[image: image1.jpg]Algorithms for
Computer Algebra

K.O. Geddes

University of Waterloo

S.R. Czapor

Laurentian University

G. Labahn

University of Waterloo

oS
Kluwer Academic Publishers
Boston/Dordrecht/London

[image: image2.jpg]174 Algorithms for Computer Algebra

that ¢q(b)=l;. We have ¢,(a)¢,(b) = 1 which implies that q>q(ab—1) =0, or

ab—-1e <g>,orab =1 (mod q).
[)

Finally we are able to state the property of congruence relations that we have been seek-
ing. For any Euclidean domain D and < g > the ideal generated by a fixed element g € D the
following property holds:

For any a,b € D with a relatively prime to g there is an element a' e D which is the
inverse (mod g) of a and any element x € D such that

x=a'b (mod g) (5.11)
is a solution of the congruence equation

ax = b (mod gq).

5.6. THE INTEGER CHINESE REMAINDER ALGORITHM

We now turn to the development of algorithms for inverting homomorphisms. The
basic tenet of these ‘‘inversion’’ algorithms is that under appropriate conditions an element a
in aring R can be reconstructed if its images ¢y(a), i = 1,2,... are known in an ‘‘appropriate

number’’ of homomorphic images R/I; of R.

The Chinese Remainder Problem
Recall that for any fixed integer m € Z the modular homomorphism ¢,,:Z — Z,,
which projects the ring Z of integers onto the finite ring Z,, of ‘‘integers modulo m’’ is
specified by
0,,(a) =rem(a,m) foralla € Z. (5.12)
Using congruence notation, if a € Z and if ¢,,(a) =d € Z,, then we write
a =d (mod m).
The classical mathematical problem known as the Chinese remainder problem can be
stated as follows:
Given moduli mg,my, ..., m,€Z and given corresponding residues u; € Z,,
0<i <n, find an integer u € Z such that
u=u; (mod m;), 0<i<n.
(This problem, in a less general form, was considered by the ancient Chinese and by the
ancient Greeks about 2000 years ago.) Note that an algorithm for solving the Chinese

remainder problem will be an algorithm for ‘‘inverting’’ the modular homomorphism, since
if we know the images (residues) u; = ¢,, (u) of an integer u, for several modular homomor-

phisms ¢,,, then such an algorithm will reconstruct the integer u. (More correctly, the latter

[image: image3.jpg]5. Homomorphisms and Chinese Remainder Algorithms 175

statement will be true once we have determined conditions such that there exists a unique
integer u which solves the problem.) The following theorem specifies conditions under
which there exists a unique solution to the Chinese remainder problem.

Theorem 5.7 (Chinese Remainder Theorem). Let mg,my, ..., m, € Z be integers which are
pairwise relatively prime —i.e.

GCD(m;, mj)=1 for i #,
and let u; € Z,,,i =0,1,..., n be n + 1 specified residues. For any fixed integer a € Z
there exists a unique integer ¥ € Z which satisfies the following conditions:

asu<a+m, where m = ﬁmi; (5.13)

i=0
u =u; (mod m;), 0<i<n. (5.14)
Proof:

Uniqueness:
Let u,v € Z be two integers satisfying conditions (5.13) and (5.14). Then using the fact
that = is an equivalence relation, it follows from condition (5.14) that

u=v(modm), fori =0,1,...,n

= u-ve<m> fori=0,1,...,n

n
= u-ve<m> wherem=]]m;
o

where in the last step we have used the fact that since the moduli mg, my, . . ., m, are pair-
wise relatively prime, an integer which is a multiple of each m; must also be a multiple of the

product m. But from condition (5.13) it follows that
|lu=v|<m

and hence u — v =0 since 0 is the only element of the ideal < m> which has absolute value
less than m. Thus u =v.

