

PowerPoint slides can be found at: www.csee.umbc.edu/~lomonaco/Lectures.html

The Fox Free Calculus

Algebraic Def. of Fox Free Derivative $\partial \, / \, \partial x$

Let G be a group, and let $\mathbb{Z}G$ denote the corresponding group ring over the ring of integers \mathbb{Z} .

<u>Def.</u> A <u>derivative</u> D on a group ring $\mathbb{Z}G$ is defined as a map

 $D: \mathbb{Z}G \to \mathbb{Z}G$

satisfying the following condition:

1)
$$D(\omega_1 + \omega_2) = D\omega_1 + D\omega_2$$

1)
$$D(\omega_1 + \omega_2) = D\omega_1 + D\omega_2$$

2) $D(\omega_1\omega_2) = (D\omega_1)\omega_2^0 + \omega_1D\omega_2$

where ${}^o\colon \mathbb{Z} G \to \mathbb{Z}$ is the <u>trivializer</u> morphism which maps each element of G

Algebraic Def. of Fox Free Derivative $\partial / \partial x$,

<u>Def.</u>(Cont.) Let G be the free group $F\left(\underline{\underline{x}}\right)$ Then to each free generator $x_j \in \underline{\underline{x}}$, there corresponds a unique derivative

$$\mathbf{D}_i = \partial / \partial x_i$$

in $\mathbb{Z}F\left(\underline{\underline{x}}\right)$, called the <u>derivative</u> with respect to X_j , which has the property

$$\frac{\partial x_i}{\partial x_j} = \delta_{ij} \quad \text{(Kronecker delta)}$$

Immediate consequence of the def of $\partial/\partial x$

$$w_1, w_2 \in F(\underline{x})$$

then

$$\frac{\partial}{\partial x_i} (w_1 w_2) = \frac{\partial (w_1)}{\partial x_i} + w_1 \frac{\partial (w_2)}{\partial x_i}$$

But Where is the Geometry **???**

The Search for Geometry

Knot Theory

Various Placement Problems

• 3-D Knot Theory

$$k: S^1 \to S^3$$
 1-Knot (S^3, kS^1)

• 4-D Knot Theory

$$k: S^2 \to S^4$$

 $2-\mathsf{Knot}\left(S^4,kS^2\right)$

5-D Knot Theory

$$k:S^3\to S^5$$

3-Knot (S^5, kS^3)

3-D Knot Theory 1-Knots

The Fundamental Group $\pi_1(X)$

Knot Exterior $X = S^3 - SmallOpenTubularNbd(kS^1)$

- Fundamental Group $\pi_i(X)$ = Knot Invariant
- Asphericity of Knots (Papakyriakopoulos) $\Rightarrow X = K(\pi_1 X, 1). \quad \therefore \pi_n X = 0 \text{ for } n > 1$

Group Presentations

Question: When do two presentations represent the same group?

Tietze Transformations: $T_1^{\pm 1}$, $T_2^{\pm 1}$

Tietze 1: $(\underline{x}:\underline{r}) \xrightarrow{T_1} (\underline{x} \cup y:\underline{r} \cup s)$, where

- y is a new symbol, and
- $s = y\xi^{-1}$, with $\xi \in F(x)$

Tietze 2: $(\underline{x}:\underline{r}) \xrightarrow{\tau_2} (\underline{x}:\underline{r} \cup s)$, where

- $s \in Cons(r)$, i.e., $s = \prod_{\alpha=1}^m r^{w_{\alpha}}$, with
- $w_{\alpha} \in F\left(\underline{\underline{x}}\right)$ $0 \le \alpha \le m$, and
- $\bullet \quad \mathbf{r}_{i(\alpha)}^{w_{\alpha}} = \mathbf{w}_{\alpha} \cdot \mathbf{r}_{i(\alpha)} \cdot \mathbf{w}_{\alpha}^{-1}$

Group Presentations

Question: When do two presentations represent the same group?

Theorem (Tietze): Two group presentations represent the same group iff there exists a finite sequence of Tietze transformations which transforms one into the other.

