utility of the annotations provided by 5 users of our
system. There are three primary contributions of this
work:

Our first contribution is an approach for using the
appliance power signatures we already collect in Green
Homes for determining when a change is sufficiently ap-
preciable to suggest that the user may be performing a
different or new activity. Many appliances do not have a
clear on/off state and determining when the raw power
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draw indicates that the device has transitioned into a
more active state is not straightforward. Our approach
uses the DBSCAN clustering algorithm to identify a
unique power profile for each individual device. Using
this approach, we were able to generate usable profiles
for 31 of 39 devices across 5 homes participating in a
five-week deployment. Of the remaining devices, two
were never used during the experiment period and three
were always-on and remained in the same power state.

Our second contribution outlines the results of a five-
week deployment in 5 homes. Using the profiles gen-
erated by our algorithm, we notified the user anytime
any device in the home transitioned into a higher power
state, and we also asked users to annotate any time they
thought they were performing a relevant activity. We
were able to collect an average of over 2 annotations
per day, and in one day we saw 13 annotations from
one of our subjects. Users provided a wide range of an-
notations across different times of day and representing
different types of activities, however the overall response
rate was lower than expected leading to a fairly sparse
data set.

Based on the results of our deployment, our third con-
tribution considers the utility of our annotation data.
Our analysis considers how we may use annotations to
understand a user’s energy requirements. We first con-
firm that manual annotations are necessary—common
features such as time of day and power consumption
cannot be used to automatically derive annotations us-
ing unsupervised techniques. We next demonstrate that
using sparse annotation data we can, in most cases, pre-
dict a user’s activity with an accuracy of more than
50% in hours where our data set contains an annota-
tion from the user. Finally, we explore the feasibility
of using annotations to augment a prediction algorithm
that identifies the hourly power consumption profile for
a user’s home.

2. SYSTEM DESIGN
Accurate annotations of energy data are useful for en-

abling automation of energy management as well as for
encouraging improved manual management of energy
demand by providing users with a better understand-
ing of how energy usage corresponds to their daily ac-
tivities. This work presents a novel component for col-
lecting in situ annotations integrated into an existing
home energy measurement system—Green Homes [2,
3]. Data already collected by the Green Homes energy
meters is provided as input to a power profiling algo-
rithm that identifies fine-grained changes in the user’s
context. The algorithm aggressively prompts the user
to annotate his/her context by sending a notification to
a smartphone application. In this section, we first pro-
vide a brief overview of the Green Homes system, then
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Figure 1: Green Homes architecture.

present the power profiling algorithm and describe the
implementation of the notification component.

2.1 The Green Homes System
The Green Homes project [2, 3] is an ongoing ef-

fort to understand energy usage in homes, particularly
those powered by renewable sources, and to encour-
age sustainability by developing automated mechanisms
for matching energy demand with available supply. At
present, 9 homes are participating in our study, includ-
ing one grid-tied home with solar panels and one off-
grid home entirely powered by solar panels. In each
home, we have installed between 5 and 10 off-the-shelf
energy meters [4] that collect energy usage of appliances
include televisions, lamps, microwaves, and computing
equipment. Where possible, we also collect energy us-
age of the entire home.

Figure 1 illustrates the architecture of the Green Homes
system. The off-the-shelf energy meters communicate
with a dual-radio gateway [5] in each home. Also in
each home is a client component that polls the energy
meters every 30 seconds and reports readings to a cen-
tralized server. Data on the server, including graphs of
past usage and current device status, can be accessed
by a web or smartphone application (both Android and
iPhone are supported). Additionally, every 1 minute,
the notification component on the server side executes
the power profiling algorithm described below and, if
appropriate, pushes a notification to the user’s phone.
Annotations entered by the user are then stored on the
server for postprocessing.

2.2 Power Profiling Algorithm
The notification component uses an aggressive power

profiling algorithm to identify possible scenarios when
a user’s context has changed such that energy usage
has increased. We chose not to ask users to annotate
decreases in energy consumption to minimize the intru-
siveness of the system, and because the primary uses
of the annotations are centered around understanding
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Figure 2: Power draw of a lamp going from off
to on and then back to an off state.
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Figure 3: Power draw of a TV and other elec-
tronics connected to the same power strip.

periods of high energy consumption. The system is de-
signed to collect annotations at as fine a granularity
as possible, therefore the goal is to determine when a
device is in use. Recall, the Green Homes system col-
lects instantaneous power draw every 30 seconds, so one
might assume that an increase in power draw over a pre-
vious reading would indicate that a device was turned
on. Analysis of our data shows this to be incorrect,
however.

