THE THIRD HOMOTOPY GROUP
OF SOME HIGHER DIMENSIONAL KNOTS

S. J. Lomonaco, Jr.

0. Introduction

In 1962 Fox [1] posed the problem of computing the second homotopy
group of the complement s k(S2) of a (4,2)-knot as a Zn,-module.
Although Epstein [3] had previously shown that m, as an abelian group
(without Zwm,-action) was algebraically uninteresting, Fox pointed out that
this might not be the case when the action of #; on 7, is considered.
Since then some progress has been made. In [6, 7, 8] a presentation of
the second homotopy group of an arbitrary spun knot [5] was calculated as

# Zm,-module and found to be algebraically non-trivial. In particular,

THEOREM 0. If k(SQ) c 8% isa 2-sphere formed by spinning an arc a
:1bout the standard 2-sphere s? and (o Xp ity 1) is a presenta-

tion of m (S*—k(S?)), then

(xl,---,xn : z_(arj/axi}xi -0(0<j< rn))

1s a presentation of fr2(S4 - k(Sz)) as a Zm -module, where 1o =
ro(xy ,-‘-,xn) is the image of the generator of m (52 —a) under the inclu-
sion map and the symbols 6ri/8xi denote the images of Fox’s derivatives

(9] in 7 (S* —k(S?)).
Little appears to be known about the higher dimensional homotopy
groups. In this paper a procedure is given for computing a presentation of

7, of a spun knot as a Zr,-module. Specifically,

15



36 S. J. LOMONACO, JR.

THEOREM 1. Let (S4, k(Sz)) be defined as in Theorem 0 above. Then
7,(S* —k(S%)) is isomorphic as a Zm,-module to (m,(S* — k(5%)), where
I" denotes a functor defined by J.H.C. Whitehead [10, 11] and later

gencralized by Eilenberg and MacLane (12, 13). Hence, w., as a

3
Zm, -module is determined by =, and y.

COROLLARY 2, If 7y £ 0, then m, of a spun knot as a group (i.e.,

without Zn, -structure) is free abelian of infinite rank. Otherwise, my=0.

THEOREM 3. Let k(Sz) cs? bea 2-sphere formed by spinning an arc «a
about the standard 2-sphere s? and (xl RENE RS PP rm) be a presenta-
tion of m, (S* - k(s?)). Let rg = 1g(Xy,1, %) be the image of the genera-
tor of a::l(S2 —k(S%)) under the inclusion map and X; and a;i/axj be as
in Theorem 0. Then as a Zm, -module, 773(54 - k(SQ)) is generated by the

symbols
y(Xp, [X;, eX;l A<i, j<ngem)

subject to the relations

ZY(XI) = [xi’xi.;
n 1<i,j<n
y (2 ((')‘rk/axj)xj): 0
1= 0<k<m
I:Xi,g S (O /9x) xj] =0
J gemy

-1
[Xi’ gXJ] = g[XJ,g Xl]

where [Xi’ gXi] is the Whitehead product of Xy and gXJ- and yX,) is
represented by the composition of the Hopf map S3 58?2 witha representa-

tive of X;.

Applications of the above theorem to specific examples can be found

in the last section of this paper.
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I ubove more general formulation of Theorem 0.

I¥I'MARK. The methods of this paper may easily be extended to p-spun
linots,
I. Definition of a Spun Knot

Let S be a standard 2-sphere in the 3-sphere S3 and let « bea
pirolyhedral arc with endpoints lying on $? and with interior lying entirely
within one of the two components of S3 — S%. (See Figure 1.)

If a is spun about s? holding S? fixed, a knotted 2-sphere k(S?)
m $* s generated [5]. If one would like to think of the spinning as
taking place in time, then at time 0, the arc a would appear on the
1ipht of the 2-sphere as indicated in the figure. It would then immediately
vimnish into another 3-dimensional hyperplane and after rotating through
180" suddenly reappear inside $? as indicated by the dotted arc on the
Ift of Figure 1. Again it would disappear into another 3-dimensional
hyperplane and rotate through the remaining 180° until it suddenly re-

appeared on the right closing up the knotted 2-sphere k(S2)‘

IL 73 = r‘(n2)

The complement X = S* — k(S%) of an arbitrary spun knot (S*, k(S?))
will not be examined in more detail. Let X, = s3 _ k(Sz) be the
S«dimensional cross-section shown in Figure 1, and X, and X_ denote
the closures of the two components of X — X,;,. Let p: X > X be the
universal covering of X and ii = p_l(Xi) for i=+, 0, and — .