The Geometry of Group Presentations

<u>Def.</u> An <u>abstract</u> <u>Group</u> <u>presentation</u> consists of two sets

- \underline{x} , the set of generators,
- \underline{r} , the set of <u>relators</u>,

together with an evaluation map

$$^{\wedge}:\underline{r}\to F(\underline{x})$$

from the set of relators $\underline{\underline{r}}$ into the free group $F(\underline{x})$ on the set of symbols $\underline{\underline{x}}$.

The Geometry of Group Presentations

Example: $(a,b,c:r_1,r_2,r_3)$, where

$$\hat{r}_1 = cbc^{-1}a^{-1}
\hat{r}_2 = aca^{-1}b^{-1}
\hat{r}_3 = bab^{-1}c^{-1}$$

The Geometry of Group Presentations

<u>Def</u>. A CW-complex is said to be <u>monopointed</u> it it has only one O-cell.

Proposition. Up to renaming and reordering, there exists a one-to-one correspondence between the set of abstract group presentations and a set of monopointed 2-D CW-complexes.

$$(\underline{x}:\underline{r}) \leftrightarrow K(\underline{x}:\underline{r})$$

The Geometry of Group Presentations

The CW-complex $K\left(\underline{\underline{x}}:\underline{\underline{y}}\right)$ is constructed with an initial O-cell, denoted by ∞ , and then iteratively attaching cells as follows:

1-cells: For each generator $X_j \in \underline{X}$, adjoin an oriented 1-cell X_j by attaching both endpoints to the sole 0-cell ∞ .

2-cells: For each relator $r_k \in \underline{r}$, adjoin an oriented 2-cell r_k with attaching map \hat{r}_k .

Examples

Example: $Torus = (a,b:r), \hat{r} = ab\overline{ab}$

Example: $\mathbb{R}P^2 = (a,b:r), \hat{r} = aba\bar{b}$

Example: $S^1 \vee D^2 = (a,b:r), \hat{r} = b$

Example: $S^1 \vee S^1 \vee S^2 = (a,b:r), \hat{r} = 1$

Example: $S^2 \vee S^2 = (\emptyset : r_1, r_2), \hat{r_1} = 1, \hat{r_2} = 1$

The Geometry of the Tietze Moves

 Tietze 1 attaches a 2-cell 5 and a free edge Y

 $T_1: (\underline{\underline{x}}:\underline{\underline{r}}) \mapsto (\underline{\underline{x}} \cup y:\underline{\underline{r}} \cup s), \hat{s} = y\xi^{-1}, \xi \in F(\underline{\underline{x}})$

Thus, T_1 is a simple homotopy operation; and therefore preserves homotopy type.

• Tietze 2 attaches a 2-cell 5.

$$T_2: (\underline{\underline{x}}:\underline{\underline{r}}) \mapsto (\underline{\underline{x}}:\underline{\underline{r}}\cup s), \hat{s} \in Cons(\underline{\underline{r}})$$

Thus, T_2 does $\underline{\text{NOT}}$ necessarily preserve homotopy type !

A Paradox ?

Paradox: The Wirtinger presentation actually represents the 3-D knot exterior X as a 2-D CW complex. The sole 3-cell in the exterior X has been omitted !!!

<u>The usual "fix"</u>: The Wirtinger presentation has one too many generators. So an unnecessary relator is tossed out by applying a Tietze 2 move.

Fortunately, in this particular case, the Tietze 2 move preserves the homotopy type because there is a simpe homotopy type move on the 3-D complex collapsing the 3-D complex to the same resulting 2-D complex

Observation

The 3-cell in X corresponds to an identity I among the relators, namely:

 $I \xrightarrow{\hat{I}} \hat{I} = r_1 r_2 r_3 \xrightarrow{\hat{I}} cb\overline{ca} \cdot ac\overline{ab} \cdot ba\overline{bc} = 1$

Where does this identity "live"?

Groups with Operators

<u>Def.</u> Let H and G be groups. The group G is said to be an H-group provided there exists a morphism $H \to Aut(G)$ of H into the group Aut(G) of automorpisms of G.