To understand why a more sophisticated power pro-
filing technique is required, consider Figures 2 and 3.
Figure 2 shows the power draw of a lamp. When off,
the lamp shows a power draw of 0 W and it is clear that
when the power draw jumps from 0 to over 22 W the
device has been turned on. Our first intuition was to
use a basic threshold to determine when a device tran-
sitions to an on or active state. We ran some initial
experiments on one household in our study and, based
on the devices in that house, implemented an algorithm
that triggered a notification if the power draw reported

by a meter jumped by more than 20 W in successive
readings. We deployed this preliminary algorithm for
two houses in our study and discovered that while the
20 W threshold was appropriate for all devices in the
first house, it was not appropriate for all devices in the
second. Figure 3 shows the power draw of a power strip
that powers a television, cable box, and other electron-
ics in the second house. In this case, the baseline power
draw is not a 0 W off state, but rather an idle state of
nearly 40 W. More interestingly, when the TV is on, the
power draw fluctuates between 178 W and 287 W. The
occupant discovered that, using the initial algorithm,
he received notifications when changing channels on his
TV! This points to a clear need to perform a smarter
analysis to identify on, off, and idle power states of each
device.

We have designed a power profiling algorithm that
uses the DBSCAN clustering algorithm [6] to produce a
unique profile for each device in our study. DBSCAN is
a density-based algorithm that identifies clusters while
excluding noise. DBSCAN is an ideal choice for this ap-
plication as it does not require the number of clusters
to be provided as input and it can be implemented very
efficiently, particularly for one-dimensional data such as
ours. The algorithm takes as input two parameters—
eps specifies the neighborhood of a point, which in our
case represents the minimum number of watts separat-
ing two distinct power states. We experimentally deter-
mined that 2 W yields the best results. The second pa-
rameter is minpts, which represents the minimum num-
ber of points required to form a cluster. We use 10 in
our algorithm. For the data from the device shown in
Figure 3, the DBSCAN algorithm correctly identifies
all readings between 193 and 287 W as belonging to
a single cluster. In fact, the algorithm identifies three
clusters clearly shown in the figure, plus one additional
cluster from 125 W to 139 W.

Once the profile is generated, the final step of the al-
gorithm is to evaluate whether a device is non-interactive
and represents only background load for the user. In the
case of a refrigerator, for example, the transition into a
higher power state likely does not indicate a change in
user context. A refrigerator might run twice per hour
every hour of the day, hence it is useful to exclude a
non-interactive device from notifications. To identify
background loads, we apply a heuristic that will clas-
sify a device as non-interactive if in more than 80% of
the hours for which data was reported for the device
there was a change in power state for the device. Ef-
fectively, if a device transitions between power states in
more than 19 hours of the day then the device is likely
not manually controlled by the user and will not trigger
notifications.
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Figure 4: Green Homes notification component.

2.3 Notification Component Overview
The notification component, illustrated in Figure 4,

is comprised of a Profile Generator that executes the
power profiling algorithm, a Notification Generator that
processes incoming data, and a Retraining component
that determines whether a profile is stale and should be
regenerated.

Profile Generator: The Profile Generator executes
the DBSCAN-based profiling algorithm and produces a
set of tuples representing the beginning and ending val-
ues, in W, for each power state. The background load
heuristic is then applied to determine whether the de-
vice should be excluded. The resulting profile is stored
in the database for use by the Notification Generator.

Notification Generator: The Profile Generator will
train on 3 days to 2 weeks of data to produce the initial
power profiles. Once trained, the Notification Gener-
ator will evaluate incoming data every 1 minute. If,
in the past 1 minute, a device has transitioned into a
higher power state and if no notification has been sent
for the given device in the past 1 hour, a notification
is triggered. The latter condition is helpful in case of
a device such as a washing machine that oscillates be-
tween several power states over the course of a single
load of laundry.

Retraining: At the end of notification generation, the
notification component will determine whether it is nec-
essary to retrain to produce an updated power profile.
Retraining will occur if one of two conditions is met.
The first condition is that the number of power draw
readings that fall outside of the states identified in a
device’s current power profile exceeds a threshold, in
our current implementation 25. This indicates that the
power profile of the device has changed and that it is
possible that a new state has been introduced. The sec-
ond condition is the opposite—a state has been elimi-
nated. We determine that this is the case if a given
state in the power profile has not been visited for some
period of time, in our case 2 weeks. Though 2 weeks

Figure 5: iPhone user interface for providing an
annotation.

seems like a significant period of time, a device like a
washing machine may be used infrequently.