Existence:

Let u run through the m distinct integer values in the range specified by condition
(5.13) and consider the corresponding (n + 1)-tuples (¢,, (1), ¢, (), . . ., 0, (W)), Where ¢,,,

is the modular homomorphism defined by (5.12). By the uniqueness proof above, no two of
these (n + 1)-tuples can be identical and hence the (n + 1)-tuples also take on m distinct

values. But since the finite ring Z,, contains precisely m; elements there are exactly
n

m = Il m; distinct (n + 1)-tuples (vg,Vy, ..., v,) such that v; € Z,,. Hence each possible
i=0 ;

(n+1)-tuple occurs exactly once and therefore there must be one value of u in the given

[image: image4.jpg]176 Algorithms for Computer Algebra

range such that
(D (8)s O, (W), -+ o5 Oy (W) = (s iy, - . ., Uy).
[]
It is important to note the sense in which the solution to the Chinese remainder problem
is unique. If we are given n + 1 residues u; € Z,, (0 <i < n) corresponding to 7 + 1 moduli
m; (0 <i <n) (assumed to be pairwise relatively prime) then the Chinese remainder problem

has an infinite set of integer solutions, but by property (5.13) of Theorem 5.7 (choosing
a =0) we see that the solution is unique if we restrict it to the range 0 <u < m. Thus we say
that the solution is unique modulo m. In other words, given y; € Z,, (0 <i <n) the system

of congruences (5.14) does not have a unique solution in the ring Z but it does have a unique
n

solution in the ring Z,,, where m = Ilm;.

1=

Different choices of values for the arbitrary integer @ in Theorem 5.7 correspond to dif-
ferent representations for the ring Z,,. The choice @ = 0 corresponds to the familiar positive

representation of Z,, as
z,={0,1,..., m-1}

(where we are assuming that m is positive). In practical applications all of the moduli
mg,my, - . ., m, and m will be odd positive integers and another useful representation will be

the symmetric representation of Z,, as

zm={—mT‘1,...,—1,o,1,...,mT"l}.

The choice of value for the integer a in Theorem 5.7 which corresponds to the symmetric
representation of Z,, is clearly

m—1

2

The proof given above for Theorem 5.7 is not a constructive proof since it would be
highly impractical to determine the solution # by simply trying each element of the ring Z,,
when m is a large integer. We will now proceed to develop an efficient algorithm for solving
the Chinese remainder problem.

Garner’s Algorithm

The algorithm which is generally used to solve the Chinese remainder problem is
named after H. L. Garner who developed a version of the algorithm in the late 1950’s
(cf.[2]). Given positive moduli m; € Z (0 <i <n) which are pairwise relatively prime and
given corresponding residues u; € Z,, (0 <i <n), we wish to compute the unique u € Z,,

n
(where m = _I'{Jm,-) which satisfies the system of congruences (5.14). The key to Garner’s
=

[image: image5.jpg]5. Homomorphisms and Chinese Remainder Algorithms 177

algorithm is to express the solution u e Z,, in the mixed radix representation
n—1
U=v + Vl(mo) + Vz(in()ml) + -0+ V,,(Hmi) (5.15)
0

where vy € Z,, fork=0,1,..., n.

The mixed radix representation (5.15) is not meaningful in the full generality stated
above since the addition and multiplication operations appearing in (5.15) are to be per-
formed in the ring Z,, but each mixed radix coefficient v, lies in a different ring Z,. In

order to make (5.15) meaningful, we will require that the rings Z, (0<k<n)and Z, be

represented in one of the following two consistent representations:

@ Each ring Z,, (0 <k <n)and Z,, is represented in its positive representa-
tion; or
(ii) Eachring Z,, (0 <k <n)and Z,, is represented in its symmetric representa-

tion (where we assume that each my, is odd).

Then the natural identification of elements in a ring Z,, with elements in the larger ring Z,,
gives the desired interpretation of (5.15). It can be proved that any u € Z,, can be

represented in the form (5.15) and if one of the consistent representations (i) or (ii) is used
then the coefficients v, (0 <k < n) are uniquely determined. It should be noted that in the

case when the positive consistent representation (i) is used, (5.15) is a straightforward gen-
eralization of the familiar fact the any integer u in the range 0 <u < p™*! (Le. u e Zgs), for

a positive integer B > 1, can be uniquely represented in the radix p representation.:
U=vy+vB+vp2+ -+, p"

where 0 < vy < B (ie. v € Zp).