Since :rrl(Xi) > 7;(X) are all onto, it follows from the homotopy

siequence of the fibration

mX) » X; » X;

that X; is connected and

1o (X)) - m (X)) 7 (X) > 1
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Figure 1. Spun 2-sphere
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s exact for i=+, 0, and — . Moreover, since nl(X+) - nI(X) is an
isomorphism onto [5], it follows that X, are simply connected, and hence

are the universal covers of X,. Thus,

1.EMMA, The lift 5(0 of Xp to the universal cover of X is connected
and :rrl(}nio) is the kernel of 7, (X,) » m,(X). Moreover, the lifts 5(+ of

X, are the universal covers of X,.

Since X , and 5(__ both collapse to the right half of 5(0 via a deforma-
tion arising from the spinning, Hurewicz’s theorem coupled with the
asphericity of knots [4] yields that Hn(ii) =0 for n>1. Hence, from
the Mayer-Vietoris sequence for the triad (5(; )-(_'_, i_), we have
H.(X) =~ H__(X;) for n>2. Thus,

LLIEMMA., H,(X) = H,(X,) and

Hn()~{)=0 for n>2 .

Proof. Since X collapses to a 3-dimensional CW-complex [8], the last
part of this lemma is obviously true for n > 3. HS()-() = Hz(io) can be
::.hown to be equal to zero by an analysis of the following decomposition
of XO' .

Let X, denote the closure of the two components of X, — S%2. Then
Xy - Xa UXy and X, = X'S nXy is S? minus the two endpoints of a.
ltence, X, is a homotopy 1l-sphere and 7,(X,,) is infinite cyclic.
Since nl(Xg) » 7,(X) is an isomorphism onto [5], it follows from the
homotopy sequence of the fibration

+ +
m(X) > X+ X,

that X are simply connected. Applying the asphericity of knots (4], we
~ 4

have that H,(X) = 0. After inspecting the Mayer-Vietoris sequence for

the triad (io; 5(5,5(0_), we have
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Hz(io) = Hl(ioo) .

Since the image of a generator of 7, (Xgg) in 7,(X) has a linking number
of 1 with respect to k(Sz), 71 (Xgg) »7y(X) is a monomorphism. Thus,

from the homotopy sequence of the fibration
m(X) > X9 > Xoq »

we have that 5(00 is simply connected. Hence, Ha(f{) o Hz(io) =~ H, (5{00
=0,
With the above lemma and J.H.C. Whitehead’s Certain Exact Sequence

[10, 11}, we have
7 (X) == rn(X) for n>3 .

Hence, fﬂa(X) = ]‘(HQ(X)), where I is an algebraic functor defined by
J.H.C. Whitehead [10, 11] and later generalized by Eilenberg and MacLane
[12, 13]. This formula gives an effective procedure for computing 7 5(X).

In summary, we have

THEOREM 1. n3(54—k(82)) = f‘(:rrz(X)). Hence, the third homotopy group
of a spun knot as a Z?:rl-module is determined by the first and second

homotopy groups. As an abelian group, it is determined solely by Ty,

From [3], 7,(X), if non-zero, is free abelian of infinite rank. Since

I' never decreases the rank of a free abelian group, we have

COROLLARY 2, The third homotopy group of a spun knot as a group is
free abelian of infinite rank if the second homotopy group is non-zero.

Otherwise, it is zero.

