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My soul is an entangled knot,

Upon a liquid vortex wrought

By Intellect in the Unseen residing.

And thine doth like a convict sit,

With marlinespike untwisting it,

Only to find its knottiness abiding;

Since all the tool for its untying

In four-dimensional space are lying.

J.C.Maxwell (1831-1879)

1.1 Introduction

Knots and physics are related at many levels. Knots and their properties form

a dense, visual and complicated affair. See Figure 1 for a depiction of the right

handed trefoil knot, the simplest knot. In this paper we tell about knots and

topology starting with the theories of Lord Kelvin [Kelvin 8] in the nineteenth

century and continuing to the present day. Kelvin’s work, coming from a deep

conviction that knots are fundamental to physics,was instrumental in staring

the mathematical theory of knots. After that, the relationships between knots

and physics evolved in most remarkable ways. We shall tell an outline of that

story.

In the 19-th century, a luminiferous aether permeating all of space was postu-

lated to provide a medium for carrying electromagnetic radiation. Lord Kelvin

(Sir William Thompson) further postulated that three dimensional knotted

swirls (vortices) in this fluidic aether were atoms of matter. He then tried

his hand at defining and modeling vortices in three dimensional fluids. Kelvin’s

knotted vortices were eventually dismissed along with the notion of the aether

as a fluid filling all the regions of the universe. The aether went into the dustbin

of history in the same way as phlogiston. The vortex idea has a long gestation

and refuses to die. One can find its echoes in many aspects of modern physics.

We shall discuss some of these in this article.
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Fig. 1 A trefoil knot

One of the first 19th century depiction of knotted vortices is shown in the top

half of Figure 2. While earlier work had theorized about knotted fluid vortices,

the work of Kleckner and Irvine in 2012 was the first actual production of such

vortices under laboratory conditions, in this case in the medium of water.
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Fig. 2 Knotted Vortices

In those early days, Kelvin and Maxwell had their hands on crucially fun-

damental ideas. The electromagnetic waves were produced by the linking of

circulating electricity with circulating magnetism. Each circulation supporting

and generating the other to go forth at the speed of light. It quickly became

apparent that light itself is an electromagnetic wave, [University Physics 10].

See Figure 3.

Fig. 3 The propagation of the electromagnetic wave is based on EM field linking

Linking between curves is just the beginning of the self-linkedness of the knot-

ting phenomenon.

It is no wonder that Maxwell and Kelvin were convinced that knots held the

answers to a better understanding of the physical world. The idea that atoms

are knotted vortices in the luminiferous aether is a shot in the dark, illuminated

by the electromagnetic theory of light.

Knots have been found to appear in long chain molecules, leading to studies of

knotted DNA and knotting in the folding of proteins. In the case of DNA, knot

theory is instrumental in understanding the properties of the local geometry of
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DNA recombination.

Fig. 4 A knotted DNA chain

Cozzarelli, Dungan and Wasserman produced the electron microscope photo in

Figure 4.

For many years after Kelvin, knot theory took a mathematical route. Tait

and Kirkman and Little made tables of knots and got people started thinking

about diagrams and the fundamental topology of those diagrams. Alexander

and Briggs and Reidemeister defined diagrammatic knot theories and J. W.

Alexander created a polynomial invariant of knots in the 1920’s. Knot the-

ory took off and became an integral part of the developing algebraic topology.

Methods were developed that could study the topology of the complementary
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space of the knot – that space where the knot is not. See Figure 5

Fig. 5 The complement of the trefoil knot as the exterior of a knotted tube

Figure 6 shows how seemingly unrelated topics in physics and mathematics

can come together in a light bulb moment. Ideas often tunnel along beneath

the surface and then come back again and so the following happened. In the

1960’s C.N.Yang studied a “toy” quantum field theory with one dimension of

space and one dimension of time, while R Baxter was studying the statistical

mechanics of two dimensional systems. They independently discovered that

their problems would be illuminated by matrices that satisfied the so-called

Yang-Baxter Equation. See Figure 6

Fig. 6 The Yang-Baxter Equation
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Today any knot theorist on seeing this diagram, which comes from statistical

mechanics would immediately say, “aha, this is an example of the Reidemeister

three move”, as we shall shortly see.

