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The intensity of the conviction that a hypothesis
is true lias no bearing on whether it is true or not.

P.B. Mcdawar

Advice to a Young Scientist

The great tragedy of Science, the slaving
of a beautiful hypothesis by an ugly fuct.

T. H. Huxley
Biogenesis and Abiogenesis

A argument is a connected series of statements
intended 1o establish a proposition ... Areumnent
is an intellectual process. Coutradiction iy just the

automnatic gainsaving of anvthing the other Person says.

Monty Python
The Argument Sketeh

A rescarch paper, written up and submitted for referceing, is the result of a
process of research that may have been proceeding for months or years. Itis not
an end-product. but more typically describes recent results or is a prelimmary
study. Itis rare that a write-up is final. concluding forever a program of rescarch
on a topic: however, the write-up is bascd on a great deal of activity. Indeed,
with just a few pages representing months or more ot work by several people.
a paper may be only a tiny window into the research.
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A paper, then, is an outcome of a cycle of activity, from speculation through
definition and experimentation to write-up, with a range of obstacles and issues
that can arise on the way. In this chapter I review the process of research, in par-
ticular the early stages of a project. The perspective taken is from the ground,
as a working scientist: What kinds of stages and events does a researcher have
to manage in order to produce an interesting, valid piece of research? This
chapter and Chapter 11 complement the preceding parts of the book—on the
topic of how research should be described—by considering how the content of
a paper is arrived at.

Philosophers and historians of science have reflected at length on the mean-
ing, elements, and methods of research, from both practical and abstract points
of view. These reflections can be of great benefit to a working scientist. Any
competent researcher can learn from an alternative perspective on their work,
and being able to describe what we do helps us to understand whether we are
doing it well.

At the same time, learning to do research involves piecemeal acquisition of
a range of specific skills. Only with experience does a student see these skills
as part of a single integrated “process of research”. That is, many people learn
to be scientists by doing research stage-by-stage under supervision, and only
after having been through the research process does the bigger picture become
evident. For that reason, for novices the correspondence between abstractions
of research and a particular investigation can be hard to identify.

A related problem is that newcomers to research may initially draw inappro-
priate analogies to activities with which they are already familiar. For example,
in computer science many research students see experimentation as a form of
software development, and undertake a research write-up as if they were as-
sembling a user manual or software documentation. Part of learning to be a
computer scientist is recognizing how the aims of research differ from those of
coursework or programming.

Beginnings

The origin of a research investigation is typically a moment of insight. A stu-
dent attending a lecture wonders why search engines do not provide better
spelling correction. A researcher investigating external sorting is at a semi-
nar on file compression, and ponders whether one could be of benefit to the
other. A user is frustrated by network delays and questions whether the routing
algorithm is working well. A student asks a professor about the possibility of
rescarch on evaluation of code functionality; the professor, who hadn’t previ-
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ously contemplated such work, realises that it could build on recent advances
in type theory.

Research ideas often come to mind when the brain is idling, or when sep-
arate topics coincidentally arise at the same time. Tea-room arguments are a
rich source of seed ideas. One person is idly speculating, just to make con-
versation; another pursues the speculation and a research topic is created. Or
someone claims that a researcher’s idea is unworkable, and a listener starts to
turn over the arguments. What makes it unworkable? How might those issues
be addressed?

This first step is a subjective one: to choose to explore ideas that seem likely
to succeed, or are intriguing, or have the potential to lead to something new, or .
contradict received wisdom. At this stage, it isn’t possible to know whether
the work can lead to valuable results; otherwise there would be no scope for i
research. The final outcome is an objective scientific report, but curiosity and
guesswork are what establish research directions.

It is typically at this stage that a student becomes involved in the research.
Some students have a clear idea of what they want to pursue—whether it is
feasible, rational, or has research potential is another matter—but the majority !
are in effect shopping for a topic and advisor. They have a desire to work on 3
research and to be creative, perhaps without any definite idea of what research
is. They are drawn by a particular area or problem, or want to work with a _
particular individual. Students may talk through a range of possible projects 1
with several alternative advisors before making a definite choice and starting to
work on a research problem in earnest.

it o

Shaping a research project ; ]

How a potential research topic is shaped into a concrete project depends on
context. Experienced scientists aiming to write a paper on a subject of mutual
interest tend to be fairly focused: they quickly design a series of experiments 3
or theoretical goals, investigate the relevant literature, and set deadlines. !

For students, undertaking research involves training, which affects how the
work proceeds. Also, for a larger research program such as a PhD, there are
both short-term and long-term goals: the current specific explorations, which {
may be intended to lead to a research paper, and their role as a part of a wider
investigation that will eventually form the basis of the student’s thesis.

At the beginning of a research program, then, you need to establish an-
swers to two key questions. First, what is the broad problem to be investigated?
Second, what are the specific initial activities to undertake and outcomes to pur-
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sue? Having clear short-term research goals gives shape to a research program.
It also gives the student training in the elements of research: planning, reading,
programming, testing, analysis, critical thinking, writing, and presentation.

For example, in research in the early 1990s into algorithms for information
retrieval, we observed that the time to retrieve documents from a repository
could be reduced if they were first compressed; the cost of decompression after
retrieval was outweighed by savings in transfer times. A broad research prob-
lem suggested by this topic is whether compression can be of benefit within a
database even if the data is stored uncompressed. Pursuing this problem with
a research student led to a specific initial research goal (used as a running ex-
ample in Chapter 9): given a large relation that is compressed as it is read into
memory, is it possible to sort it more rapidly than if it were not compressed
at all? What kinds of compression algorithm are suitable? Success in these
specific explorations leads to questions such as, where else in a database sys-
tem can compression be used? Failure leads to questions such as, under what
conditions might compression be useful?

When developing a question into a research topic, it is helpful to explore
what makes the question interesting. Productive research is often driven by a
strong motivating example, which also helps focus the activity towards useful
goals. It is easy to explore problems that are entirely hypothetical, but difficult
to evaluate the effectiveness of any solutions. Sometimes it is necessary to make
a conscious decision to explore questions where work can be done, rather than
where we would like to work; just as medical studies may involve molecular
simulations rather than real patients, robotics may involve the artifice of soccer-
playing rather than the reality of planetary exploration.

