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The Fox
Free Calculus

Algebraic Def. of Fox Free Derivative 0/0x;

Let G be a group, and let Z G denote
the corresponding group ring over the
ring of integers 7, .

Def. A derivative ] on a group ring ZG
is defined as a map

D:7ZG —>ZG
satisfying the following condition:
1) D(o, +w,)=Da, + Do,
2) D(ww,)=(Dw,)o;+o Do,

where °:7.G — 7, is the trivializer
morphism which maps each element of G

to 1 of Z

Algebraic Def. of Fox Free Derivative 0/0x;

Def.(Cont.) Let G be the free groupF(é) .
Then to each free generator X; € X , there
corresponds a unique derivative

D.=0/0x,
J J
in ZF (g) called the derivative with
respect to X; , which has the property
Ox;

——=0; (Kronecker delta)
Ox;

J

Immediate consequence of the def of 0/0x;

But Where is
the

Geometry
2??

Let
: wl,wzeF(é)
then
5 ()20 L)
X ox; ox;

The Search
for Geometry




Knot Theory

Various Placement Problems

® 3-D Knot Theory
k:S'—> S8 [1-Knot (5°,kS")]

® 4-D Knot Theory
k:8*—8* [2-Knot (5*,kS7)]

® 5-D Knot Theory
k:S*—> 8 |3-Knot (5°kS%))

3-D Knot Theory

[The Fundamental Group ,(X) |

[Knot Exterior X = S° — SmallOpenTubularNbd (kS") |

® Fundamental Group 7,(X)= Knot Invariant

® Asphericity of Knots (Papakyriakopoulos)
=>X=K(7,X,1). .7z,X=0forn>1

[The Wirtinger Presentation |

(a,b,c:r,rz,r)

(ol ly

[Genera?ors] [Relators ]

[ Group Presentations

Question: When do two presentations
represent the same group ?




+1

Tietze Transformations: 7. T

2

7
Tietze 1: (é‘i)_’(éuﬁius) , where
¥ is a new symbol, and

s=p&, with §eF(§)

Tietze 2: (é:g)g(ézgus) , where

m
° seCons(g) , i.e., s=Hr;;”a) , with
a=1

o wmeF(x) | 0Sasm, o

=i
Vi=Wal jjoyWa

[ Group Presentations

Question: When do two presentations
represent the same group ?

Theorem (Tietze): Two group presentations
represent the same group iff there exists a
finite sequence of Tietze transformations
which transforms one into the other.

[The Geometry of Group Presentations

Def. An abstract Group presentation
consists of two sets

X , the set of generators,

I , the set of relators,
together with an evaluation map

A:g—)F(é)

from the set of relators I into the free
group F( x) on the set of symbols X .

[The Geometry of Group Presentations

Example: (aabsc”’v”zsrs) , Where

-~ =il il
r,=cbhc™a
~ =il =il
r=aca b
- -1 -1
rs=bab ¢

[The Geometry of Group Presentations

Def. A CW-complex is said to be
monopointed it it has only one O-cell.

Proposition. Up to renaming and
reordering, there exists a one-to-one
correspondence between the set of
abstract group presentations and a set
of monopointed 2-D CW-complexes.

(x:r) e K(x:1)

[The Geometry of Group Presentations

The CW-complex K (’:“i’) is constructed
with an initial O-cell, denoted by 0 , and
then iteratively attaching cells as follows:

1-cells: For each generator X; € X | adjoin
an oriented 1-ceIIX_,- by attaching
both endpoints to the sole O-cell o0 .

2-cells: For each relator 7, €I | adjoin an
oriented 2-cell y, with attaching
map .,




Example: 7o5us = (a,b g r),; = abab

Example: Rp?— (a,b g r),; = abab

Example: ¢!\, p? =(a,b:r),;‘ =b

[The Geometry of the Tietze Moves|
® Tietze 1 attaches a 2-cell S and a free
edge Y
T, :(é:g)l—)(éuyzgus),;=y§"',§e F(ch)

Thus, T, is a simple homotopy operation;
and therefore preserves homotopy type.