Free $F(\underline{\underline{x}})$ -groups

is the smallest normal subgroup of $F(\underline{x} \cup \underline{t})$ containing \underline{t} .

It immediately follows that $\mathfrak{F}_{F(\underline{x})}(\underline{t})$ is invariant under the conjugation action of $F(\underline{x})$.

Free $F(\underline{\underline{x}})$ -groups

Thus, the elements of $\mathfrak{F}_{F\left(\underline{x}\right)}\left(\underline{t}\right)$ are of the form:

$$\prod_{\alpha} t^{w_{\alpha}}_{j(\alpha)}$$

where $t_{j(\alpha)}^{w_{\alpha}} = w_{\alpha} \cdot t_{j(\alpha)} \cdot w_{j(\alpha)}^{-1}$

Note. This conjugation action is a <u>left</u> action.

Wirtinger Hyper Presentation

The Wirtinger 3-D CW decomposition of the exterior X is nothing more than the non-abelian free resolution:

$$G \stackrel{\nu}{\longleftarrow} F(a,b,c) \stackrel{\hat{}}{\longleftarrow} \mathfrak{F}_F \left(r_1, r_2, r_3 \right) \stackrel{\hat{}}{\longleftarrow} \mathfrak{F}_F \left(I \right)$$

$$cb\overline{ca} \stackrel{\hat{}}{\longleftarrow} r_1$$

$$ac\overline{ab} \stackrel{\hat{}}{\longleftarrow} r_2$$

$$ba\overline{bc} \stackrel{\hat{}}{\longleftarrow} r_3$$

Please note that $^2 = 1$ and $v^{\wedge} = 1$.

Wirtinger Hyper Presentation

$$G \stackrel{\vee}{\longleftarrow} F(a,b,c) \stackrel{\wedge}{\longleftarrow} \mathfrak{F}_F(r_1,r_2,r_3) \stackrel{\wedge}{\longleftarrow} \mathfrak{F}_F(I)$$

We denote the above non-abelian free resolution more cryptically as

$$(a,b,c:r_1,r_2,r_3:I)$$

and call it a hyper presentation.

Wirtinger Hyper Presentation

$$(a,b,c,d:r_1,r_2,r_3,r_3:I)$$

 $ad\overline{b}\overline{d} \stackrel{\wedge}{\longleftarrow} r$

Terminology for Hyper Presentations

The current names identities, identities of identities, identities of identities of identities, etc. are too cumbersome. So we are forced to adopt the following terminology:

Hyper Tietze Moves

There is only one hyper Tietze move for each order, namely:

 $n-th order hyper Tietze move : T_n$

$$T_n: \left(\cdots: \underline{r}^{(n)}: \underline{r}^{(n+1)}:\cdots\right) \mapsto \left(\cdots: \underline{r}^{(n)}\cup\sigma: \underline{r}^{(n+1)}\cup\tau:\cdots\right)$$

$$\hat{\sigma} = \sigma \xi^{-1}$$

where $\hat{\tau} = \sigma \xi^{-1}$ and $\hat{\sigma} = \hat{\xi}$

and where $\xi \in \mathfrak{F}_F\left(\underline{r}^{(n)}\right)$

Hyper Presentation Equivalence

The definition of hyper presentation equivalence is a straight forward exercise for the audience. So is the proof of the following theorem:

Theorem: Two hyper presentations are equivalent iff there is a finite sequence of hyper Tietze moves that transform one into the other.

The Geometry of Hyper Presentations

Proposition. Up to renaming and reordering, there exists a one-to-one correspondence between the set of finite hyper presentations and a set of monopointed CW-complexes.

$$\left(\underline{\underline{x}}:\underline{\underline{r}}:\underline{\underline{r}}^{(3)}:\underline{\underline{r}}^{(4)}:\cdots\right) \leftrightarrow K\left(\underline{\underline{x}}:\underline{\underline{r}}:\underline{\underline{r}}^{(3)}:\underline{\underline{r}}^{(4)}:\cdots\right)$$

The hyper Tietze moves correspond to simple homotopy moves on the associated CWcomplexes.