3. DEPLOYMENT
In order to understand whether the Green Homes no-

tification component is an effective means of collecting
contextual annotations for home energy data we report
the results of a five-week deployment. The goal of the
study is to understand whether the power profiling al-
gorithm works broadly for different types of devices in
different homes; whether the system generates a man-
ageable number of notifications at optimal times; and
whether subjects respond when they receive notifica-
tions.

Setup: To conduct the study, we enabled notifications
for 5 of the 9 homes currently participating in the Green
Homes project and collected data from the period be-
tween November 1, 2012 and December 6, 20121. Ta-
ble 1 reports the number of days of data collected in
each home, as our deployment was rolled out incremen-
tally. Participants were asked to provide feedback on
their activities using our iPhone or Android applica-
tion. In some cases, subjects used their own personal
devices and in other cases we provided subjects with
an iPod Touch specifically for the experiment. Subjects
were asked to log their activity (raw annotations), us-
ing a free-form text field, and were also asked to select a
category to represent the activity from the following set
of categories: cooking, entertainment, work, chores,
and other. Logging activity categories in addition to
raw annotations has two advantages. First, it helps us
collect more uniform data across subjects. Since raw an-
notations can vary widely across users, categories pro-
vide a common framework to compare data collected
from different homes. Secondly, since our subjects were

1Our study is ongoing and additional data will be available
for a camera-ready version of this paper.
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not trained for this project, the raw annotations logged
were sometimes obvious and not useful. For instance,
one of our subjects logged “Watching TV” when he
switched on his television—an event that triggered the
notification and can be inferred without any user anno-
tation. We chose these specific categories since home
users understand these activity categories well [1]. A
screen shot of the application is shown in Figure 5. In
addition to asking subjects to log activities when noti-
fied, we encouraged them to provide annotations when-
ever they felt they were performing a relevant activity,
even if the system had not notified them. We note that
three of our participants, subjects 3, 4, and 5, are re-
searchers involved with this project.

Subject ID Days of Data

1 35
2 33
3 35
4 25
5 34

Table 1: The table shows the number of days of
data collected used in this analysis.

3.1 Power Profiles
The goal of the Profile Generator is to produce pro-

files that accurately represent the power states of each
device in the study and exclude devices that are not
interactively controlled by the user. To evaluate this
component, we consider the profiles generated for the
39 devices in the study. Our algorithm produced us-
able profiles for 31 of 39 devices. Among the devices for
which no profile was produced, we saw several scenar-
ios. First, we consider training incomplete if the algo-
rithm is unable to identify at least two distinct clusters.
In one case, for example, the data came from a DVR
that was always on with a power draw within a roughly
2 W range. The notification algorithm identified only
one power state, hence it could not be used to generate
any notifications. This is expected behavior as there is
never a transition from on to off or vice versa. Another
example is a power strip that powers two laptops and
a printer. In this case, the algorithm again generated a
single cluster, but one that went from 4 W, the base-
line power draw of the printer, to roughly 70 W, the
value to which the power draw spikes when a laptop
is plugged in to be charged. Though there are no dis-
tinct power states for this device, it does appear that
when a laptop is plugged in there is a jump followed
by a gradual decrease in power draw. This points to a
possible improvement in our algorithm: reverting to a
threshold-based approach that generates a notification
in case the power draw suddenly increases by more than
some threshold. Finally, in several cases, it seemed that

the device was simply not used during the experiment
period.

Most of the devices in our study yielded profiles with
3 or fewer states, though we did see up to 7 states in
some cases. We rely on the user to provide us with a
label describing each device (e.g., TV or Lamp), and
labels were missing for 3 devices. Table 2 highlights
the labeled devices that were classified as having 3 or
fewer states, greater than 3 states, or did not produce a
usable profile. Note that there were multiple instances
of most of the devices described, including TVs and
lamps. The classification is as expected for devices such
as the lamps, which typically have two states, and TVs,
which often have three states representing off, on, and a
power-saving mode. We were somewhat surprised that
in some cases, for instance in case of the two washers
in our study, the same class of device fell into different
categories. One factor impacting this classification is
the sample rate of the Green Home system. It samples
the power draw of each device every 30 seconds, which
is too coarse grained to capture fine-grained changes in
power draw of devices such as microwaves and washing
machines.