The Reidemeister moves are how the knot theorists understand and manipulate

their objects of study which are knot diagrams. If we take the trefoil knot

example shown earlier and strip it down to its essentials we get a knot diagram

as in Figure 7.

Fig. 7 The skeleton of a trefoil knot.

A knot diagram is made up of a number of arcs which end as the knot appears

to duck under another arc and start where the knot reappears. The diagram of

the knot is a schematic for weaving the knot. It is a line drawing with crossings

that indicate where a rope goes over and under itself. We use the same drawing

convention that a person does when they make a sketch. (An unbroken arc

is closer to the eye of the viewer than a broken arc.) With the diagrams we

can record knots and links, and we can regard the diagram as a mathematical

notation for the knot or link.

Knot theory is about the placement problem, a point of view emphasized by the

knot theorist Ralph Fox [Fox 4]– how can one understand the embeddings of

one topological space A in another topological space B? In the case of knotted

rope we take the space A to be an arc (for a length of rope) or a circle (for

a closed loop of rope). In itself a circle is very simple, but the myriad ways

in which a circle can be embedded in three dimensional space constitutes the

mathematical ground of classical knot theory in three dimensions. In that

theory, we consider the embeddings up to the equivalence relation of ambient

isotopy. Two embeddings K and K ′ of the circle are said to be ambient isotopic

6



if there is a continuous parametrized family of embeddings, starting with K and

ending with K ′. This is a model of moving the rope in space to change one knot

to the other.

Looking at knot theory in terms of the placement problem, allows mathe-

maticians to consider many different knotting problems such as embeddings

of graphs and networks in three dimensional space, embedding surfaces in four

dimensional space and embedding high dimensional manifolds in each other. In

fact there is a whole raft of theory concerning embedded n dimensional spheres

in n+ 2 dimensional space, the codimension two placement problem.

Returning to the situation in three dimensions, the ambient isotopy or motion

of the knot in space is codified by a series of moves shown in Figure 8, that

act upon diagrams of knots. These are called Reidemeister moves after Kurt

Reidemeister who wrote the first book on knot theory, [Reidemeister 9]. The

moves were originally discovered by J.C. Maxwell in the middle 1800’s. It

turns out that Maxwell was genuinely fascinated by knots and he had extensive

correspondence about them with other scientists such as Peter Guthrie Tait ( a

mathematician) and William Thompson (Lord Kelvin). In fact the definition of

linking number in classical knot theory is directly related to work by Gauss and

Maxwell, see [Fenn 3] The completeness of the moves was proved by Alexander

and Briggs in the 1920’s.

Fig. 8 The Reidemeister moves

The connection between Reidemeister move III and the Yang-Baxter equation

should now be apparent. From the physical perspective, the Yang-Baxter equa-

tion can be interpreted in terms of quantum amplitudes (Yang) and also in terms

of partition functions for statistical mechanics (Baxter). A topologist can see
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the equation as an expression of invariance under the third Reidemeister move,

the most complicated of the moves that generate equivalences of knots, and the

beginning of the construction of an invariant of knots and links.

The work of Yang and Baxter was appreciated by physicists and particular

progress was made by the Russian physicist Ludwig Faddeev and his then-

student Nicolai Reshetikhin. They found algebraic ways to understand the Yang

Baxter equation. By the early 1980’s these methods of Fadeev, Reshetikhin

and Takhtajan inspired the mathematician Vladimir Drinfeld to reinvent the

theory of Lie algebras in a new form that contained solutions to the Yang-

Baxter Equation. A revolution in mathematics and mathematical physics had

begun.

This is where our modern story relating knots and physics starts. The path

led into a statistical mechanical knot theoretic revolution, spearheaded by Fad-

deev, Reshetikhin, and Jones. The diagrammatic system of the knots and the

Reidemeister moves has an extraordinary reach into mathematics and physics.