Example 5.14. Let my=3,m; = 5, and m =myn; = 15. Using the positive consistent

representation, the integer u = 11 € Z5 has the unique mixed radix representation
11=vy+v{(3)

with vo=2 € Zz and v; =3 € Zs. Using the symmetric consistent representation, the integer
i =—4 € Z;5 has the unique mixed radix representation

—4 = \70 + \7—1(3)

with Vo=—-1 € Zzand v; =-1 € Zs. Note that u =11 and & = —4 are simply two different
representations for the same element in Z;5 but that the corresponding coefficients v; and v

are not simply two different representations for the same element in Zs.
[J

[image: image6.jpg]178 Algorithms for Computer Algebra

Writing the solution u of the system of congruences (5.14) in the mixed radix represen-
tation (5.15), it is easy to determine formulas for the coefficients v, (0 <k < n) appearing in

(5.15). It is obvious from (5.15) that

U = vg(mod myg)

and therefore the case i = 0 of the system of congruences (5.14) will be satisfied if v is
chosen such that

Vo = Ug (mod my). (5.16)
In general for k > 1, if coefficients vg, vy, . . ., Vy_; have been determined then noting from
(5.15) that
k-1
u=vy+viimg)+ - +vi ([Im;) (mod my),
i=0

we can satisfy the case i =k of the system of congruences (5.14) by choosing v, such that

=
vo+ vi(mo) + -+ - + v (ITmy) = ug (mod my).
i=0

Using properties (5.8) - (5.11) to solve this congruence equation for v; we get for k = 1:

) -1 Y1
Vi = (U — [VO + Vl(mo) Rl o vk_l(Hmi)] J [m;] (mod mk) (5.17)
i=0 i=0
k-1

where the inverse appearing here is valid because ‘l—_Iomi is relatively prime to my,. Finally we
i

note that once a consistent representation has been chosen, there is a unique integer vy € Z,,
satisfying (5.16) (namely vo=ug € Z,,) and similarly for k = 1,2, ..., n there is a unique

integer v, € Z,, satistying (5.17).

Implementation Details for Garner’s Algorithm

Garner’s algorithm is presented formally as Algorithm 5.1. Some details about the
implementation of this algorithm need further discussion. It is important to note that in the
usual applications of Garner’s algorithm the moduli m; (0 <i <n) are single-precision
integers (typically, large single-precision integers) and therefore the residues u; (0 <i <n)
are also single-precision integers. The integer u being computed will be a multiprecision
integer and indeed the list of residues (ug, Uy, . . ., Up,) can be viewed simply as a different
representation for the multiprecision integer u (see Chapter 4). Algorithm 5.1 is organized
so that in this typical situation operations on multiprecision integers are completely avoided
until the last step. In particular we use the notation ¢,, in Algorithm 5.1 in a manner that is

consistent with its mathematical meaning as a modular homomorphism but we give it the fol-
lowing more precise algorithmic specification:

[image: image7.jpg]5. Homomorphisms and Chinese Remainder Algorithms 179

&y, (expression) means ‘‘evaluate expression in the ring Z,, .

More specifically, it means that when expression is decomposed into a sequence of binary
operations, the intermediate result of each binary operation is to be reduced modulo my

before proceeding with the evaluation of expression. In this way we are guaranteed that
every variable (except of course u) appearing in Algorithm 5.1 is a single-precision variable
and moreover that every operation appearing in step 1 and step 2 is an operation on single-
precision integers. (Note however that if @ and b are single-precision integers then the
operation ¢y, (a - b), for example, is usually performed by an ordinary integer multiplication

a - b yielding a double-precision integer, say ¢, followed by an integer division operation to
compute rem(c, my).)
For k=1,2,..., n the integer v, satisfying (5.17) is computed in step 2 of Algorithm
5.1 by evaluating the right hand side of (5.17) in the ring Z,,,. The inverses appearing in
(5.17):
k-1
Ye = ([Tm) " (mod my), fork=1,2,...,n
i=0
are all computed in step 1. Note that a method for implementing the procedure
reciprocal(a, q)