Of the four refrigerators in our study, our algorithm
initially correctly identified two as non-interactive back-
ground loads. Recall that a device will be excluded if
it exhibits a power state transition in more than 19 of
24 hours in the day. There were two reasons the al-
gorithm failed to identify the other cases. In the first
case, the meter attached to the fridge was misbehaving
and reported a power draw of 0 about half of the time.
We have found that the off-the-shelf hardware we use
is not as reliable as we expected and we must periodi-
cally run a network healing procedure to repair broken
links in the mesh network formed by the meters. In
this case, we asked the subject to heal the network and
once this occurred the algorithm was able to correct
itself and identified the refrigerator as non-interactive
midway through the experiment period. In the second
case, the refrigerator simply ran much less frequently—
on the order of once every two hours in contrast to the
other refrigerators we have measured that run once and
sometimes twice per hour. Though we continue to ex-
plore additional heuristics, there are other devices in
our study, such as the space heater, that are also likely
candidates for exclusion but for which we would need
to develop a different set of heuristics. Ultimately, we
have decided that this is one place where we must have
the user in the loop. Midway through our experiment
we deployed an update to our iPhone application that
allows users to enable and disable notifications as they
prefer.
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3 or Fewer States Lamp, TV, XBox, Washer, Oven, Microwave, PC, Electronics Power Strip, Dryer, Laptop, Treadmill
Greater than 3 States Dishwasher, Space Heater, Washer, TV, Fridge
Unable to Train DVR, Laptops, Dryer, Router+Gateway+FitPC

Table 2: The table shows a taxonomy of the devices in the study.
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Figure 6: The average number of notifications
per day sent to each subject.

3.2 Notifications and Annotations

Subject Number Days Notifications/Day
ID with No Excl. No

Notification Notification Days

1 2 23.4
2 9 16.2
3 8 4.1
4 0 4.8
5 4 3.5

Table 3: The table shows the number of days
when no notifications occurred and the mean no-
tifications per day excluding days when no noti-
fications occurred.

We next consider the effectiveness of the system in
using the power profiles identified to solicit annotations
from our users. We first examine the number of noti-
fications per day sent to each subject in our study in
Figure 6. The figure illustrates the mean number of
daily notifications for each subject. There was consid-
erable variation in the frequency with which the system
requested annotations, with subjects 1 and 2 receiving
significantly more notifications than the other subjects.
In the homes of both subjects 1 and 2 a refrigerator
was measured and accounts for a significant percentage
of the daily notifications. As discussed above, in the
home of subject 2 the refrigerator was identified as a
non-interactive device on November 24 and, after that
point, the number of notifications decreased to fewer
than 10 per day. Moreover, excluding the refrigerator

and space heater—another background load—from the
notifications for subject 1, the average daily notifica-
tions drops to below 8. Across all homes, the mean
number of notifications for interactive devices is 4.6,
though this is skewed by a number of days when our
subjects were traveling and no notifications were gen-
erated. Table 3 shows, for each subject, the number of
days when no notifications occurred and the mean num-
ber of daily notifications excluding the zero notification
days when subjects were likely not home. This analysis
demonstrates, first, that identifying background loads
is a key component of maintaining a manageable num-
ber of potentially intrusive push notifications and, sec-
ond, that in homes where we generate notifications for
interactive devices only, our system is able to use de-
vice power profiles to identify 4–5 potentially important
changes in user context each day.
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Figure 7: Percentage of days a notification is
sent during hours of maximum energy consump-
tion.

The next question that arises is whether our system
identifies the most relevant contextual changes for the
user, in other words whether the notifications are gener-
ated at optimal times. To evaluate this metric, we look
at whether notifications were generated during hours of
the day when the subject’s home had the highest energy
demand. Unfortunately, we were only able to collect
whole-home data in three homes, as it often requires
modifications to a user’s main fuse box. Subjects 1 and
2 installed a metering device that reports home energy
consumption every 30 seconds via the Green Home in-
frastructure, and subject 5 was able to provide hourly
energy consumption data acquired offline via her utility
company.
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Figure 7 shows the percentage of days for which a
notification was generated during one of the top two
peak demand hours for that day. Because subjects 1
and 2 both received notifications for non-interactive de-
vices we report results both including and excluding
those notifications. For interactive devices, the notifi-
cation algorithm identifies hours of peak demand be-
tween 36% and 66% of the time. There are two factors
that contribute to this result. First, the system does
not consider the whole-home energy consumption when
determining when to send a notification because this in-
formation is not available in most homes in our study.
Second, in each home we measure fewer than 10 devices
and this number is largely limited by accessibility to the
power outlet for the device. In the home of subject 5, for
example, the clothes dryer is a significant energy sink
but is not measured. Interestingly, however, subject 5’s
home has only 3 devices that generate notifications but
our system is able to identify periods of peak demand
nearly 43% of the time. Ultimately, this result points
to a main tradeoff of our system— though our algo-
rithm could be improved by hiring an expert to deploy
sensors more pervasively, we are still able to identify
hours of peak demand about half the time using only a
plug-and-play system deployed by the end user.