In choosing a topic and advisor, many students focus on the question of “is
this the most interesting topic on offer?”, often to the exclusion of other ques-
tions that are equally important. One such question is “is this advisor right for
me?” Students and advisors form close working relationships that, in the case
of a PhD, must endure for several years. The student is typically responsible
for most of the effort, but the intellectual input is shared, and the relationship
can grow over time to be a partnership of equals. However, most relationships
have moments that are less than harmonious. Choosing the right person—
considering the advisor as an individual, not just a respected researcher—is
as important as choosing the right topic. A charismatic or famous advisor isn’t
necessarily likeable or easy to work with.

The fact that a topic is in a fashionable area should be at most a minor con-
sideration; the fashion may well have passed before the student has graduated.
Some trends are profound shifts that have ongoing effects, such as the oppor-
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tunities created by the web for new technologies; others, such as the thin-client

systems proposed in the late 1990s, are gone before they almost arrive. While it

isn’t necessarily obvious which category a new trend belongs in, a topic should

not be investigated unless you are confident that it will continue to be relevant.

Another important question is, is this project at the right kind of technical X

.- level? Some brilliant students are neither fast programmers nor systems ex-

'= perts, while others do not have strong mathematical ability. It is not wise to

select a project for which you do not have the skills or that doesn’t make use

of your particular strengths. An alternative perspective on this question is that

most projects that are intellectually challenging are interesting to undertake; ag-

onizing over whether it is the project may not be productive. However, it is also

true that some researchers only enjoy their work if they can identify a broader

value: for example, they can see likely practical outcomes. Highly speculative

projects leave some people dissatisfied, while others are excited by a possible
leap into the future.

Project scope is a related issue. Students can be wildly ambitious, entering
research with the hope of achieving something of dramatic significance. How- ]
ever, major breakthroughs are by definition rare—otherwise they wouldn’t be 3
major—while, as most researchers discover, even incremental work can be pro-
foundly rewarding. Moreover, an ambitious project creates a high potential for
failure, especially in a limited-term context such as a minor thesis. There is a
piece of folklore that says that most scientists do their best work in their PhD,
as it is the one opportunity to undertake a lengthy, focused research program.
This is a myth, and is certainly not a good reason for tackling a problem that is
too large to resolve.

Most research is incremental: improvements or variants that improve or ]
repair or extend or replace work done by others. The issue is the scope of the 3
increment. A trivial step that does no more than explore the obvious solution
to a simple problem—a change, say, to the fields in a network packet to save a
couple of bits—is not worth investigating. There needs to be challenge and the
possibility of unexpected discovery for research to be interesting.

For a novice researcher, it makes sense to identify easily achieved out-
comes; this is research training, after all, not research olympics. If these out-
comes are reached, in a well-designed project it should be easy to move on to
more challenging goals.

Some research concerns problems that appear to be solved in commercial
software. Often, however, research on such problems is not hard to justify. In
a typical implementation the task is to find a workable solution, while in re-
search the task is to measure the quality of the solution, and thus work on the
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same problem that produces similar solutions can nonetheless have different
outcomes. Moreover, while it is in a company’s interests to claim that a prob-
lem is solved by their technology, such claims are not easily verified. From
this perspective, investigation of a problem for which there is already a com-
mercial solution can be of more value than investigation of a problem of purely
academic interest.

Students and advisors

The role of an advisor is a rich one. There are said to be as many scientific
methods as there are scientists, but there are more advising styles than there are
advisors. Every student-advisor relationship is different.

Advisors are powerful figures in their students’ lives. Some professors at
the peak of their careers still have strong views—often outrage or amazement—
about their own advisors, despite many years of experience on the other side
of the fence. Tales include that of the student who saw his advisor twice, once
to choose a topic and once to submit; and that of the advisor who casually ad-
vised a student to “have another look at some of those famous open problems”.
Thankfully these are rare exceptions, and are even less acceptable today than
they were a decade or two ago.

The purpose of a research program—a PhD, masters, or minor thesis—is
for the university to provide a student with research training, while the student
demonstrates the capability to undertake research from conception to write-up.
A side-benefit is that the student, often with the advisor, should produce some
publishable research. There are a range of approaches to advising that achieve
these aims, but they are all based on the strategy of learning while doing.

Some advisors, for example, set their students problems such as verifying
a proof in a published paper and seeing whether it can be applied to variants of
the theorem, thus beginning to explore the limits at which the theorem no longer
applies. Another example is to attempt to confirm someone else’s results, by
downloading code or by developing a fresh implementation. The difficulties
encountered in such efforts are a fertile source of research questions. Other
advisors immediately start their students on activities that are expected to lead
to a research publication. It is in such cases that the model of advising as
apprenticeship is most evident.

Typically, in the early stages the advisor specifies each small step the stu-
dent should take: running a certain experiment, searching the literature to re-
solve a particular question, or writing one small section of a proposed paper.
As students mature as researchers, they become more independent, often by
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anticipating what their advisors will ask, while advisors gradually leave more
space for their students to assert this independence. Over time, the relationship
becomes one of guidance rather than management.

The trade-offs implicit in such a relationship are complex. One is the ques-
tion of authorship of work the student has undertaken, as discussed in Chap-
ter 13. Another is the degree of independence. Advisors often believe that their
students are either demanding or overconfident; students, on the other hand,
can feel either confined by excessive control or at a loss due to being expected
| to undertake tasks without guidance. The needs of students who are working
] more or less alone may be very different to those of students who are part of an
extended research group. 3
} An area where the advisor’s expertise is critical is in scoping the project.
i It needs to stand sufficiently alone from other current work, yet be relevant to

a group’s wider activities. It should be open enough to allow innovation and
freedom, yet have a good likelihood of success. It should be close enough to
] the advisor’s core expertise to allow the advisor to verify that the work is suf-
ficiently novel, and to verify that the appropriate literature has been thoroughly
explored. The fact that an advisor finds a topic interesting does not by itself
justify asking a student to work on it. Likewise, a student who is keen on a
topic must consider whether competent supervision is available in that area.

Advisors can be busy people. Prepare for your meetings—bring printouts
of results or lists of questions, for example. Be honest; if you are trying to
convince your advisor that you have completed some particular piece of work,
then the work should have been done. Advisors are not fools. Saying that
you have been reading for a week sounds like an excuse; and, if it is true, you
probably haven’t spent your time effectively.

The student—advisor relationship is not only concerned with research train-
| ing, but is a means for advisors to be involved in research on a particular topic.

Thus students and advisors often write papers together. At times, this can be a
source of conflict, when, for example, an advisor wants a student to work on a
paper while the student wants to make progress on a thesis. On the other hand,
the involvement of the advisor—and the incentive for the advisor to take an {
active role—means that the research is undertaken as teamwork.