to compute a1 (mod gq) for relatively prime a and g, is given in the proof of Theorem 5.6;
namely, apply the extended Euclidean algorithm (Algorithm 2.2) to a,q € Z yielding
integers s and ¢ such that

sa+tg=1
and then ¢ (s) =rem(s, q) is the desired inverse in the ring Zq. The computation of the
inverses {Y,} was purposely separated from the rest of the computation in Algorithm 5.1
because {Y,} depend only on the moduli {m;}. For typical applications of Garner’s algo-

rithm in a system using the modular representation for multiprecision integers, the moduli
{m;} would be fixed so that step 1 would be removed from Algorithm 5.1 and the inverses

{Y,} would be given to the algorithm as precomputed constants. It is also worth noting that

there are situations when both step 1 and step 3 would be removed from Algorithm 5.1. For
example, in the above-mentioned setting if it is desired to compare two multiprecision
integers @ and b represented in their modular representations then it is sufficient to compute
their (single-precision) mixed radix coefficients and compare them (cf. Knuth [3]).

Finally, step 3 needs some justification. We have stated that if consistent representa-
tions are used for Z,, (0<k <n) and Z,, then the mixed radix representation (5.15) for
u e Z,, is unique. However we have not shown that if the operations in (5.15) are performed
in the ring Z rather than in the ring Z,,, we will still obtain the unique u € Z,, as desired —
i.e. in step 3 of Algorithm 5.1 there is no need to write the for-loop statement as

[image: image8.jpg]180 Algorithms for Computer £

Algorithm 5.1. Garner’s Chinese Remainder Algorithm.

procedure IntegerCRA((my, . . ., m,),(4g, . . ., U,))
Given positive moduli m; € Z (0 <i < n) which are pairwise
relatively prime and given corresponding residues u; € Z,,,,
compute the unique integer u € Z,, (where m = []m;) such that

u=u;(modm,;), i=0,1,..., n

Step 1: Compute the required inverses using a procedure
reciprocal(a, g) which computes a~! (mod q).

for k from 1 to n do {
product < ¢, (mg)
forifrom 1tok —1do
product < ¢, (product - m;)

Y < reciprocal(product,my) }

Step 2: Compute the mixed radix coeffs {v,}.

Vo ¢ Uy
for k from 1 to n do {
temp < v,_;
for j from k — 2 to O by —1 do
temp ¢, (temp - m; +v;)

Vi = Oy, (4 — temp) - y) }

Step 3: Convert from mixed radix representation
to standard representation.

U,
for k fromn — 1 to 0 by —1 do
U< u - mg+v
return(u)
end

[image: image9.jpg]5. Homomorphisms and Chinese Remainder Algorithms 181

U O, (0 -my +vy).

To justify this, note from (5.15) that if | v | < (m — 1)/2 for k=0, 1, ..., n (i.e. if the sym-

metric consistent representation is used) then

<m0—1 my—1 m,—1 n-1
< + + o+ ;
| u] S —=—+——(mo) 7T
1 n
S=I(Im) -1
2 =0
proving that u lies in the correct range. Similarly if 0 < v, <my—1fork=0,1,..., n (ie.if

the positive consistent representation is used) then clearly u > 0 and, proceeding as above,

u < ([Jmp) -1

i=0

proving again that u lies in the correct range. Finally, step 3 performs the evaluation of
(5.15) using the method of nested multiplication:

u=vo+mo(vy +my+ -+ +my (Vg +m,_1(v,)))

Example 5.15. Suppose that the single-precision integers on a particular computer are res-
tricted to the range —100 < @ < 100 (i.e. two-digit integers). Consider as moduli the three
largest single-precision integers which are odd and pairwise relatively prime:

mgy= 99; my = 97, nmy = 95.
Then m =mgymym, = 912285. Using the symmetric consistent representation, the range of
integers in Zg;59q5 is —456142 < u < 456142,

Now consider the problem of determining # given that:
u =49 (mod 99);
u=-21 (mod 97);.
u =-30 (mod 95)

Applying Algorithm 5.1, we compute in step 1 the following inverses:
Y1 =mg* (mod my) = 997! (mod 97) = 27! (mod 97) = - 48;
Yo = (mgmy)~ (mod my) = 8 (mod 95) = 12.