Subject Annotations Response Rate/
ID Per Day Excl. Background

(Mean) Notifications

1 2.9 6% / 13%
2 1.2 3% / 7%
3 2.0 33%
4 2.7 15%
5 1.9 43%

Table 4: The table shows the average number
of annotations per day for each subject as well
as the percentage of notifications that yielded a
response from the user within a 10-minute win-
dow.

The final question we consider is whether the subjects
responded to the notifications sent by the system. Ta-
ble 4 reports the mean number of annotations per day
for each subject as well as the response rate. The re-
sponse rate is calculated as the number of notifications
for which there is a corresponding annotation within a
10 minute window divided by the total number of noti-
fications. For subjects 1 and 2 we again report results
including and excluding the notifications generated by
background loads.

Overall, the mean number of annotations per day was
lower than expected, however Figure 8 shows the dis-
tribution of the number of daily annotations for each
user. In several cases, the mean is highly skewed by a
large number of days for which there was no annota-
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Figure 8: Distribution of the number of annota-
tions per day for each subject.
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Figure 9: Heatmap showing the number of an-
notations in each hour of the day. The lightest
cells represent 0 annotations with the darkest
cells representing a maximum of 12 annotations.

tion, again the likely result of the Thanksgiving holiday
when many subjects were traveling. The distribution
shows that subjects were willing to provide up to 13
annotations per day, though the response rate was low,
particularly for the subjects who received the largest
number of notifications. Recall that subjects 3–5 are
researchers involved with this project, however subject
1 provided the largest number of annotations. Inter-
estingly, subject 1 recorded a total of 54 annotations
where 13% were not in response to a notification while
subject 2 recorded a total of 39 annotations where 64%
were not in response to a notification. This suggests
that users’ motivation to annotate varies. Finally, Fig-
ure 9 further examines the distribution of annotations
through a heatmap of the number of annotations that
occurred in each hour of the day. Using our approach,
we were able to collect at least one annotation in a min-
imum of 13 of the 24 hours of the day, with one subject
providing annotations in 19 different hour slots.

Summary: Using off-the-shelf energy measurement com-
ponents and our novel power profiling algorithm our
system is able to identify a significant number of im-
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Figure 10: Energy consumption of the entire
home when an activity was performed by sub-
ject 1.

portant energy consumption events. Our data indi-
cate, however, that user responsiveness is inconsistent.
Though we were able to collect a measurable number of
total annotations during the study, the mean number
of annotations per day we collected is consistent with
that seen in previous work [1]. This suggests that users
are not willing to provide comprehensive annotation of
their energy data. In the next section we consider how
energy annotations may be used to predict future be-
havior and energy needs.

4. USING SPARSE ANNOTATIONS
The Green Homes project seeks to predict future en-

ergy demand in order to provide users with targeted
suggestions for demand management. The previous sec-
tion demonstrates that users are willing to provide an-
notations, but not consistently. In this section, we ex-
plore how the sparse annotations collected may be used
to predict a user’s activity and further consider the
feasibility of using annotations to predict user energy
needs.

4.1 Automated Activity Prediction
We begin by taking a step back to answer the question

of whether it would be plausible to devise a completely
automated mechanism for inferring a user’s activity.
Ideally, an unsupervised learning mechanism would ex-
ploit common features such as total home energy con-
sumption, appliance power consumption, or time of the
day to predict a user’s activity. Our analysis, however,
confirms the premise of our work—collecting annota-
tions from the user is necessary.

We first consider whether total home energy con-
sumption is sufficient to distinguish between two activi-
ties. In this experiment, we use data collected from sub-
ject 1 during the entire experiment period. Figure 10
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Figure 13: Heatmap showing the number of cat-
egories annotated in each hour of the day. White
cells represent 0 categories with the darkest cells
representing a maximum of 4 categories.

shows the energy consumption of the entire home over
one-hour window for each of the four coarse-grained
categories logged by this subject. We observe a large
variance in the energy consumption for each of the cate-
gories. Moreover, the energy consumption profiles across
categories have large overlap. We conclude that it would
be challenging for an unsupervised classification algo-
rithm to use this feature to infer a category of activity
for a user.

We next examine whether the power consumption of
individual appliances can be used to distinguish activ-
ity categories. In this experiment we consider categories
entertainment, and work. We again use data collected
from subject 1 and Figure 11 and Figure 12 show the
power consumption of his individual appliances when
he logged activity categories entertainment and work.
We again derive the data by looking at a one-hour win-
dow and, in this case, we use the maximum power con-
sumption value seen in that window. Looking at these
figures side by side, it is clear that there is overlap for
all appliances but the treadmill. This suggests that the
power draw of an appliance cannot be used to reliably
differentiate between these two categories.