'4
4

Finding research literature

Each research project builds on a body of prior work. The doing and describing
of research requires a thorough knowledge of the work of others.
However, locating prior work can be a tremendous challenge. The number
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of papers published in computer science each year is at least tens of thousands.
Not only is a great deal of this work relatively inaccessible, but the volume of it
prohibits reading or understanding more than a fraction of the papers appearing
in any one field.

A consolation is that, in an active field, other researchers have to a certain
extent already explored and digested the older literature. Their work provides
a guide to earlier research—as will your work, once it is published—and thus
a complete exploration of the archives is rarely necessary. However, this is one
more reason to carefully explore current work. And note: reading about a paper
that seems relevant is never a substitute for reading the paper itself. If you need
to discuss or cite a paper, read it first.

Comprehensively exploring relevant literature involves following several
intertwined paths.

* Visit the web sites of research groups and researchers working in the area.
The web site of your advisor or department is likely to be a good place to
start. These sites should give several kinds of links into the wider literature:
the names of researchers whose work you should investigate, the names of
their co-authors, conferences where relevant work appears, and papers with
lists of references to explore.

* Follow up references in research papers. These indicate relevant individu-
als, conferences, and journals.

¢ Browse the recent issues of the journals and conferences in the area; search
other journals and conferences that might carry relevant papers.

¢ Use obvious search terms to explore the web. With the right terms you
are likely to find the sites of projects and teams concerned with the same
research area. You are also likely to find documents that suggest further
valuable search terms.

* Search the publisher-specific digital libraries. These include publishers
such as Wiley and Springer, and professional societies such as the ACM and
IEEE. There are also a wide range of online archives and abstract-indexing
services.

* Most conferences have web sites that list the program, that is, the papers to
appear in the conference that year. Within a conference, papers are often
grouped by topic—another hint of relevance.

* Use the citation indexes. The traditional printed citation indexes have mi-
grated to the web, but in practice their value for computer science is lim-
ited, as only a fraction of publications are included. Of much greater value
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are the public-domain indexes, which can be used to search by document
content and by citing or cited document. Some of these are constructed au-
tomatically; others are built by contribution from users. Thus their contents
are unreliable, and the origin of documents found in these indexes should
be verified elsewhere.

« Go to the library. The simple strategy of having similar material shelved
together often leads to unexpected discoveries, without the distractions that
arise when web browsing.

« Discuss your work with as many people as possible. Some of them may
well know of relevant work you haven’t encountered. Similar problems
often arise in disparate research areas, but the difficulties of keeping up
with other fields—the phenomenon sometimes characterized as “working
in silos”—mean that people investigating similar problems can be unaware
of one another.

Take a broad definition of “relevant” when searching for papers. It doesn’t
just mean those papers that have, say, proposals for competing methods. Does
the paper have interesting insights into other research literature? Does it estab-
lish a benchmark? Have the authors found a clever way of proving a theorem
that you can apply in your own work? Does the paper justify not pursuing
some particular line of investigation? Other people’s research can have many
different kinds of effect on your work.

Reading

A thorough search of the literature can easily lead to discovery of dozens or
hundred of relevant papers—a volume of reading that can be deeply intimidat-
ing. However, papers are not textbooks, and should not be treated as textbooks.
A researcher reading a paper is not cramming for an exam; there is rarely a
need to understand every line. The number of papers that a researcher work-
ing on a particular project has to know well is usually small, even though the
number the researcher should have read to establish their relevance is large. A
brief browse through a paper takes no more than a few minutes, if the aim is to
identify whether the paper is relevant to a particular project.

A problem with dredging the web for research literature is whether to be-
lieve what you read. Work published in a reputable journal or conference is
peer-reviewed; work available online could have any history, from being a pre-
publication version of an accepted journal paper to plagiarised work taken from
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a non-English original and rejected from three conferences. A cynical but often
accurate rule of thumb is that work that is more than one or two years old and
has not been published in a reputable venue probably has some serious defect.
When you find a version of a paper on the web, establish whether it has been
published somewhere. Use evidence such as the quality of the authors’ other
publications to establish whether it is part of a serious program of research.

Much research—far too much—is just misguided. People investigate prob-
lems that are already solved and well understood, or solve problems that tech-
nology has made irrelevant, or try to square the circle (such as attempting to
adjust optimal codes to achieve better compression), or don’t realise that the
proposed improvement actually makes the algorithm worse. Mathematics may
be pointless; the wrong property may be proved, such as complexity instead
of correctness; assumptions may be implausible; evaluation strategies may not
make sense. The data set used may be so tiny that the results are meaningless;
results on toy problems rarely scale up. Some results are just plain wrong.

And, while the fact that a paper is refereed is an indicator that it is of value,
it is not a guarantee. Too many people submit work that did not deserve to be
written; sometimes it gets published.

Indeed, few papers are perfect. They are a presentation of new work rather
than a considered explanation of well-known results, and the constraints of
writing to a deadline mean that mistakes are undiscovered and some issues
unexplored. Some aspects of the work may be superseded or irrelevant, or
may rely on false or limited or technically outdated assumptions. A paper can
be seen as a snapshot of a research program at a moment in time—what the
researchers knew when they submitted. For all these reasons, a reader needs to
be questioning and skeptical.

But that does not justify researchers being dismissive of past work; rather,
they should respect it and learn from it, because their own work will have the
same strengths and weaknesses. While many papers may be flawed, they are
the repository of all scientific knowledge—they define scientific knowledge.
(Textbooks are almost invariably consolidations of older, established work that
is no longer at the frontier.) Moreover, a general view that some papers are
unreliable is a poor reason to neglect a particular paper with which you happen
to disagree; it may contain an unpalatable truth. And this general view is an
extremely poor reason to curtail either your reading or your attempts to under-
stand the contributions made by others. If many researchers trust a particular
paper, it is still reasonable to be skeptical of its results, but this needs to be
balanced against the fact that, if skepticism is justified, these other researchers
are all mistaken.
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Read papers by asking questions of them, such as:

; * What is the main result?

o How precise are the claims?

« How could the outcomes be used?

¢ What is the evidence?

» How was the evidence gathered?

+ How were measurements taken?

¢ How carefully are the algorithms and experiments described?
; « Why is the paper trustworthy?

l  Has the right background literature been discussed?

» What would reproduction of the results involve?