Example: §'y §'v §? =(a,b:r),r =1

Example: §*\/ §* =(®:r1,r2),;’; = 1,’?2 =1

® Tietze 2 attaches a 2-cell S.
T, :(é:g)l—)():czgus),;eCons(ﬁ)

Thus, 7, does NOT necessarily preserve
homotopy type !

The Geometry of the Wirtinger Presentation

9 A [EEa

Vi

*

a b b

The 3-cell in X corresponds to an identity
I among the relators, namely:

I—>1= nnr, —" >cbca-acab-babc =1

Where does this identity “live” ?

Paradox: The Wirtinger presentation actually
represents the 3-D knot exterior X as a 2-D CW

complex. The sole 3-cell in the exterior X has been
omitted Il

The usual “fix": The Wirtinger presentation has
one too many generators. So an unnecessary
relator is tossed out by applying a Tietze 2 move.

Fortunately, in this particular case, the Tietze 2
move preserves the homotopy type because there is a
simpe homotopy type move on the 3-D complex

collapsing the 3-D complex to the same resulting 2-D
complex

{Groups with Operators |

Def. Let H and G be groups. The group
G is said to be an H-group provided there
exists a morphism [ — Aut(G) of H into
the group Aut(6) of automorpisms of 6 .




|[Free F(x) -groups|

Def. Let X and ¢ be two disjoint sets
of symbols, and let F(x) and F(xut)
denote the corresponding free groups,
respectively. The free r(x)-group on
the symbols 7 , written =

F(\)(:) 0

is the smallest normal subgroup of F (§U£)
containing ¢ .

It immediately follows that 3F(i)(i‘) is
invariant under the conjugation action of é).

|[Free F(x) -groups|

Thus, the elements of 3F(x)(£ ) are of the
form: -
1:[ t Jj(@)
w, -1

ere ‘= . .
where ¢ @ =Wa liay Wi,

Note. This conjugation action is a left
action.

The Geometry of the Wirtinger Presentation

D) 4c

|  Wirtinger Hyper Presentation |

The Wirtinger 3-D CW decomposition of
the exterior X is nothing more than the
non-abelian free resolution:

G(V—F(a,b,c)(A—gF(rl,rz,r3)<A—3F(I)
cbca(A—l’l rryr, <——1I
acab<——r,
baZE(A—r3

Please note that A2—=1 and V" =1 .

|  Wirtinger Hyper Presentation |

G<V—F(”abac)(A_3F (’i’rz’rs)(A_S:F (I)

We denote the above non-abelian free
resolution more cryptically as

(a,b,c:rl,rz,r3 :1)

and call it a hyper presentation.

| Wirtinger Hyper Presentation |

i O,




|  Wirtinger Hyper Presentation

(a,b,c,d 9 99 A A :I)

bcba«— r r'rrlr —1
cbed <—r,
daca<—r,
adbd «—r,

| Terminology for Hyper Presentations

The current names identities, identities of
identities, identities of identities of
identities, etc. are too cumbersome. So we

are forced to adopt the following terminology:

( @3, (4),_“)

1=

> IS

I~
I~

4-th
order
relators

or
1-st order
relators

generators 2-nd 3-rd
order order
relators relators

| Hyper Tietze Moves |

There is only one hyper Tietze move for
each order, namely:

n-th order hyper Tietze move : T

T :(---:1:’(") o :---)I—)(---::(") vo: ™ ur:---)

where 7= o'  and 8— = g

and where § e gF (,,("))

[  Hyper Presentation Equivalence |

The definition of hyper presentation
equivalence is a straight forward exercise
for the audience. So is the proof of the
following theorem:

Theorem: Two hyper presentations are
equivalent iff there is a finite sequence of
hyper Tietze moves that transform one into
the other.

| The Geometry of Hyper Presentations

Proposition. Up to renaming and reordering, there
exists a one-to-one correspondence between the
set of finite hyper presentations and a set of
monopointed CW-complexes.

(5:;:2(3) :g(‘” :---)(—)K({:g:ym: @ )

I~

The hyper Tietze moves correspond to
simple homotopy moves on the associated CW-
complexes.