Moreover, two hyper presentations define CW complexes of the same simple homotopy type iff there is a finite sequence of Tieze moves which transforms one into the other.

The Geometry of the Fox Free Calculus

Let
$$\mathfrak{P} = \left(\underline{\underline{x}} : \underline{\underline{r}}^{(2)} : \underline{\underline{r}}^{(3)} : \cdots : \underline{\underline{r}}^{(n)}\right)$$

be a hyper presentation, and let

$$K = K(\mathfrak{P})$$

be the corresponding CW-complex.

Let $G = \pi_1(K)$ the fundamental group of K.

Let $\nu: F(\underline{\underline{x}}) \to G$ be the epimorphism associated with $(\underline{x}:\underline{r}^{(2)})$

Finally, let $\mathbb{Z}G$ be the group ring of G over the integers \mathbb{Z}

The Geometry of the Fox Free Calculus

Let \widetilde{K} be the universal cover of K , and let $\widetilde{\widetilde{K}} = \widetilde{K} \times Ker \nu$ be the non pathwise connected space above \widetilde{K} .

We now use the Fox free derivatives to construct a chain complex $C_* = C_*\left(\widetilde{\widetilde{K}}\right)$

Hence,
$$H_*\left(\widetilde{\widetilde{K}}\right) = H_*C_*$$

Moreover, $H_*(\widetilde{K}) = H_*(\mathbb{Z}G \otimes_{\mathbb{Z}F} C_*)$

The Geometry of the Fox Free Calculus

The chain groups are defined as follows:

- The 0-th chain group $C_0 = C_0(\infty)$ is defined as the free $\mathbb{Z}F$ -module generated by the 0-cell ∞ .
- For n > 0, the n-th chain group $C_n = C_n\left(\underline{\underline{R}}^{(n)}\right)$ is defined as the free $\overline{\mathbb{Z}}F$ -module generated by the set of n-cells $\underline{R}^{(n)}$.

The Geometry of the Fox Free Calculus

The boundary morphisms are defined as follows:

- For n = 0, $\begin{pmatrix} C_0(\infty) & \longleftarrow & C_1(\underline{X}) \\ (x_j 1)\infty & \longleftarrow & X_j \end{pmatrix}$
- For n > 0 , $C_{n-1} \left(\underline{\underline{R}}^{(n-1)} \right) \quad \stackrel{\partial}{\longleftarrow} \quad C_{n} \left(\underline{\underline{R}}^{(n)} \right)$ $\sum_{k} \left(\frac{\partial \hat{r}_{j}^{(n)}}{\partial r_{k}^{(n-1)}} \right) R_{k}^{(n-1)} \quad \longleftarrow \quad R_{k}^{(n)}$

Where the Fox Free derivatives $\partial / \partial x_j$ are geometrically defined as follows:

Recall
$$\mathfrak{P} = \left(\underline{x} : \underline{r}^{(2)} : \underline{r}^{(3)} : \cdots : \underline{r}^{(n)}\right)$$
 and $K = K(\mathfrak{P})$.

If, for example, $r \in \underline{r}^{(2)}$ with $\hat{r} = x_1 x_2 x_1 x_3$, then the corresponding 2-cell R in \widetilde{R} is

$$x_1 x_2 \infty \qquad x_1 X_2 \qquad x_1 \infty \qquad x_1 \times x_2 \qquad x_1 \times x_1 \times x_1 \qquad x_1 \times x_2 \times x_1 \times x_1 \qquad x_1 \times x_2 \times x_1 \times x_1 \qquad x_1 \times x_2 \times x_1 \times x_2 \qquad x_1 \times x_2 \times x_1 \times x_3 \qquad x_2 \times x_1 \times x_3 \qquad x_3 \times x_1 \times x_2 \times x_1 \times x_3 \qquad x_1 \times x_2 \times x_1 \times x_3 \qquad x_2 \times x_1 \times x_3 \qquad x_3 \times x_1 \times x_2 \times x_1 \times x_3 \qquad x_1 \times x_2 \times x_2 \times x_1 \times x_2 \times$$