That is, actively attempt to identify the contributions and shortcomings rather
than simply reading from one end to the other. Detailed analysis can be diffi-
cult betore you have developed the perspective of undertaking your own work,
however. Literature review should continue alongside research, not precede it.

Capture information about each paper you expect to cite, or of even periph-
eral relevance. Many of the online services link to a bibtex citation; take a
copy and annotate it with your own views on the paper. Classify the paper, and
cross-index it with others on the same topic. Be organized with such material
from the start—don’t expect to have time to reinvestigate the literature in detail
when completion date is looming.

Having explored the literature, you may discover that your original idea is
not so original after all. If so, be honest—review your work to see what aspects
may be novel, but don’t fool yourself into working on a problem that is already
solved. Occasionally it happens, for example, that the same problem has been
investigated by several other teams over a considerable period. At the same
time, the fact that other people have worked on the same problem does not
mean that it is impossible to make further contributions in the area.

Research planning

Students commencing their first research project are accustomed to the patterns
of undergraduate study: attending lectures, completing assignments, revising
for exams. Activity is determined by a succession of deadlines that impose a
great deal of structure.
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In contrast, a typical research project has just one deadline: completion.
Administrative requirements may impose some additional milestones, such as
submission of a project outline or a progress report, but many students (and
advisors) do not take these milestones seriously. However, having a series of
deadlines is critical to the success of a project. The question then is, what
should these deadlines be and how should they be determined?

Some people appear to plan their projects directly in terms of the aspects
of the problem that attracted them in the first place. For example, they down-
load some code or implement something, then experiment, then write up. A
common failing that seems to arise with this approach to research is that each
stage takes longer than anticipated, the time for write-up is compressed, and
the final report is compromised. Yet the write-up is the only part of the work
that survives or is assessed. Arguably, an even more significant failing is that
the scientific validity of the outcomes can be compromised. It is a mistake, for
example, to implement a complete system rather than ask what code is needed
to explore the research questions.

A better approach to the task of scoping a project and setting milestones is
to explicitly consider what is needed at the end, then reason backwards. The
final thing required is the write-up in the form of a thesis, paper, or report; so
plan in terms of the steps necessary to produce the write-up. Considering as
an example research that is expected to have a substantial experimental com-
ponent, the write-up is likely to involve a background review, explanations of
previous and new algorithms, descriptions of experiments, and analysis of out-
comes. Completion of each of these elements is a milestone.

Continuing to reason backwards, the next step is to identify what form the
experiments will take. Chapter 11 concerns experiments and how they are re-
ported, but prior to designing experiments the researcher must consider how
they are to be used. What will the experiments show, assuming the hypothesis
to be true? How will the results be different if the hypothesis is false? That is,
the experiments are an evaluation of whether some hypothesised phenomena
is actually observed. Experiments involve data, code, and some kind of plat-
form. Running of experiments requires that all three of these be obtained, and
that skeptical questions be asked about them: whether the data is realistic, for
example.

Experiments may also involve users. Who will they be? Is ethics clear-
ance required? Computer scientists, accustomed to working with algorithms
and proofs, are often surprised by how wide-ranging their university ethics re-
quirements can be.

Considering work that is not expected to have an experimental component,
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there are two general kinds: formal investigations of the properties of systems
and algorithms; and a wide range of studies that are difficult to classify, from
proposals for new programming language features and sketches of XML temi-
plates for particular kinds of data to reflections on and comparisons of trends in
research. Each of these can be staged to identify research milestones.

Drawing these issues together, several themes emerge. One is that the com-
ponents of research have to be identified; however, these components do not
necessarily have to be completed in turn.

Another theme is that an attitude to research has been shaped: what infor-
mation must be collected in order to convince a skeptical reader that the results
are correct? Arguably, answering this one question is all that is needed to have
a strong research outcome.

Having identified specific goals, another purpose of research planning is
to estimate dates when milestones should be reached. One of the axioms of
research, however, is that everything takes longer than planned for, even after
taking this axiom into account. A standard research strategy is to first read
the literature, then design, then analyse or implement, then test or evaluate, 3
then write up. A more effective strategy is to overlap these stages as much as 3
possible. Begin the implementation, or analysis, or write up as soon as it is
reasonable to do so.

For the longer-term research of, for example, a PhD, other considerations
become significant. A typical question in the later stages of a PhD is whether
enough research has yet been done, or whether new additional work needs to

be undertaken. Often the best response to this question is to write the thesis. ’
Once your thesis is more or less complete, it is relatively easy to assess whether
further work is justified. Doing such additional work in all likelihood involves

filling a well-defined hole, a task that is much better defined than that of fum-
bling around for further questions to investigate. L

Thus, rather than working to a schedule of long-term timelines that may
be unrealistic, be flexible. Adjust the work you are doing on a day-to-day
basis—pruning your research goals, giving more time to the writing, addressing __
whatever the current bottleneck happens to be—to ensure that you are reaching -
overall aims.

Hypotheses

The first stages of a research program involve identifying interesting topics or
problems and focusing on particular issues to investigate. A typical way of
giving direction to research is to develop specific questions that the program
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aims to answer. These questions are based on an understanding, an informal
model perhaps, of how something works, or interacts, or behaves. They estab-
lish a framework for making observations about the object being studied. This
framework can be characterised as a statement of belief about how the object
behaves—in other words, a hypothesis.

In the traditional sciences, a hypothesis typically concerns some phenom-
enon in the physical world: whether something is occurring, or whether it is
possible to alter something in a predictable way. Astronomy and genetics typify
such research. In computer science, some hypotheses are of this kind. Other
hypotheses involve construction, such as whether a proposed method is fit for
a certain purpose, and solvability.

For example, a researcher investigating algorithms might ask as a research
question whether it is possible to make better use of CPU cache to reduce com-
putational costs; reducing the number of memory accesses can make a program
faster even if the number of instructions executed is unchanged. Preliminary
investigation might lead to the hypothesis that a particular sorting algorithm
can be improved by replacing a tree-based structure with poor locality by an
array-based structure with high locality. The research goal is to test this hy-
pothesis. The phenomenon that should be observed if the hypothesis is correct
is a trend: as the number of items to be sorted is increased, the tree-based
method should increasingly show a high rate of cache misses compared to the
array-based method. The data is the number of cache misses for several sets of
items to be sorted.