Moreover, two hyper presentations define CW
complexes of the same simple homotopy type iff
there is a finite sequence of Tieze moves which
transforms one into the other.

[The Geometry of the Fox Free Calculus|
Let &]3=(§:£m P ("))

be a hyper presentation, and let

K= K(%)

be the corresponding CW-complex.

I~

Let G=mx, (K )'rhe fundamental group of K .

Let v: F(x — G be the epimorphism

. — 2
associated with ( x: K( )

Finally, let ZG be the group ring of G over

the integers Z




[The Geometry of the Fox Free Calculus|

Let K be the universal cover of K , and let
K = Kx Kerv _ be the non pathwise connected
space above K .

We now use the Fox free derivatives to
construct a chain complex . =C*(17)

[Hence, #.(k)=n.c.

Moreover, H*(I?) =H, (ZG ®,- C*)

[The Geometry of the Fox Free Calculus|

The chain groups are defined as follows:

® The 0-th chain group C, = C () is defined
as the free ZIF module generafed by the
0-cell o

® For n > 0, the n-th chain groupC,=C, (R””
is defined as the free ZF -module
generated by the set of n-cells R

)

[The Geometry of the Fox Free Calculus|

The boundary morphisms are defined as
follows:

®Forn=0, Cy() —— Cl(é)
(xj—l)oo <« X.

J

G E™)

A(n)

< ¢(r")

® Forn>0,

ar(n—l) Ié"_l) <« Ié”)
k

Where the Fox Free derivatives 0/ 0x,
are geometrically defined as follows:

[Cell Decompositions of kK, k|
F(x)—>G -k
T & ed () (R} (o) (i)

! ¥ 4 1 J {
o) k(& {26} &R} {eR7} {oR)
U SR N2 J J

Eremk {<} {X} (R} (R} {R'}
[0-ce|ls ][l-cells ][2-ce|ls ][3-ce|ls ][4-ce|ls ]

weF(é)

geCG

Recall &]3:( : ‘2’-5‘3’:---- ‘"’) and K=K(%) .

If, for example, r e r® withr=x,x, xn X3,
then the corresponding 2-cell R in % is

X, X,00

OR =(1—x1x2)X1 +x,X, —x]xz;le




If, for example, uer” with u=r"r"r" then
the boundary chain map of the corresponding 3-
cell U ing is:

@y e a5 =

a A x
6U=(xl—r1 ra xlxsr)R1+r1 'X,R,

or, or,

2-Knots

Various Placement Problems

® 3-D Knot Theory
k:S'—8* [1-Knot (5°,kS")]

® 4-D Knot Theory
k:8*—>58* [2-Knot (5°,kS?)]

® 5-D Knot Theory
k:§*> 85 [3-Knot (5°k5°)]

[4-D Knot Theory (Incomplete) History |
[E. Artin - Spun Kno‘rs]

Roseman School Fox School
Knot Projecti(}@%t&oss Sections

2 Different
Approaches

[D. Roseman - Proj. Moves] [ R. Fox - Cross Sections ]

Carter & Saito - Proj. Moves] [ Lomonaco - Midsections

Swenton/Kearton/Kurlin -
Y-Moves Completeness

[4-D Analog of the Apspericity of Knots ?|

For 1-knots, asphericity implies the exterior
X is an Eilenberg-MacLane space, i.e.,

X =K(=X,1)

Question. Want can be said about analog
of Papa’s asphericity theorem for 2-knots?

[4-D Analog of the Apspericity of Knots ?|

Def. A 2-knot (S4aksz) is said to be quasi-
aspherical (QA) if the third homology group of
the universal cover of its exterior vanishes.

