STUDY PROBLEMS FOR EXAM 2 CMSC 203 FALL 2007 DISCRETE STRUCTURES VERSION: NOVEMBER 18, 2007

DR. LOMONACO

1. Use the principle of mathematical induction to prove that

$$P(n): \sum_{j=1}^{n} j^2 = \frac{n(n+1)(2n+1)}{6},$$

for all integers $n \geq 1$.

Answer:

Proof (by weak induction):

Basis Step: P(n) is true for n = 1, for:

$$\sum_{j=1}^{1} j^2 = 1^2 = 1 = \frac{1(1+1)(2 \cdot 1 + 1)}{6}$$

Inductive Hypothesis: Assume for a fixed but arbitrary integer $k \ge 1$ that P(k) is true, i.e., that

$$\sum_{j=1}^{k} j^{2} = \frac{k(k+1)(2k+1)}{6}$$

Inductive Step: We wish to use the Inductive Hypothesis to show that P(k+1) is true, i.e., that

$$\sum_{j=1}^{k+1} j^2 = \frac{(k+1)\left[(k+1)+1\right]\left[2\left(k+1\right)+1\right]}{6}$$

[We start with the left hand side and transform it using the inductive hypothesis into the right hand side.]

$$\sum_{j=1}^{k+1} j^2 = \left(\sum_{j=1}^k j^2\right) + (k+1)^2$$
Reason: Basic algebra

$$= \frac{k(k+1)(2k+1)}{6} + (k+1)^2$$
Reason: Ind. Hypoth. & substitution

$$= \frac{k(k+1)(2k+1)+6(k+1)^2}{6}$$
Reason: Basic algebra

$$= \frac{(k+1)}{6} [k(2k+1)+6(k+1)]$$
Reason: Basic algebra

$$= \frac{(k+1)}{6} [2k^2+k+6k+6]$$
Reason: Basic algebra

$$= \frac{(k+1)}{6} (2k^2+7k+6)$$
Reason: Basic algebra

$$= \frac{(k+1)}{6} (k+2) (2k+3)$$
Reason: Basic algebra

$$= \frac{(k+1)[(k+1)+1][2(k+1)+1]}{6}$$
Reason: Basic algebra

$$= \frac{(k+1)[(k+1)+1][2(k+1)+1]}{6}$$
Reason: Basic algebra

Thus, we have used the inductive hypothesis to prove that

$$\sum_{j=1}^{k+1} j^2 = \frac{(k+1)\left[(k+1)+1\right]\left[2\left(k+1\right)+1\right]}{6}$$

Magic Wand Step: By the P.M.I.,

$$\sum_{j=1}^{n} j^{2} = \frac{n(n+1)(2n+1)}{6} \text{ for all } n \ge 1$$

Q.E.D.

2. Use the principle of mathematical induction to prove that

$$\prod_{j=2}^{n} \left(1 - \frac{1}{j^2}\right) = \frac{n+1}{2n}$$

for all integers $n \geq 2$.

3. Let d_1, d_2, d_3, \ldots be the sequence defined by

 $d_j = d_{j-1} \cdot d_{j-2}$ for all integers $j \ge 3$

and

$$d_1 = \frac{9}{10}$$
 and $d_2 = \frac{10}{11}$

Use math induction to prove that

 $P(n): d_n \leq 1$ for all integers $n \geq 1$.

Proof (by strong induction):

Basis Step: Both P(1) and P(2) are true, for:

$$\begin{cases} d_1 = \frac{9}{10} \le 1 & \text{Reason: Definition of } d_1 \\ d_2 = \frac{10}{11} \le 1 & \text{Reason: Definition of } d_2 \end{cases}$$

Inductive Hypothesis: Assume for a fixed but arbitrary integer k > 2 that $P(\ell)$ is true for $1 \le \ell < k$, i.e., that

$$d_{\ell} \leq 1 \text{ for } 1 \leq \ell < k$$

Inductive Step: We wish to use the Inductive Hypothesis to show that P(k+1) is true, i.e., that

$d_k \leq 1$							
	$d_k = d_{k-1} \cdot d_{k-2}$	Reason:	Definition of d_k				
But	$d_{k-1} \leq 1$ and $d_{k-2} \leq 1$	Reason:	Ind. Hypoth.				
thus,	$d_k \leq 1$	Reason:	Basic algebra				

Magic Wand Step: Hence, by. the P.M.I.,

$$d_n \leq 1$$
 for $n \geq 1$

Q.E.D.

4. Let e_0, e_1, e_2, \ldots be the sequence defined by

$$e_j = e_{j-1} + e_{j-2} + e_{j-3}$$
 for all integers $j \ge 3$

and

$$e_0 = 1, \quad e_1 = 2, \quad e_2 = 3$$

Use math induction to prove that $e_n \leq 3^n$ for all integers $n \geq 0$.