If, for example, $u \in \underline{\underline{r}}^{(3)}$ with $\hat{u} = r_1^{x_1} r_2^{x_3} \overline{r}_1^{x_1 x_3}$, then the boundary chain map of the corresponding 3-cell U in \widetilde{K} is:

$$\partial U = \left(x_1 - \hat{r}_1^{x_1} \hat{r}_2^{x_3} x_1 x_3 \hat{r}\right) R_1 + \hat{r}_1^{x_1} x_3 R_2$$
$$= \left(\frac{\partial \hat{u}}{\partial r_1}\right)^{\hat{n}} R_1 + \left(\frac{\partial \hat{u}}{\partial r_2}\right)^{\hat{n}} R_2$$

2-Knots

Various Placement Problems

• 3-D Knot Theory

$$k:S^1 \to S^3$$
 1-Knot (S^3, kS^1)

• 4-D Knot Theory

$$k: S^2 \to S^4$$
 2-Knot (S^4, kS^2)

• 5-D Knot Theory

$$k: S^3 \to S^5$$
 3-Knot (S^5, kS^3)

4-D Analog of the Apspericity of Knots?

For 1-knots, asphericity implies the exterior X is an Eilenberg-MacLane space, i.e.,

$$X = K(\pi_1 X, 1)$$

Question. Want can be said about analog of Papa's asphericity theorem for 2-knots?

4-D Analog of the Apspericity of Knots?

<u>Def.</u> A 2-knot (S^4, kS^2) is said to be <u>quasi-aspherical</u> (QA) if the third homology group of the universal cover of its exterior vanishes.

Theorem. (Lomonaco) If (S^4, kS^2) is QA, then the homotopy type of its exterior X is determined by its algebraic 3-type, i.e., by the triple consisting of:

- $\pi_1 X$
- $\pi_2 X$ as a $\mathbb{Z} \pi_1 X$ -module
- The first k-invariant kX lying in $H^3(\pi_1X;\pi_2X)$

The Cross sectional Approach to 2-Knots

Midsection Moves on 2-Knots

Reidemeister Moves
$$R_1: \begin{picture}(20,20) \put(0,0){\line(1,0){130}} \put(0,0){\line(1,0){130$$

Yoshikawa Moves

 $S_1: X \Leftrightarrow X$

 $S_2: \times \times \leftrightarrow \times \times$

 $S_3: \mathcal{A} \iff \cap$

 $S_4: \longrightarrow \longleftrightarrow \longrightarrow$

 $S_{5}: \longrightarrow \bigcirc$

The Geometry of Group Presentations

<u>Theorem(Yoshikawa)</u>. The Reidemeister and Yoshikawa moves on the midsection representation of a 2-knot preserve knot type.

Theorem(Swenton/Keartin/Kurlin). Two 2-knot midsections represent the same 2-knot iff there is a finite sequence of Reidemeister and Yoshikawa moves which transforms one into the other.

The Wirtinger Hyper Presentation of 2-Knots ???

Ongoing Research Program

This talk is a description of an ongoing research program which is best summarized by the following two questions:

Objective 1

Let X be the exterior of a 2-knot $\left(S^4,kS^2\right)$, and let X_0 denote a midsection.

Construct an algorithm that computes from the midsection X_0 a presentation of $\pi_2 X$ as a $\mathbb{Z} \pi_1 X$ -module that is as efficient and as easy to compute as the Wirtiger presentation.

Objective 2

Do the same for the k-invariant:

 $kx \in H^3\left(\pi_1 X; \pi_2 X\right)$

Conjecture

The baseball generators form a complete set of generators for $\pi_2 X$ as a $\mathbb{Z} \pi_1 X$ module.

Theorem (Lomonaco): Let X be the exterior of a 2-knot (S^4,kS^2) , and let X_0 denote a midsection. Moreover, let $H = Ker(\pi_1X_0 \to \pi_1X_U \times \pi_1X_D)$ Then $\pi_2X \cong \pi_1X_0 / [H,H]$ Observation: Let baseball curve β is an element of the kernel H which does not lie in the commutator group [H,H]

More to come

There is also an algorithm reading off the relators which is conjectured to be complete. But there is not enough time left to explain it.

