CLASS HANDOUT FOR THE EXTENDED EUCLIDEAN ALGORITHM

SAMUEL J. LOMONACO, JR.

The extended Euclidean algorithm is as follows:
Procedure EEA $\left(a_{1}, a_{2} ; s_{1}, s_{2}\right)$
\# Given a_{1} and a_{2} in a Euclidean domain D, compute
$\# g=\operatorname{gcd}\left(a_{1}, a_{2}\right)$ and also compute $\vec{s}=\left(s_{1}, s_{2}\right) \in D \times D$
\# such that $g=s_{1} a_{1}+s_{2} a_{2}$. We let \vec{a} denote $\left(a_{1}, a_{2}\right)$.
$c \longleftarrow\left|a_{1}\right| ; \quad \vec{c}=(1,0) ;$
$d \longleftarrow\left|a_{2}\right| ; \quad \vec{d}=(0,1) ;$
while $d \neq 0$ do $\{$
$q \longleftarrow q u o(c, d) ;$
$r \longleftarrow c-q \cdot d ; \quad \vec{r} \longleftarrow \vec{c}-q \cdot \vec{d} ;$
$c \longleftarrow d ; \quad \vec{c} \longleftarrow \vec{d} ;$
$d \longleftarrow r ; \quad \vec{d} \longleftarrow \vec{r} ; \quad\}$
\# Normalize GCD
\# Please note that $u(\vec{a})$ denotes $\left(\operatorname{sign}\left(a_{1}\right), \operatorname{sign}\left(a_{2}\right)\right)$, and $u(c)$ denotes $\operatorname{sign}(c)$
$g \longleftarrow c$
$\vec{s} \longleftarrow \vec{c} /[u(\vec{a}) \cdot u(c)] ;$
$\operatorname{return}(g)$
end

Example 1. In the Euclidean domain \mathbb{Z} if $a=18$ and $b=30$, then the sequence of values computed for $q, c, \vec{c}, d, \vec{d}$ in the above algorithm is as follows:

Iteration No.	q	c	\vec{c}	d	\vec{d}
-	-	18	$(1,0)$	30	$(0,1)$
1	0	30	$(0,1)$	18	$(1,0)$
2	1	18	$(1,0)$	12	$(-1,1)$
3	1	12	$(-1,1)$	6	$(2,-1)$
r	2	6	$(2,-1)$	0	$(-5,3)$

Thus, $g=6, s=2$, and $t=-1$; i.e., $G C D(18,30)=6=2(18)-1(30)$ as noted in the above example.

University of Maryland Baltimore County, Baltimore, MD 21250
E-mail address: lomonaco@umbc.edu
Date: April 8, 2007.