Subject Hours with One
ID Annotation Category

1 27%
2 27%
3 15%
4 46%
5 0%

Table 5: The table shows the percentage of
hours for which there is only one annotation cat-
egory. Hours with fewer than 2 annotations are
excluded.
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Figure 11: The maximum power consumption
of appliances in a one-hour window when sub-
ject 1 performed an activity in the category
work
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Figure 12: The maximum power consumption
of appliances in a one-hour window when sub-
ject 1 performed an activity in the category
entertainment

We finally consider the time of the day feature using
Figure 13 and Table 5. Figure 13 is a heatmap that
reports the number of categories logged by all subjects
in each one-hour time slot across a day. All subjects re-
port more than one category in several time slots and,
in some time slots, up to four different categories are re-
ported. We examined a similar heatmap for day of the
week and found consistent results—two or more cate-
gories are reported each day for all subjects. Table 5
considers, for each subject, the percentage of time slots
for which a user reported at least two annotations and
both were of the same category. We observe that it is
rare for most subjects to report only one category dur-
ing a given time slot—the percentage of hours when a
single category is annotated is less than 50% , and is 0%
for subject 5. We conclude that an unsupervised learn-
ing scheme that uses time of the day as a feature to
derive an annotation category is likely to get confused.

4.2 Semi-Automated Activity Prediction
We next explore whether the sparse annotations we

are able to collect with our notification system are suf-
ficient to predict a user’s future activities, which pro-
vide insight into the user’s energy needs. We consider
whether a supervised learning algorithm identifies ac-
tivities with reasonable accuracy. We find that in cases
where our test set contains annotations that enable us
to verify our predictions, our predictions are generally
accurate. However, the sparseness of the annotations in
our test set results in the inability to verify our predic-
tions in many cases.

First, we provide an overview of the supervised learn-
ing algorithm we use for activity predictions. Our ap-
proach uses the Least Square Support Vector Machine
(LS-SVM) as a supervised classifier. The algorithm uses
a RBF kernel [7] and the simplex optimization frame-

work to determine a minimal error matching between
features and classes. We chose a SVM algorithm as
they have been shown to perform well in predicting en-
ergy demand and appliance power consumption [8, 9].
The classifier is trained on two features: time of the day,
and day of the week. It predicts the user’s activity for
every one-hour time slot in the test period. We use data
from our subjects between November 5—November 19
for training and November 20—December 3 for testing.

The classifier is trained on only valid annotation data
and the accuracy is calculated by looking at only the
one-hour slots for which we have a valid annotation in
the test set. This approach effectively assumes that we
know apriori when a user is performing some activity.
The accuracy is the percentage of one-hour time slots
where we predict the activity category correctly.

Subject Accuracy

1 75%
2 45%
3 36%
4 52%
5 65%

Table 6: Classification accuracy of the LS-SVM
algorithm that only considers time slots when
a valid activity annotation exists in the data
set. The experiment assumes that the algorithm
knows apriori that a valid activity is being per-
formed.

Table 6 shows the mean classifier accuracy for 20 in-
dependent runs. In most cases, we can predict nearly
half or more of the activity categories. Subject 3 has
the lowest accuracy, however, we observed a 9% stan-
dard deviation in accuracy across the 20 independent

9
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Figure 14: Overview of the algorithm used to
predict the power profile of a user.

runs of the classifier. The variance occurs when the
training data is noisy and the simplex optimization al-
gorithm does not converge to the same optima. The
overall observation is that accuracy is reasonable, but
clearly impacted by the problem identified in Figure 13.
Because users annotate several categories during most
times of day and days of week, there is a tradeoff be-
tween accuracy and the goal of minimizing intrusiveness
by using only features easily accessible by an energy
measurement system.

Though the LS-SVM learning algorithm has reason-
able accuracy when we consider only the hours when
we have user annotations, we cannot overlook the ques-
tion of what happens during hours when annotations
are not present. We evaluated an approach that clas-
sified all unannotated time slots as a generic category

6 and found that our algorithm performed quite well,
but only because the skewed number of category 6 en-
tries in the training set prompted it to trivially predict
category 6 for all hours in the sparsely-annotated test
period. One key question is how to determine whether
the lack of an annotation implies that the user is not
performing an activity (e.g., was not home), or is sim-
ply unable or unwilling to provide an annotation in that
hour. We explored several algorithms that attempt to
filter hours where the user is likely performing no ac-
tivity, but ultimately concluded that with only sparse
data available to test our algorithms we are unable to
determine whether many of our predictions are correct
or incorrect.