Knots are by no means confined to knotted curves in three dimensions. In higher

dimensions, a 2-sphere can be knotted in 4-space, a 3-sphere can be knotted in

5-space. One approach to higher dimensional knot theory is to study such higher

dimensional knots in terms of hyperplane cross sections. Lomonaco showed that

4-D knot theory could be simplified to 3-D knot theory by judiciously choosing

a 3-D cross-section, called the midsection. He went on to show how 5-D knot

theory could be reduced to the study of movies of dynamically changing 3-D

midsections.
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Fig. 9 3-D cross sections

On the left of Figure 9 is an example of a movie consisting of three dimensional

cross-sections of an unknotted 2-sphere in 4-space. On the right is a movie of 3-

D cross-sections of a non-trivially knotted 2-sphere in 4-space, informally called

a knotted balloon in 4-space, with midsection shown as the center frame. Fenn

and Rolfsen were the first to show that 2-dimensional spheres could link homo-

topically in a 4-dimensional sphere. In a further development Fenn showed that

these linked spheres were the singular leaves of a foliation of the 4-dimensional

sphere by tori.

Papers by Roger Penrose on spin networks turned out to be a key to knot invari-

ants. Penrose used diagrams and diagrammatic topology, but it was not obvious

early on what the spin networks had to do with knots. They were originally

invented by Penrose to form a combinatorial model of quantum interactions

prior to the emergence of space and time. The q-deformed spin networks (a

new variable q is added to the structure) turn out to model augmented knotted

networks that represent the topology of three and four dimensional manifolds.

The q-deformed basic spin nets give rise to the Kauffman bracket version of

the Jones polynomial (that we discuss below) and are a basis for one way to

formulate topological quantum computing.

An important knot theorist, John Horton Conway [Conway 2], generalized

Alexander’s method for calculating the important Alexander polynomial [Alexan-

der 1]. Figure 10 shows a positive and a negative crossing and a smoothing

obtained by reconnecting the arcs at the crossing so that the weave disappears.

By changes of this sort a knot diagram can be reduced to a collection of disjoint

circles. Conway used the formula

∇L+
(t)−∇L

−

(t) = z∇L0
(t)

for the reduction, a mathematical miracle. This is called the Conway skein

relation.

Fig. 10 Two crossings and a smoothing

In 1979 Kauffman [Kauffman 6] found a model for Conway’s formula that
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involved linking numbers and surfaces in space. Then Kauffman went back to

Alexander’s 1928 paper and discovered that Alexander’s determinant for the

polynomial could be reformulated as a statistical mechanics type summation, a

state sum, the exact analogue of a partition function in statistical mechanics.

The polynomial could be seen as a sum over all the ways that a particle could

go through the network of the knot diagram without retracing its steps. By

summing over all these paths (as in a Feynman path integral) we obtain a

polynomial that is a topological invariant of the knot. We obtain the Alexander-

Conway polynomial as a state summation.

In 1984, Vaughan Jones [Jones 5] found a variant of the Conway skein for-

mula that gave rise to a new invariant now called the Jones polynomial. Jones

discovered his invariant by studying the properties of an algebra called the

Temperley-Lieb algebra, that is used in statistical mechanics. He rediscovered

the Temperley-Lieb algebra from his own deep study of von Neumann algebras,

Very closely related to quantum mechanics, Jones construction was generalized

by Homflypt. That is an acronym for Hoste, Ocneanu, Millett, Freyd, Lick-

orish, Yetter, Przytycki and Trawczk. These are mathematicians who heard

Jones’ early lectures. They found a two variable generalization of the Jones

polynomial that is, of course, called the Homflypt polynomial. Jones showed

that his new polynomial satisfied a skein relation similar to the Conway skein

relation. He proved that

t−1VL+
(t)− tVL

−

(t) = (
√
t− 1/

√
t)VL0

(t).

For the notation L+ etc refer to Figure 10

Kauffman searched for a state sum model of Homflypt and of the Jones polyno-

mial. Some months went by and a fortuitous event occurred. Lickorish, Millett

and Ho discovered a one variable unoriented skein polynomial. Kauffman found

a new two variable unoriented skein polynomial, flew to Italy a couple of days

after this discovery, and on the plane found that there was a natural state sum

associated with a special case of the new invariant. One can write the equations
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to describe the state summation as shown below.