III. Whitehead’s Functor
A more detailed understanding of J. H. C. Whitehead’s functor [
[10, 11] is needed to compute a presentation of 75(X). Very briefly, I'

is defined as follows. (For more details see [10, 111.)
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Let A be an additive abelian group. Then ['(A) is an additive
abelian group generated by the symbols

{y(a)fa €A
subject to the relations
y(=a) = y(a) 0))

y(a+b+c) — ¥(b+c) - y{c+a) - y(a+b)

+y(@) + y(b) + y(c) =0 . 2)

Define [a,b] by
y(a+b) = y(a) + y(b) + [a,b] .

Then, la,bl] is a measure of how close y is to a homomorphism.

The following relations are consequences of (1) and (2).

y(0) = 0
2y(a) = la,al
[a,b+c] = [a,b] + [a,c]
[a,b] = b, al

}’(2 31) = 2 y(a;) + 2 la;, a;]

i i i<j
y(na) = n’y(a) .

A proof of the following theorem can be found in (10, 11].

THEOREM. If A is an additive abelian group with generators a; and

relations bj , then 1'(A) is an additive abelian group with generators

@t U e, al
and relations

ly(bj) ol U ”ai’bj]: ot .
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Finally, if A admits a group of operators W, then so does 1'(A),

according to the rule
wy(a) = y(wa)

for weW and ae A.

IV. Computation of 33(54 ——k(Sz))
From Section II, w5(X) = l—'(nz(X)), and from Section IlI, 7,(X) is
generated by

5}‘(5){5(?72(}( and i[‘f;g'”g‘lf:(ﬂ

) Xy

In [10,11] J. H. C. Whitehead demonstrates that [£,£°] is the Whitehead
product of & and & and that y(£) is represented by the composition

of the Hopf map s% 5 8? witha representative of £. Hence, we have

THEOREM 3. Let k(Sz) C S* be a 2-sphere formed by spinning an arc a
about the standard 2-sphere S? and Xy, %y iTy e, 1) a presentation
of :71(84 - k(Sz)). Let ry = ry(xy,**,x,) be the image of the generator of
7 (52 -—k(Sz)) under the inclusion map and X; and ari/'axj be as in
Theorem 0. Then as a Zm,-module, 31'3(54 - k(S2)) i1s generated by the
symbols

yXp, (X, eX] A<i,j<ngem)

subject to the relations

QY(XI) = [Xi’ xi]

a 1<4,j<n
y(z (ark/axj)xj) - 0
j=1 0<k<m
[Xi,g s (ark/axi)xj] -0
i gemy

-1

where [Xi,gxi] is the Whitehead product of X, and gX; and y(X;) Is

]
represented by the composition of the Hopf map $3 5 8% with a repre-

sentative of Xi .
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V. Examples
FXAMPLE 1. If the trefoil is spun about Sg, then

7,(8* —k(S?) - la,b : baba~'b~!a~ 1
7,(8* — k(%) = IB: (1-atba)B=0 |
2y(B) = B, B]

(1—a+ba)y(B) = — B, baB]

7,8 —k(S?) = |y(B),[B,gBl, (gem) :
[B,gB} —[B,gaB] +[B,gbaB|=0

|B,gBl = g[B,g~'B]

where [B,gB] is the Whitehead product of B and gB and y(B) =
(Hopf map)o B. (See Figure 2.)
I’XAMPLE 2. If the square knot is spun about S2, then

78"~ k() = la,b,c : baba~'b~'a™!, caca” e a ™!

my(S* — k(%) = [B,C : (1-aiba)B = 0 = (1-a+ca)C]|

2y(B) = [B,B], 2y(C) = [C,C]
(1-a+ba)y(B) = —[B,baB]
YB)  area)y(©) - ~IC,cacl
[;(:;] ' [B,gB] — |B,gaBl + [B,gbaB]l = 0
7587 — k(%)) = [c, C-l‘ IC,gB] — [C,gaB] + [C,gbaB]| = 0
[B,gc] [B,gCl — |B,gaC] + [B,gcaCl = 0
[C’gB] [C,eCl - [C,gaC] + [C,gcaCl = 0
‘850 B,gB] = g[B,g"!B], [C,eCl = glC,g~1C]
[B,gCl = glC,g~'B]

where g ranges over my.
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Figure 2. Spun Trefoil
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