This talk based on:

Lomonaco, Samuel J., Jr., <u>Five dimensional kno</u>t <u>theory</u>, in "Low Dimensional Topology, AMS CONM/20, Providence, Rhode Island, (1984), pp 249 - 270

Lomonaco, Samuel J., Jr., <u>The homotopy groups of knots</u>
<u>I. How to compute the algebraic 3-type</u>, Pacific Journal of Mathematics, Vol. 95, No. 2 (1981), pp 349 - 390

Lomonaco, Samuel J., Jr., <u>Homology of group systems</u> with applications to low dimensional topology, Bulletin of the American Mathematics Society, Vol. 13, No. 3 (1980), pp 1049 - 1052.

Lomonaco, S.J., Jr., <u>The second homotopy group of a spun knot</u>, Topology, Vol. 8 (1969), pp 95 - 98

And also based on:

Fox, R.H., A quick trip through knot theory, in "Topology of 3-Manifolds and Related Topics," ed. by M.K. Fort, Jr., Prentice-Hall, Englewoods Cliffs, New Jersey, (1962), 120-167.

Kearton, C. & V. Kurlin, All 2-dimensional links in 4-space live inside a universal polyhedron, Alg. Geom. Top, 8, (2008), 1223-1247.

Swenton, Frank J., On a calculus for 2-knots and surfaces in 4-space, JKTR, Vol. 10, No. 08, (2001), 1133-1141.

Yoshikawa, Katsuyuki, <u>An enumeration of surfaces in fou</u>r-<u>space</u>, Osaka J. Math. 31 (1994), 497-522.

Some Other References

Artin, Emil, Zur isotopie zweidimensionaler Flachen im R4, Hamburg Abh. 4 (1925), 174-177.

Carter, J. Scott, and Masahico Saito, Reidemeister moves for surface isotopies and their interpretations as moves to movies, J. Knot Theory and Its Ramifications, 2 (1993), 251-284.

Carter, J. Scott, Masahico Saito, "Knotted Surfaces and Their

Diagrams," AMS, (1998). Fox, R.H., and J.W. Milnor, <u>Singularities of</u> 2-spheres in 4-space and equivalence of knots,

Kamada, Seiichi, <u>Surfaces in 4-Space: A view of normal forms and</u> <u>braidings,</u> in "Lectures at Knots '96," edited by Shin'ichi Suzuki, World Scientific, (1997), pp. 39-71.

Cawauchi, Akio, T. T. Shibuya, and S. Suziki, Descriptions on surfaces in four-space, I. Normal forms, Math. Sem. Notes, Kobe University, 10 (1982), 75-125.

Kawauchi, Akio, "<u>A Survey of Knot Theory</u>," Birkhauser, (1990), pp. 171-199.

Some Other References

Lomonaco, Samuel J., Jr., Finitely ended knots are quasi-aspherical, in "Algebraic and Differential Topology- Global Differential Geometry, edited by George. M. Rassias, Teubner Publishers (Leipzig), Germany, (1984), 192 - 197.

Lomonaco, Samuel J., Jr., The third homotopy group of some higher dimensional knots, in "Knots, Groups, and 3-Manifolds," (L.P. Neuwirth, ed.), Annals of Math Studies, 84, Princeton Univ. Press. (1975), 35 - 45.

Lomonaco, Samuel J., Jr., The fundamental ideal and Pi2 of higher <u>dimensional</u> <u>knots</u>, AMS Proc., 88, (1973), 431 - 433.

Andrews, J.J., and S.J. Lomonaco, Jr., The second homotopy group of spun 2-spheres in 4-space, Annals of Math., 90 (1969), pp 199 - 204. Lomonaco, S.J., Jr., The second homotopy group of a spun knot, Topology, Vol. 8 (1969), pp 95 - 98.

Roseman, Dennis, Reidemeister type moves for surfaces in four space

Roseman, Dennis, <u>Projections of knots</u>, Fund. Math. 89 , no. 2, (1975), pp. 99-110.