Fig. 11 Bracket polynomial skein relation

In this manner the Kauffman bracket was born and with an extra condition to

take into account the writhe we get, from the bracket, a state summation for

the Jones polynomial. The bracket model for the Jones polynomial shown in

Figure 11 comes along with a new interpretation of the Temperley-Lieb algebra

that fits directly with the diagrammatics of the knots. It is remarkable that the

structure of knots and their diagrams is related to algebras arising in physics.

The discovery of the Kauffman bracket produced a flurry of related results.

Jones, Turaev and Reshetikhin showed how to use those solutions to the Yang

Baxter Equation to produce partial models for the Homflypt and Kauffman

two variable polynomials and how to create many more new invariants by the

same method. It became clear that this was a robust connection with statistical

mechanics and and with deformed Lie algebras (quantum groups) marking a

deep vein in the structure of topology and physics.

But what about Kelvin and his knots? Some modern scientists still think that

Kelvin had it right. Jehle has suggested that elementary particles may be

knotted magnetic flux. Perhaps an electron is trapped light circulating itself in
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a knotted form.

Fig. 12 Jehle’s theory of muons as knots

Yet another modern day reincarnation of Kelvin’s vortex theory are skyrmions,

first proposed by Tony Skyrme in the nineteen sixties. Originally used to model

properties of nucleons and later finding applications in electromagnetics, solid

state physics, string theory, and other areas of physics.

There are many hints that topology is fundamental to the physical structure of

the quantum universe. For example, we know that quarks and antiquarks pair

up and do not want to come apart, but if you pull them apart they become

bound by a narrow string of gluon field. Collisions of protons with protons pro-

duce such quark strings and these strings could get knotted and then their ends

annihilate to form glueballs, closed loops of gluon field. It has been suggested

that the glueballs could be knotted. There is some evidence for this in the work

of Niemi and in the work of Kephart and Buiny. These authors suggest that

glueballs can indeed be knotted. They even suggest a way to compare the en-

ergy levels of the glueballs with a measure of ropelength for knots. Ropes with

thickness have a length. You can’t make a knot in a rope if it is too short. There

is a length ( for a given diameter) that is just enough for any given knot. We

can see this for the simple knots on a rope. Or you can use a computer model

to watch a knot being contracted to a minimal ideal form. With computer work

we can associate a rope length to each knot. Kephart and Buiny found a strong
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correlation between the ropelengths of knots and the energy levels of glueballs.

Kelvin would have liked this result.

And what about vortices in fluids? Have you seen any knotted vortices lately?

Can you blow a knotted smoke ring? Well look at these experiments of William

Irvine and Justin Kleckner at the James Franck Institute at the University of

Chicago. They made knotted vortices in water. See Figure 13. This is just

like Kelvin’s dream. And their work opens up new studies in the geometry and

topology of fluid vortices. The study of knotted vortices that Kelvin began is

just at its beginnings.

Fig. 13 Knotted vortices in water - from the work of Kleckner and Irvine

We are telling you about this shot in the dark of studying knots and linking

that began in the 19th century and continues into the present day. Lets go back

to the matter of linking. You can see that it makes sense to define a linking

number between two curves as the number of times one curve goes around the

other.

One can, as Gauss did in the 1800’s, measure the way the curves interact in

space. Gauss wrote down a integral that measures the linking number directly

from how the curves are sitting in space. Then we can use the beautiful notion
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of the Gauss mapping. Take points on each of the two curves. Then a vector

between them defines a direction and hence a point on a two dimensional sphere.

The torus of pairs of points on the two curves maps to the sphere and the generic

number of points that collapse to a single point, counted correctly, is the linking

number! Can we obtain other topological information about knots and links

from this prescient idea of Gauss?