4.3 Using Annotations for Profile Prediction
We next turn our attention to whether it is feasible to

use activity predictions to improve prediction of a user’s
energy needs. In this section, we consider whether our
activity predictions can be used to improve the perfor-
mance of an algorithm that predicts a metaprofile com-
prised of the power states of each measured device in
a user’s home. The metaprofile provides insight into a
user’s energy requirements, which can be used as the
basis for intelligent demand management.

The metaprofile for an hour is a tuple < A1, ..., Ak >,
where Ai takes the value high or low depending on
whether the the power consumption reported by de-
vice i was high or low in the corresponding hour. To
determine the high or low value, we consider the maxi-
mum power draw reported by a device during the hour
and the overall maximum power draw observed by the
power profiling algorithm discussed in Section 3.1. If
the maximum in the current hour exceeds one half of
the overall maximum the value will be high, otherwise
the value will be low. This provides a coarse estimate
of whether each measured device in a user’s home is on
or off during a particular hour. Our analysis produced
between 3 and 12 metaprofiles for each subject.

The goal of this analysis is to determine whether we
are able to more accurately predict a user’s metaprofile
when using annotations versus using only time of day
and day of week as features. The metaprofile prediction
algorithm works in two phases as shown in Figure 14.
First, time of day and day of week are used to train
the activity prediction algorithm described in the pre-
vious section, and activities are predicted for the test
period. Similarly, annotated activity is used to train
the metaprofile prediction algorithm. Next, the pre-
dicted activity is fed into the metaprofile prediction al-
gorithm, which predicts the metaprofile for each hour
of the testing period.

Subject Accuracy Accuracy
(annotations) (td, dw)

1 35% 35%
2 54% 54%
3 32% 30%
4 55% 33%
5 80% 80%

Table 7: Accuracy of predicting metaprofiles us-
ing user annotations versus just time of the day
and day of the week. Annotations help for two
subjects, but in other cases inaccuracies stem
from misclassified categories and overlap of dis-
joint metaprofiles and categories.

Similar to the experiments in the previous section,
the classifier is trained on only valid annotation data
and the accuracy is calculated by looking at only the
one-hour slots for which we have a valid annotation
in the test set. Table 7 presents the results of this
experiment. We present the mean of 10 independent
runs. The results demonstrate that using activity an-
notations as a feature improves metaprofile prediction
in 2 of 5 cases. For other subjects, the annotations pro-
duce accuracies equivalent to using time of the day and
day of the week features. There are two reasons why
annotations do not produce better results for three of
our subjects. First, there is considerable overlap be-
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tween activity categories and metaprofiles. The overlap
between work and entertainment categories for sub-
ject 1, for example, is illustrated in Figures 11 and 12.
Due to this overlap, even though 60% of the misclassi-
fied metaprofiles correspond to predicted activities that
were correctly classified during the first phase of our
algorithm, the predicted metaprofiles where incorrect.
Second, there are several instances where activities are
mispredicted during the first phase of the algorithm,
leading to poor metaprofile classification. In subject
3’s case, for instance, 75% of the misclassified profiles
correspond to incorrect activity prediction during the
first phase of the algorithm. This implies that if the
accuracy of predicting activities can be improved, the
metaprofiles can also be better predicted. Finally, for
subject 4, the annotations produce a 22% improvement.
A closer look at the results show that the time of the
day and day of the week features mispredict metapro-
files for a power strip that has five devices attached—
TV, Roku, Playstation, DVD, and Lamp. The poor
classification using time of day and day of week implies
that the power strip is not consistently used at the same
times. This is likely because it is used in different ways,
for example sometimes to watch TV, some times to play
video games, and sometimes just to light the room. It
is, however, used in the same way for a given activity.
Hence our algorithm that predicts a user’s activity can
identify how the power strip is used at those times.

Discussion and Future Work: The results in this
section demonstrate that deriving annotated data re-
quires user involvement. Unsupervised learning algo-
rithms that use raw data to derive activities are implau-
sible. Since users are willing to provide annotations, but
not consistently, it is difficult to collect a dense anno-
tation data set. Nonetheless, with an average of only a
few annotations per day, we can predict a user’s future
activity with reasonable accuracy. Moreover, in some
cases, using only sparse energy annotation data yields
an advantage in determining a user’s future energy re-
quirements.

The insights we have gained in this study suggest
several avenues for future work. A key challenge we
encountered is the sparseness of our data set and the
inability to derive contextual meaning for periods with
no annotation. We plan to explore whether we can,
in some cases, automatically derive annotations given
a sparse data set and, further, whether we can identify
the most critical periods with missing annotations. This
would allow us to augment our system to let the user
know when he/she should be most vigilant about pro-
viding annotations. Similarly, we plan to provide future
users with more specific guidance regarding the types
of annotations that are most useful. Finally, we plan to
further explore the parameters that impact when anno-
tations are useful in understanding energy needs.