A hypothesis should be specified clearly and precisely, and should be un-
ambiguous. (The more loosely a concept is defined, the more easily it will
satisfy many needs simultaneously, even when these are contradictory.) Often
it is important to state what is not being proposed—what the limits on the con-
clusions will be. Consider an example. Suppose P-lists are a well-known data
structure used for a range of applications, in particular as an in-memory search
structure that is fast and compact. A scientist has developed a new data struc-
ture called the Q-list. Formal analysis has shown the two structures to have the
same asymptotic complexity in both space and time, but the scientist intuitively
believes the Q-list to be superior in practice and has decided to demonstrate this
by experiment.

(This motivation by belief, or instinct, is a crucial element of the process of
science: since ideas cannot be known to be correct when first conceived, it is
intuition or plausibility that suggests them as worthy of consideration. That is,
the investigation may well have been undertaken for subjective reasons; but the
final report on the research, the published paper, must be objective.)
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The hypothesis might be encapsulated as
X Q-lists are superior 1o P-lists.

But this statement does not suftice as the basis of experiment: success would
have to apply in all applications. in all conditions. for all time. Formal analysis
might be able 1o justify such a result, but no experiment will be so far-reaching.
In any case. it is rarc indeed for a data structure to be completely superseded—
consider the durability of arrays and linked lists—so in all probability this hy-
pothesis is incorrect. A testable hypothesis might be

v/ As an in-memory scarch structure for large data sets. Q-lists are faster
and more compact than P-lists.

Further qualification may well be necessary.

v/ We assume there is a skew access pattern, that is. that the majority of
accesses will be to a small proportion of the data.

The qualifying statement imposes a scope on the claims made on behalf of Q-
lists. A reader of the hypothesis has enough information to reasonably conclude
that Q-lists do not suit a certain application, which in no way invalidates the
result. Another scientist would be tree to explore the behaviour of Q-lists under
another set of conditions, in which they might be inferior to P-lists, but again
the original result remains valid.

As the example illustrates, a hypothesis must be testable. One aspeet of
testability is that the scope be limited 1o a domain that can feasibly be explored.
Another, crucial aspect is that the hypothesis should be capable of falsification.
Vague claims are unlikely to meet this criterion.

X Q-list performance is comparable to P-list performance.

X Our proposed query language is rclatively easy to learn.

The exercise of refining and clarifying a hypothesis may expose that it is
not worth pursuing. For example, if complex restrictions must be imposed to
make the hypothesis work, or if it is necessary 1o assume that current insoluble
problems need to be addressed before the work can be used, how interesting is
the research?

A form of research where poor hypotheses scem particularly common is
“black box™ work, where the biack box is an algorithm whose properties are
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incompletely understood. For example. some research consists of applying a
black-box learning algorithm to new data, with the outcome that the results are
an improvement on a bascline method. (Often, the claim is to the effect that
~our black box is significantly better than random™.) The apparent ability of
these black boxes to solve problems without creative input from a scientist at-
tracts research of low value. A weakness of such research is that it provides no
learning about the data or the black box, and has no implications for other inves-
tigations. In particular, such results rarely tell us whether the same behaviour
would occur the next time the same approach was used.

A related problem is the renaming fallacy, often observed in the work of
scientists who are attempting to reposition their research within a fashionable
area. Calling a network cache a “local storage agent” docsn’t change its be-
haviour, and if the term “agent” can legitimately be applied to any executable
process then its explanatory power is slim. Another instance: a paper on natural
language processing for “web documents” should concern some issues specific
to the web, not just any text; a debatable applicability to the web does not add
to the contribution. And another: it seems unlikely that a text indexing algo-
rithm is made “intelligent” by improvements to the parsing. Renaming existing
rescarch to place it in another field is bad science.

It may be necessary to refine a hypothesis as a result of initial testing: in-
deed, much of scientific progress can be viewed as refinement and development
ol hypotheses to fit new observations. Occasionally there is no room for refine-
ment, a classic example being Einstein’s prediction of the deflection of light by
massive bodies—a hypothesis much exposed to disproof, since it was believed
that significant deviation from the predicted value would invalidate the theory
of general relativity. But more typically a hypothesis evolves in tandem with
refinements in the experiments.

This is not, however, to say that the hypothesis should follow the exper-
iments. A hypothesis will often be based on observations, but can only be
regarded as confirmed if able to make successful predictions. There is a vast
difference between an observation such as “the algorithm worked on our data”
and a tested hypothesis such as “the algorithm was predicted to work on any
data of this class. and this prediction has been confirmed on our data”. Another
way of regarding this issuc is that, as far as possible. tests should be blind. If an
experiment and hypothesis have been fine-tuned on the data, it cannot be said
that the experiment provides confirmation. At best the experiment has provided
observations on which the hypothesis is based.

Where two hypotheses fit the observations equally well and one is clearly
simpler than the other, the simpler should be chosen. This principle. known as
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Occam'’s razor. is purely a convenience: but it is well-established and there s
certainly no reason 1o choose a complex explanation when another is at hand

Defending hypotheses

One component of a strong paper is a precise, interesting hypothesis. Another
component is the testing of the hypothesis and the presentation of the support-
i ing evidence. As part of the rescarch process you need 1o test your hypothesis
and il it is correct—or, at least, not Talsificd

assemble supporting evidence.
For the presentation of the hypothesis you need to construct an argument relat-
ing your hypothesis to the evidence.

For cxample. the hypothesis “the new range searching method is faster than
previous methods™ might be supported by the evidence “range scarch amongst i
clements requires 2log, log, 1+ ¢ comparisons”. This may or may not be good
evidence, but it is not convincing because there is no argument connecting the
evidence to the hypothesis. What is missing is information such as “previous
results indicated a complexity of ©(logn)”. It is the role of the connecting
argument to show that the evidence does indeed support the hypothesis, and to
show that conclusions have been drawn correctly.

In constructing an argument, it can be helpful to imagine yourself defending

your hypothesis to a colleague, so that you play the role of inquisitor. That is, ]
raising objections and defending yourself against them is a way of gathering the 3
material needed to convince the reader that your argument is correct. Starting ]

from the hypothesis that “the new string hashing algorithm is fast because it
docsn’t use multiplication or division™ you might debate as follows:

« 1 don’t see why multiplication and division are a problem.

On most machines they use several cycles. or may not be implemented in
hardware at all. The new algorithm instead uses two exclusive-or operations :
! per character and a modulo in the final step. 1 agree that for pipelined ]
: machines with floating-point accelerators the difference may not be great.

« Modulo isn’t always in hardware cither.
True, but it is only required once.

« So there is also an array lookup? That can be slow.
Not if the array is cache-resident.