Carrying out the computation of step 2, we get the following mixed radix coefficients for u:
vo=49; vy =-35; v, =-28.

At this point we have the following mixed radix representation for u:

u =49 —35(99) - 28 (99) (97).

[image: image10.jpg]182 Algorithms for Computer Algebra

Finally, carrying out the conversion of step 3 using *‘multiprecision’” arithmetic we find

u =-272300.
()
Let us return to the example in the introduction of this chapter. We may look at our
linear system over the domains Z,, for various primes p. However, piecing together the

solutions using the CRA will give us integer values for x, y and z, which we know happens
infrequently. Rather, if we let

144 74 22 1 74
xp=det -2 14 —-10|, y,=det| 15 =2 -10
34 =28 20 —25 34 20
22 44 1 22 44 74
zy=det| IS 14 -2|, d =det| 15 14 -10
—25 -28 34 —25 -28 20

then we know that x, y;, z; and d will be integers and that

X Y1 2y
xX=—, Y= i

d d

However, for a given domain Zp we need not calculate these determinants. Rather we find

the modular solutions
x (mod p), y (mod p), z (mod p), and d (mod p),
via the usual efficient Gaussian elimination method, and use
xy=xd(modp), y =yd(modp), z,=zd (modp).
In this way we obtain modular representations for x; , y,, z;, and d. Using the integer

CRA gives integer representations for these four quantities, and hence rational number
answers for x;, y;, and z.

For example, working over Z, the system becomes

x+2y —3z=1,
X —3z=-2,
3x - z=~1.

Gaussian elimination gives
x=-1(mod7), y=-2(mod 7), z=-2 (mod 7) and d =-2 (mod 7).

Similarly, working over the domains Z,,, Z 3, Z; and Z4 gives

[image: image11.jpg]5. Homomorphisms and Chinese Remainder Algorithms 183

x1=-5 (mod 11), y;= 0 (mod 11), z;=-4 (mod 11), d= 1 (mod 11),
x1=-2 (mod 13), y;= 4 (mod 13), z;= 6 (mod 13), d= 4 (mod 13),
x1= 5(mod 17), y;=-6 (mod 17), z;=-3 (mod 17), d=-2 (mod 17),
x1= 9(mod 19), y;= 6 (mod 19), z;= 7 (mod 19), d=-8 (mod 19).

Thus, for example the ‘‘modular representations’’ for x; and d are
x=02,-5,-2,5,9) and d=(-2,1,4,-2,-8)

with respect to the moduli 7, 11, 13, 17 and 19.

Using Garner’s algorithm, we find that corresponding integer representations are then

x1=—44280 and d =-7380

giving

Similarly, we obtain

_ 40590 _ 11, o

_ - _-11070 _ 3
Y= 380~ 2 7380 2

We will return to the topic of modular methods for solving linear systems in Chapter 9.

5.7. THE POLYNOMIAL INTERPOLATION ALGORITHM

We now consider the corresponding inversion process for evaluation homomorphisms.
Recall that we are primarily interested in homomorphisms ¢y, which project the multivariate

polynomial domain Z[xy, ..., x,] onto the Euclidean domain Zp [x{] (or perhaps onto the
field Z,,). In the notation ¢_y ,, p denotes a prime integer, I denotes the kernel of a mul-
tivariate evaluation homomorphism, and ¢ ,. denotes the composite homomorphism ¢; ¢,
with domains of definition indicated by:

¢p Y/ BT) Zp[xl, e 1 iy (5.18)
and
q)I § Zp[xl, — xv] e Zp[xl] (519)

(or the homomorphic image in (5.19) could as well be Z,). The inversion process for

homomorphisms of the form (5.18) is the Chinese remainder algorithm of the preceding sec-
tion. (Note that Garner’s Chinese remainder algorithm can be applied coefficient-by-
coefficient in the polynomial case, with the polynomials expressed in expanded canonical
form.) The inversion process for homomorphisms of the form (5.19) is the problem of poly-
nomial interpolation.