Theorem. (Lomonaco) If gs 4,kS 2) is QA,
then the homotopy type of its exterior X is
determined by its algebraic 3-type, i.e., by
the triple consisting of:

e mX

* 7,X asa Zm, X -module

® The first k-invariant kX lying in

H (7, X;7,X)




The Cross sectional
Approach to 2-Knots

[Edwin Abbott's Flatland|
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The Midsection
Representation
2-Knots

Reducing

4-D Knot Theory
to
3-D Knot Theory

[Edwin Abbott's Flatland|
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[ Midsection Labeling Scheme |

Labeled Hyperbolic Poi
abeled Hyperbolic Point > < t<0

Meaning

>< t=0
XX

Labeled Hyperbolic Point v

t<0
aN

Meaning

[ Midsection Representation of a 2-sphere |

[ Midsection Rep of a Spun Trefoil |

c ™ b

20>

mK=(ab: abab 'a ' =1
TLK S (ay, : (1-atba)du, = 0)

H3(mKin,K) =0 and kK=0

Midsection of (s*.krP?) |
A

a

b

Midsection
Moves on
2-Knots

[Reidemeister Moves|

R: Q= N
R,: ;reDC

Ryt A =7

11



[Yoshikawa Moves |

wn

-
.

7 =

X ="

W
"

S S S -
L Qe A
o5

S, : x@:%yc%

L ¥

[The Geometry of Group Presentations

Theorem(Yoshikawa). The Reidemeister
and Yoshikawa moves on the midsection
representation of a 2-knot preserve knot
type.

Theorem(Swenton/Keartin/Kurlin). Two 2-
knot midsections represent the same 2-knot
iff there is a finite sequence of Reidemeister
and Yoshikawa moves which transforms one
into the other.

The Wirtinger Hyper
Presentation of
2-Knots ?2??

3
*s,
%
S
*e
*

[The Geometry of Group Presentations|

[The Geometry of Group Presentations|

12



[ The Geometry of Group Presentations

(sre) A

a

[ The Geometry of Group Presentations

Ongoing
Research
Pr'ogr'am

This talk is a description of an ongoing
research program which is best summarized
by the following two questions:

Objecﬂve 1

Let X be the exterior of a 2-knot S4,kS2),
and let X 0denofe a midsection.

Construct an algorithm that computes from
the midsection X  a presentation of 7,X
as a Zm, X -module that is as efficient
and as easy to compute as the Wirtiger
presentation.

Objective 2

Do the same for the k-invariant:

kxe H’® (ﬂ']X;ﬂ'ZX)

13



Conjecture

The baseball generators form a complete
set of generators for 7,X asa Zz X
module.

Baseball Seam

Tt

OFFICIAL |
LEAGLE -?

w\\»}»yﬂ

oo
L b ’:-.,Qy

Baseball Generator 5

%

Y

e

Baseball Seam

a 2-knot ( S*.kS?), and let X, denote a
midsection. Moreover, let

H = Ker(ﬂlX > 7 Xy x7r1XD)
Then

Theorem omonaco} LetX be the exterior of

mX=zmX,/[H,H]

Observation: Let baseball curve 3 is an
element of the kernel H meh does_not

lie in the commutator group )

R's & I's € Saddle Pt|

UpSection:
UP-R'S: hur =ab,hwg =cd . .
Up-Id's: ;U = hy, 'hz';'z 1_ — f
Mlcliv‘ ﬁe'czflon jXI
id-R:
=adch ; / \c

Down-Section:
Down-R's: hpr=ad hpr =cb
Down-Id's: 7 =hy, hy,h

14



a\ o
[R's & I's €> Saddle Pt | 1_ . )V

MW,

UpSection:
Up-R's: 1y & hyy €3 2_cells (Attached)
Up-Id's: T,
v &> 3-cell (Attached)
Mid-Section:
Mid-R: h €> 2-cell

Down-Section:
Down-R's: h, &h,, €-> 2-cells (Attached)

Down-Id's: [~ &3 3_cell (Attached)

[Baseball 2-Cycle|
B=bcdae Ker(;z'lX0 - X, ><7r1XD)

4 K- 1\

The baseball identity I, does NOT correspond
to a 3-cell in the knot exterior.

The baseball identity is:
To=Hh b, ho-hor

Hence, Iz corresponds to a non-bounding 2-
cycle in the universal covering of the knot
exterior.

SN

C

More to come

There is also an algorithm reading
off the relators which is conjectured
to be complete. But there is not
enough time left to explain it.

Tune in for the next
exciting episode Il
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