« What happens if the hash table size is not 27
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Good point. This function is most effective for hash tables of size 2%, 219,
and so on.

In an argument you need to rebut likely objections while conceding points that
can't be rebutted and admitting when you are uncertain. If, in the process of
developing your hypothesis, you raised an objection but reasoned it away, it
can be valuable to include the reasoning in the paper. Doing so helps the reader
to follow your train of thought, and certainly helps the reader who indepen-
dently raises the same objection. That is, you need to anticipate problems the
reader may have with your hypothesis. Likewise, you should actively search
for counter-examples.

If you think of an objection that you cannot refute, don’t just put it aside.
At the very least you should raise it yourself in the paper, but it may well mean
that you must reconsider your results.

A hypothesis can be tested in a preliminary way by considering its effect,
that is, by examining whether there is a simple argument for keeping or discard-
ing it. For example, are there any improbable consequences if the hypothesis is
true? If so, there is a good chance that the hypothesis is wrong. For a hypothe-
sis that displaces or contradicts some currently held belief, is the contradiction
such that the belief can only have been held out of stupidity? Again, the hy-
pothesis is probably wrong. Does the hypothesis cover all of the observations
explained by the current belief? If not, the hypothesis is probably uninteresting.

Always consider the possibility that your hypothesis is wrong. It is often
the case that a correct hypothesis at times seems dubious-—perhaps initially,
before it is fully developed, or when it appears to be contradicted by some
experimental evidence—but the hypothesis survives and is even strengthened
by test and refinement in the face of doubt. But equally often a hypothesis is
false, in which case clinging to it is a waste of time. Persist for long enough to
establish whether or not it is likely to be true, but to persist longer is foolish.

A corollary is that the stronger your intuitive liking for a hypothesis, the
more rigorously you should test it—attempt to confirm it or disprove it—rather
than twist results, and yourself, defending it.

Be persuasive. Using research into the properties of an algorithm as an
example, issues such as the following need to be addressed.

« Will the reader believe that the algorithm is new?

Only if the researcher does a careful literature review, and fully explores
and explains previous relevant work. Doing so includes giving credit to sig-
nificant advances, and not overrating work where the contribution is small.
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» Will the reader believe that the algorithm is sensible?

It had better be explained carefully. Potential problems should be identi-
fied, and either conceded—with an explanation, for example, of why the
algorithm is not universally applicable—or dismissed through some cogent
argument.

+ Are the experiments convincing?

If the code isn’t good enough to be made publicly available, is it because
there is something wrong with it? Has the right data been used? Has enough
data been used?

Every research program suggests its own questions. Such questioning is also
appropriate later in a research program, where it provides an opportunity for
critical assessment of the work.

Evidence

A view of papers is that they are an assembly of evidence and supporting ex-
planation, that is, an attempt to persuade others to share your conclusions. In
a write-up you pose a hypothesis, then present evidence to support your case.
The evidence needs to be convincing because the processes of science rely on
readers being critical and skeptical; there is no reason for a reader to be inter-
ested in work that is inconclusive. There are, broadly speaking, four kinds of
evidence that can be used to support a hypothesis: analysis or proof, modelling,
simulation, and experiment.

An analysis or proof is a formal argument that the hypothesis is correct. It
is a mistake to suppose that the correctness of a proof is absolute—confidence
in a proof may be high, but that does not guarantee that it is free from error.
(In my experience it is not uncommon for a researcher to feel certain that a
theorem is correct but have doubts about the mechanics of the proof, which
all too often leads to the discovery that the theorem is wrong after all.) And
it is a mistake to suppose that all hypotheses are amenable to formal analysis,
particularly hypotheses that involve the real world in some way. For example,
human behaviour is intrinsic to questions about interface design, and system
properties can be intractably complex. Consider an exploration to determine
whether a new method is better than a previous one at compressing text—is it
likely that something as diverse as text can be modelled well enough to predict
the performance of a compression algorithm? It is also a mistake to suppose



et sttt b op. oo ice i

TN S e .

Writing for Computer Science

that a complexity analysis is always sufficient. Nonetheless, the possibility of
formal analysis should never be overlooked.

A model is a mathematical description of the hypothesis (or some compo-
nent of the hypothesis such as an algorithm whose properties are being consid-
ered) and there will usually be a demonstration that the hypothesis and model
do indeed correspond.

In choosing to use a model, consider how realistic it will be, or conversely
how many simplifying assumptions need to be made for analysis to be feasi-
ble. Consider the example of modelling the cost of a Boolean query on a text
collection, in which the task is to find the documents that contain each of a
set of words. We need to estimate the frequency of each word (because words
that are frequent in queries may be rare in documents); the likelihood of query
terms occurring in the same document (in practice, query terms are themati-
cally related, and do not model well as random co-occurrences); the fact that
longer documents contain more words, but are more expensive to fetch; and, in
a practical system, the probability that the same query had been issued recently
and the answers are cached in memory. It is possible to define a model based
on these factors, but, with so much guesswork to make, it is unlikely that the
model would be realistic.

A simulation is usually an implementation or partial implementation of a
simplified form of the hypothesis, in which the difficulties of a full implemen-
tation are sidestepped by omission or approximation. At one extreme a simula-
tion might be skeletal, so that, for example, a parallel algorithm could be tested
on a sequential machine by use of an interpreter that counts machine cycles
and communication costs between simulated processors; at the other extreme a
simulation could be an implementation of the hypothesis, but tested by artificial
data. A simulation is a “white coats” test: artificial, isolated, and conducted in
a tightly controlled environment.

An experiment is a full test of the hypothesis, based on an implementation
of the proposal and on real—or at least realistic—data. In an experiment there
is a sense of really doing it, while in a simulation there is a sense of only
pretending. However, the distinction between simulation and experiment can
be blurry.

Ideally an experiment should be conducted in the light of predictions made
by a model, so that it confirms some expected behaviour. An experiment should
be severe; look for tests that are likely to fail if the hypothesis is false. The tra-
ditional sciences, and physics in particular, proceed in this way. Theoreticians
develop models of phenomena that fit known observations; experimentalists
seek confirmation through fresh experiments.
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Different forms of evidence can be used to confirm one another, with say
a simulation used to provide further evidence that a proof is correct. But they
should not be confused with one another. For example, suppose that for some
algorithm there is a mathematical model of expected performance. Encoding
this model in a program and computing predicted performance for certain val-
ues of the model parameters is in no way an experimental test of the algorithm
and should never be called an experiment; it does not even confirm that the
model is a description of the algorithm. At best it confirms claimed properties
of the model.