5. RELATED WORK
Our paper builds on previous work on context aware

energy management, methods to collect labeled energy
data, and demand-response systems in a home environ-
ment. Here we we compare and contrast our contribu-
tions with the most relevant literature.

5.1 Context-aware Energy Management
Augmenting energy data with contextual informa-

tion can help in better demand prediction of home ap-
pliances and whole home energy consumption [10, 11,
12, 13, 14]. Most of the focus in this area has been
on collecting auxiliary data on temperature, humidity,
weather conditions, ambient light, and time. Collecting
these additional dimensions of data require deploying
sensors such as temperature, motion, light, and humid-
ity [15, 16, 17, 18]. Unfortunately, dense deployment of
sensors can be expensive and intrusive [19]. Moreover,
these sensor sources provide fairly generic data and de-
riving usage context and relationship with energy con-
sumption is challenging. Our work focuses on collect-
ing context through user activities. Activities such as
cooking, entertainment, and work are directly related to
home energy consumption and provide an easy to use
context for demand prediction [20]. Moreover, users
can relate to and understand such activities [1] and en-
ergy conservation recommendations made akin to these
activities have a higher chance of being adopted. We
have designed an annotation system that reminds users
to enter their activities based on energy level changes
for specific appliances. The system uses energy meters
that are apriori installed in homes to collect appliance
and home specific energy measurements, and hence does
not require any additional hardware installations. Our
work also relates to aging in place research [21], and ac-
tivity recognition in smart homes [22, 20, 23]. Aging in
place research focuses on movement and fall detection
for the elderly while our focus is on activities like cook-
ing, entertainment, and work that are directly related
to energy consumption. Additionally while certain ac-
tivities described in these papers (Kasteren et al. [23],
Tapia et al. [22], and Szewcyzk et al. [20]) can be used
in the energy management context, the focus of these
papers are on methods to use sensors like cameras and
motion detectors to automatically infer activities.

5.2 Energy Annotations
Collecting energy annotations and providing feedback

to users on energy conservation are open areas in the
human-computer interaction community. For instance,
eco-feedback systems use visualization techniques to en-
gage the user in the energy conservation process [24, 25,
26]. A primary goal is to make the user cognizant to
potential energy bottlenecks. For example, Costanza et
al. [1] propose a time series based web interface called
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FigureEnergy where users can label their activities. They
also provide a visualization interface where users can
understand the impact of performing certain activities
on the total home energy consumption. Unfortunately,
the annotations are based on the user remembering
what activities he performed during the day. Our sys-
tem in-situ monitors the energy consumption of appli-
ances and notifies users to log activities. Additionally,
our goal is to use the activities as context to provide
feedback on how to conserve energy both at the gran-
ularity of appliances and whole home energy consump-
tion. Chen et al. [27] use manually collected annota-
tions to predict energy consumption of different activi-
ties. They show that the prediction algorithm has lower
than expected accuracy. Our system focuses on collect-
ing activity annotations when the power consumption
of appliances change.

5.3 Demand-response in Homes
A primary goal of the Green Homes project is to

devise techniques that balance energy supply with de-
mand, especially in renewable energy driven homes. To
this end, energy annotations and labeled energy data
provide better ways to understand energy demand, pre-
dict future energy consumption, and provide timely en-
ergy saving recommendations to home users. Hence,
our energy annotation techniques are complementary to
several demand-response systems in homes [28, 29] and
can be used to improve their performance. These in-
clude systems that flatten peak energy consumption [30],
methods to predict energy generation and consump-
tion [31], balance energy demand with supply [3], and
minimize whole building energy consumption.

6. CONCLUSION
Understanding correlations between user activities and

power consumption is key to designing better home en-
ergy management systems. Existing approaches for ac-
tivity inferencing rely on expensive and potentially in-
trusive sensor deployments in the home. In this paper,
we present a system for collecting user annotations us-
ing a mobile application. Our system requires only the
sensors necessary to monitor energy usage of home ap-
pliances. We present a novel technique that utilizes
changes in appliance power signatures to push notifica-
tions to a user’s mobile phone to solicit activity anno-
tations. Through a five-week deployment of our system
in 5 homes, we show that users are willing to provide
a large variety of annotations, but response rates are
lower than expected, creating a sparse data set. Based
on the data collected, we show that manual activity an-
notations are mandatory—unsupervised learning tech-
niques that derive annotations from unlabeled data are
implausible. Moreover, sparse annotations can be used

to predict a user’s activity 50% of the time when it is
known that some activity is being performed.
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