Incredibly the answer is yes and it had to wait for 1988 and the insight of Edward

Witten [Witten 11] who showed how quantum field theory gives topological

information about knots. The upshot of his work was a quantum field theoretic

interpretation of the Jones polynomial and its relatives and a new way to use

quantum field theory to produce topological invariants of three dimensional

spaces.The key to Witten’s construction is the concept of a gauge connection

or gauge potential. The gauge potential is a generalization of an electromagnetic

potential wrapped up with a symmetry group in the form of a representation

of a Lie algebra. It came about through the initial work of Hermann Weyl and

later work of C. N. Yang and Mills to handle nuclear forces in a way that is

analogous to electromagnetism but respecting different symmetries. The gauge

potential gives a way to track how the internal state of a particle changes as it

moves along a path in three dimensional space. If you use the gauge potential

to transport the particle around a very tiny loop, you find that the change in

its state reflects what is called by mathematicians the curvature of the gauge

potential and what is called by physicists the gauge field (electromagnetic field

in the case of that theory). Witten understood that knot invariants could be

constructed by first measuring the holonomy, the change in the internal space

of a particle as the particle is transported around the knot back to its starting

point. This is then integrated with the right weights over all possible gauge

potentials for a given Lie algebra representation. The result is a knot invariant

but it cannot be calculated directly. One can reformulate such concepts until

they suggest specific calculations. The Witten Integral can model the Jones

polynomial and the Homflypt polynomial and the Kauffman polynomial, all

the inventions of Reshetikhin and Turaev and more. And not only that, the

Feynman diagram expansion of the Witten integral is written in terms of special

space integrals that are direct descendants of the original integrals that Gauss

used to find the linking numbers!

We have come full circle and found that what Kelvin, Gauss and Maxwell had

wrought, turned into a whole field of topology and physics.
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These developments, in the hands of Edward Witten and Michael Atiyah led

to what we call Topological Quantum Field Theory, and this area is related to

string theory, loop quantum gravity, the development of quantum computers

and to the further structure and unification of physics. The topology goes on,

and today we study categorifications of the knot invariants. These are new

invariants of an algebraic topological nature that yield the knot polynomials as

graded Euler characteristics. The categorifications involve new algebra and are

related to string theory String theorists work on the knot homologies that arose

from categorifiying the Alexander and Jones polynomials using the AdS-CFT

correspondence.

And we are not done! The new field of topological quantum computing and

quantum topological information has led us to quite different takes on knots

and topology. Lomonaco and Kauffman formulate mosaic knots, made from

basic tiles as in Figure 14. In that figure the top part of the figure shows a

trefoil knot in mosaic form and just below it are illustrated representatives of

the basic tiles.

Fig. 14 Quantum Mosaic Knots

Kauffman and Lomonaco use the mosaic formulation of knots to represent knots

as quantum states in a Hilbert space [Lomonaco 7]. Once topological en-

ities can be seen as vectors in a Hilbert space, one can have superpositions

of these enities, quantum evolutions and measurements. Topology intertwines

with quantum theory in a new way. The basic tiles are regarded as basis ele-

ments for a Hilbert space and the mosaic diagram for a knot is seen as a tensor

product of the tiles into which it is composed. In this way, the mosaic knot

diagram is a vector in a Hilbert space that is a tensor product of copies of the

basic tile space. Regarding the knot as a vector in a Hilbert space, it can be

seen as a quantum state. Analogs of the Reidemeister moves are represented
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by unitary transformations of this tensor space. Knot theory is projected into

the physical context of quantum information and quantum computing. There

is much to say about this level of development, but it is time to stop. Note that

we have come round a spiral from knots in the luminiferous aether to knots as

states in quantum Hilbert space.

This paper has been a survey of how the topological and geometrical proper-

ties of knots and links in three dimensional space are related to physics. The

relationships occur at many levels, from the direct phenomena of knotting in

rope, materials, vortices and more. Historically knots and physics were linked

by Lord Kelvin (Sir William Thomson) in the nineteenth century with his the-

ory of atoms as knotted vortices in the luminiferous aether. This idea has not

gone away. In a sense, this paper has been a modern review of the present

state of Kelvin’s ideas with the evolution of the study of actual vortices in flu-

ids, the use of generalizations of the linking numbers of Gauss and Maxwell in

the quantum field theory interpretations of the Jones polynomial by Edward

Witten and much more. We ask the reader to ponder the question, just how

fundamental are knots and their topology for the science of physics?
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