When choosing whether to use a proof, model, simulation, or experiment
as evidence, consider how convincing each is likely to be to the reader. If your
evidence is questionable—say a model based on simplifications and assump-
tions, an involved algebraic analysis and application of advanced statistics, or
an experiment on limited data—the reader may well be skeptical of the result.
Select a form of evidence, not so as to keep your own effort to a minimum, but
to be as persuasive as possible.

Having identified the elements a research plan should cover, end-to-start
reasoning also suggests priorities. The write-up is the most important thing; so
perhaps it should be started first. Completing the report is certainly more im-
portant than hastily running some last-minute experiments, or quickly browsing
the literature to make it appear as if past work has been fully evaluated.

Good and bad science

Questions about the quality of evidence can be used to evaluate other people’s
research, and provide an opportunity to reflect on whether the outcomes of your
work are worthwhile. There isn’t a simple division of research into “good” and
“pad”, but it is not difficult to distinguish valuable research from work that is
weak or pointless.

The merits of formal studies are easy to appreciate. They provide the kind
of mathematical link between the possible and the practical that physics pro-
vides between the universe and engineering.

The merits of well-designed experimental work are also clear. Work that
experimentally confirms or contradicts the correctness of formal studies has
historically been undervalued in computer science: perhaps because standards
for experimentation have not been high; perhaps because the great diversity
of computer systems, languages, and data has made truly general experiments
difficult to devise; perhaps because theoretical work with advanced mathemat-
ics is more intellectually imposing than work that some people regard as mere
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code-cutting. However, many questions cannot be readily answered through
analysis, and a theory without practical confirmation is no more interesting in
computing than in the rest of science.

However, research that consists of proposals—without a serious attempt at
evaluation—can be more difficult to respect. Why should a reader regard such
work as valid? If the author cannot offer anything to measure, arguably it isn’t
science. As discussed in Chapter 11, there are many ways of measuring a sys-
tem or result. And research isn’t theoretical just because it isn’t experimental.
Theoretical work describes testable theories.

Some science is not simply weak, but can be classed as pseudoscience. A
great deal of money can be made by appearing to have solved major problems,
and scientists seek prestige through their research achievements. Inevitably,
some claimed achievements are delusional or bogus.

Pseudoscience is a broad label covering a range of scientific sins, from self-
deception and confusion to outright fraud. A definition is that pseudoscience is
work that uses the language and respectability of science to gain credibility for
statements that are not based on evidence that meets scientific standards. Much
pseudoscience shares a range of characteristics: the results and ideas don’t seem
to develop over time, systems are never quite ready for demonstration, the work
proceeds in a vacuum and is unaffected by other advances, protagonists argue
rather than seek evidence, and the results are inconsistent with accepted facts.
Often such work is strenuously promoted by one individual or a small number
of devotees while the rest of the scientific community ignores it.

An example of pseudoscience in commercial computing is some of the
schemes for high-performance video compression, which promise delivery of
TV-quality data over 56 kilobaud modems. The commercial implications of
such systems are enormous, and this incentive creates ample opportunities for
fraud; in one case, for example, millions of dollars were scammed from in-
vestors with tricks such as hiding a video player inside a PC tower and hiding a
network cable inside a power cable. Yet, skeptically considered, such schemes
are implausible. For example, with current technology, even a corner of a single
TV-resolution image—Iet alone 25 frames per second—cannot be compressed
into 7 kilobytes. Uncompressed, the bandwidth of a modem is only sufficient
for one byte per row per image, or, per image, about the space needed to trans-
mit a desktop icon. A further skeptical consideration in this case was that an
audio signal was also transmitted. Had the system been legitimate, the inven-
tor must have solved the independent problems of image compression, motion
encoding, and audio compression.

It is not hard to find similar work in the academic world. An example
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is the variety of “‘universal” indexing methods that have been proposed. In
these methods, the object to be indexed—whether an image, movic. audio lile.
or text document—is manipulated in some way, for example by a particular
kind of hash function. After this manipulation, objects of different type can
3 be compared: thus, somehow, documents about swimming pools and images
of swimming pools would have the same representation. Such matching is
clearly an extremely difficult problem, if not entirely insoluble; for instance,
how does the method know to focus on the swimming pool rather than some
other element of the image, such as children, sunshine, or a metaphor for middle
class aspirations? Yet proposals for such methods continue to appear. In a
recent version, objects of the same type were clustered together using some
kind of similarity metric. Then the patterns of clustering were analysed, and
] objects that clustered in similar ways were supposed to have similar subject
matter. Although it is disguised by the use of clustering, to be successful such
an approach assumes an underlying universal matching method.

In some work, the evidence or methods are inconsistent. For example, in
a paper on how to find documents on a particular topic, the authors reported
that the method correctly identified 20,000 matches in a large document col-
lection. But this is a deeply improbable outcome. The figure of 20,000 hints
at imprecision—it is too round a number. More significantly, verifying that all
20,000 were matches would require many months of effort. No mention was
made of the the documents that weren’t matches, implying that the method was
100% accurate; but even the best document-matching methods have high er- .
ror rates. A later paper by the same authors gave entirely different results for |
the same method, while claiming similar good results for a new method, thus
throwing doubt on the whole research program. And it is a failure of logic to __
suppose that the fact that two documents match according to some arbitrary 1
algorithm implies that the match is useful to a user.

The logic underlying some papers is downright mystifying. It may seem a
major step to identify and solve a new problem, but such steps can go too far.
A paper on retrieval for a specific form of graph used a new query language
and matching technique, a new way of evaluating similarity, and data based on
a new technique for deriving the graphs from text and semantically labelling
the edges. Every element of this paper was a separate contribution whose merit
could be disputed. Presented in a brief paper, the work seemed worthless. In-
venting a problem, a solution to the problem, and a measure of the solution—all
without external justification—is a widespread form of bad science.

. An interesting question is how to regard “Zipt’s law”. This observation—
| “law™ seems a poor choice of terminology in this context—is if nothing else 1

P

ARG P T T CRr T




180

Writing for Computer Science

a curious case study. Zipf’s books may be widely cited but they are not, I
suspect, widely read. In Human Behaviour and the Principle of Least Effort
(Addison-Wesley, 1949), Zipf used languages and word frequencies as one of
several examples to illustrate his observation, but his motivation for the work
is not quite what might be expected. He states, for example, that his research
“define[s] objectively what we mean by the term personality” (p. 18), explains
the “drives of the Freudian death wish” (p.17), and “will provide an objec-
tive language in terms of which persons can discuss social problems imperson-
ally” (p. 543). It “will help to protect mankind from the virtual criminal action
of persons in strategic political, commercial, social, intellectual and academic
positions” (p. 544) and “as the authority of revealed religion and its attendant
ethics declines, something must take its place ... 1feel that this type of research
may yield results that will fulfill those needs” (p. 544). Perhaps these extraor-
dinary claims are quirks, and in any case opinions do not invalidate scientific
results. But it has been argued that the behaviour captured by Zipf’s conjec-
ture is a simple consequence of randomness, and, for the motivating example
for which the conjecture is often cited (distribution of words in text), the fit
between hypothesis and observation is not always strong.

A lesson is that we need to be wary of claimed results, not only because
we might disagree for technical reasons but because the behaviour of other re-
searchers may not be objective or reasonable. Another lesson is that acceptance
of (or silence about) pseudoscience erodes the perceived need for responsible
research, and that it is always reasonable to ask skeptical questions. Yet an-
other lesson is that we need to take care to ensure that our own research 1s
well founded. When results are defended by assertion, with no evaluation or
evidence, it is easy to wonder whether the work is an instance of pseudoscience.

Reflections on research

Philosophies and definitions of science establish guidelines for what scientists
do and set boundaries on what we can know. However, there are limits to how
precise (or interesting) such definitions can be. For example, the question “is
computer science a science?” has a low information content.!* Questions of
this kind are sometimes in terms of definitions of science such as “a process

14Two philosophers are arguing in a bar. The barman goes over to them and asks, “What are
you arguing about?”

“We're debating whether computer science is a science”, answers one of them.

“And what do you conclude?” asks the barman.

“We’re not sure yet,” says the other. “We can’t agree on what ‘is’ means.”
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for discovering laws that model observed natural phenomena™. Such delimi-
tions not only exclude disciplines such as computing, but also exclude much of
the research now undertaken in disciplines such as biology and medicine. In
considering definitions of science, a certain degree of skepticism is valuable:
these definitions are made by scientists working within particular disciplines
and within the viewpoints that those disciplines impose. In fairness, I note that
the views below have the same limitations, as they are those of a computer sci-
entist who believes that the discipline stands alongside the traditional sciences. E

It is true that, considered as a science, computing is difficult to categorize. E
The underlying theories—information theory and computability, for example— 3 '
appear to describe properties as eternal as those of physics. (Such properties 4
can be seen as constraints separating the possible from the impossible.) In b
recent years the distinction between the laws of computing and the laws of i
physics has blurred, with for example properties of black holes being described
by information theory. Yet most research in computer science is many steps
removed from foundational theory and more closely resembles engineering or
psychology.

A widely agreed description of science is that it is a method for accumu-
lating reliable knowledge. In this viewpoint, scientists adopt the belief that
rationality and skepticism are how we learn about the universe and shape new
principles, while recognizing that this belief limits the application of science to
those ideas that can be examined in a logical way. If the arguments and experi-
ments are sound, if the theory can withstand skeptical scrutiny, if the work was
undertaken within a framework of past research and provides a basis for further :
discovery, then it is science. Much computer science has this form. ‘

Many writers and philosophers have debated the nature of science, and as-
pects of it such as the validity of different approaches to reasoning. The direct
impact of this debate on the day-to-day activity of scientists is small, but it
| has undoubtedly shaped how scientists approach their work. It also provides
= elements of the ethical framework within which scientists work.

A key effect of philosophy on the practice of science has been to undermine
belief in certainty and absolute scientific truth. Several developments in the 3
early years of the twentieth century contributed to this development, including ':'_;
relativity, quantum mechanics, incompleteness, and undecidability. In philoso-
phy, the ideal of scientific truth was undermined by the concept of falsification.
The core idea is simple: experimental evidence, no matter how substantial or
voluminous, cannot prove a theory true, while a single counter-example can
prove a theory false.
A practical consequence of the principle of falsification is that a reasonable
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scientific method is to search for counter-examples to hypotheses. In this line
of reasoning. to search for supporting evidence is pointless, as such evidence
cannot tell us that the theory is true. A drawback of this linc of reasoning is that,
using falsification alone, we cannot learn any new theories: we can only learn
that some theories are wrong. Another issue is that, in practice, experiments are
often unsuccessful, but the explanation is not that the hypothesis is wrong. but
rather that some other assumption was wrong. The response of a scientist to a
failed experiment may well be to redesign it. For example, in the decades-long
search for gravity waves, there have been many unsuccessful experiments, but
a general interpretation of these experiments has been that they show that the
equipment is insufficiently sensitive.

Thus falsification can be a valuable guide to the conduct of research, but
other guides arc also required if the research is to be productive. One such
guide is the concept of confirmation. In science, “confirmation” has a weaker
meaning than in general usage: when a theory is confirmed, the intended mean-
ing is not that the theory is proved, but that the weight of belief in the theory has
been strengthened. Seeking experiments that confirm theories is an alternative
reasonable view of method.

A further consequence is that a hypothesis should allow some possibility
of being disproved—there should be some experiment whose outcomes could
show that they hypothesis is wrong. If not, the hypothesis is simply uninterest-
ing. Consider. for example, the hypothesis “a search engine can find interesting
web pages in response to queries”. It is difficult to see how this supposition
might be contradicted. Thus falsification and other descriptions of method help
shape research questions as well as research processes.

A research checklist

o Are the ideas clear and consistent?

« Is the problem worthy of investigation?

« Does the project have appropriate scope?
« What are the specific research questions?
« Is there a hypothesis?

« What would disprove the hypothesis? Does it have any improbable conse-
quences?

o Are the premises sensible?




Doing research 183

* Has the work been critically questioned? Have you satisfied yourself that it
is sound science?

+ How are the outcomes to be evaluated? Why are the chosen methods of
evaluation appropriate or reasonable?

* Are the roles of the participants clear? What are your responsibilities?
What activities will the others undertake?

* What are the likely weaknesses of your solution?

o Is there a written research plan?

» What forms of evidence are to be used?

 Have milestones, timelines, and deadlines been identified?

* Do the deadlines leave enough time for your advisor to provide feedback
on your drafts, or for your colleagues to contribute to the material?

» Has the literature been explored in appropriate depth? Once the work is

largely done—and your perspective has changed—does it need to be ex-
plored again?