5. Simplify the following product as much as possible

$$\prod_{j=1}^{n} \left(2 \cdot 4^{j} \right)$$

The answer is

$$\prod_{j=1}^{n} \left(2 \cdot 4^{j}\right) = \left(\prod_{j=1}^{n} 2\right) \cdot \left(\prod_{j=1}^{n} 4^{j}\right) = 2^{n} \cdot 4^{\sum_{j=1}^{n} j}$$

But $\sum_{j=1}^{n} j$ is the arithmetic series. Hence, $\sum_{j=1}^{n} j = n(n+1)/2$. Thus, $\prod_{j=1}^{n} (2 \cdot 4^{j}) = 2^{n} \cdot 4^{\sum_{j=1}^{n} j} = 2^{n} \cdot 4^{n(n+1)/2} = 2^{n} \cdot 2^{2[n(n+1)/2]} = 2^{n} \cdot 2^{n(n+1)} = 2^{n^{2}+2n}$ 6. Simplify the following sum as much as possible

$$\sum_{j=0}^{n} \left(2+4k\right)$$

The answer is

$$\sum_{j=0}^{n} (2+4k) = \sum_{j=0}^{n} 2 + \sum_{j=0}^{n} 4k = 2(n+1) + 4\sum_{j=0}^{n} k = 4 \cdot \frac{n(n+1)}{2} = 2n(n+1)$$

7. Transform the following product by making the change of variable i = k+1

$$\prod_{k=1}^{n} \frac{k}{k^2 + 4}$$

The answer is:

$$\prod_{k=1}^{n} \frac{k}{k^2 + 4} = \prod_{i=2}^{n+1} \frac{i-1}{(i-1)^2 + 4} = \prod_{i=2}^{n+1} \frac{i-1}{i^2 - 2i + 5}$$

8. Simplify the following product as much as possible

$$\prod_{j=2}^{5} \frac{(j-1) \cdot j}{(j+1) \cdot (j+2)}$$

The answer is:

$$\prod_{j=2}^{5} \frac{(j-1) \cdot j}{(j+1) \cdot (j+2)} = \left(\frac{1 \cdot 2}{3 \cdot 4}\right) \cdot \left(\frac{2 \cdot 3}{4 \cdot 5}\right) \cdot \left(\frac{3 \cdot 4}{5 \cdot 6}\right) \cdot \left(\frac{4 \cdot 5}{6 \cdot 7}\right)$$

which simplifies to

$$\frac{1}{3\cdot 5\cdot 7} = \frac{1}{105}$$

9. Let R be the binary relation on $\{0, 1, 2\}$ defined by

$$R = \{ (0,1), (1,2), (2,0) \}$$

Compute:

a) $R^2 = R \circ R$ b) $R^3 = R \circ R \circ R$ c) $R^4 = R \circ R \circ R \circ R$ d) The transive closure R^t of R

10. Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ and $g : \mathbb{R} \longrightarrow \mathbb{R}$ be functions defined respectively by

$$f(x) = 3x - 5$$
 and $g(x) = 2 - 7x$

then

a) $(f \circ g)(x) = ?$ **b)** $(f^{-1})(x) = ?$

11. Let R denote the equivalence relation on the set $\mathbb{S} = \{n \in \mathbb{Z} : |n| \le 5\}$ defined by

 $\forall m,n\in\mathbb{S}\;,\;mRn \Longleftrightarrow 3$ exactly divides m^2-n^2

List all the distinct equivalence classes of R. (List each equivalence class by writing down all the elements in that class.)

4

12. Let $f : \mathbb{R} - \{0\} \longrightarrow \mathbb{R}$ be the function defined by

$$f(x) = \frac{x+1}{x}$$

Is f injective? Please explain your answer.

13. Let $g: \mathbb{R} - \{-1\} \longrightarrow \mathbb{R}$ be the function defined by

$$g(x) = \frac{x-1}{x+1}$$

Is g surjective? Please explain your answer.

14. Let R_1 be the binary relation defined on \mathbb{R} as follows:

For all
$$x, y \in \mathbb{R}, xR_1y \iff xy \ge 0$$

Is R_1 reflexive? Is it symmetric? Is it transitive? Is it antisymmetric? Please explain your answers.

15. Let A be a nonempty set, and let $\mathcal{P}(A)$ be the power set of A. Define a relation R_2 on $\mathcal{P}(A)$ as follows:

For all $X, Y \in \mathcal{P}(A), XR_2Y \iff X \neq Y$

Is R_2 reflexive? Is it symmetric? Is it transitive? Is it antisymmetric? Please explain your answers.

16. On the set $\{0, 1, 2, 3, 4\}$ consider the equivalence relation

 $R = \{ (0,0), (0,4), (1,1), (1,3), (2,2), (3,1), (3,3), (4,0), (4,4) \}$

List all the distinct equivalence classes of R

17. Let

$$f: A \longrightarrow B$$
 and $g: B \longrightarrow A$

be functions such that

 $g \circ f = id_A$

where $id_A : A \longrightarrow A$ is the identity function on A. Prove that f is injective, i.e., one-to-one.

Hint: First give the definition of an injective function, and then use your definition to prove that f is injective.

18. Let f, g, h, k be functions from the set $S = \{1, 2, 3, 4\}$ to itself repectively defined by

S	$\stackrel{f}{\longrightarrow}$	S	$S \xrightarrow{g}$	S S	$ \xrightarrow{h} S $	S	\xrightarrow{k}	S
1	\longmapsto	2	$1 \longrightarrow$	2 1	\longmapsto 4	1	\longmapsto	2
2	\longmapsto	1	$2 \longrightarrow$	2 2	$\longmapsto 2$	2	\longmapsto	1
3	\longmapsto	3	$3 \longrightarrow$	4 3	\mapsto 3	3	\longmapsto	4
4	\longmapsto	4	$4 \longrightarrow$	3 4	\longmapsto 4	4	\longmapsto	3

a) Is f injective? Why?

b) Is f surjective? Why?

c) Is g onto? Why?

DR. LOMONACO

d) Is g one-to-one? Why?

e) Is h is one-to-one? Why?

f) Is k a bijection? Why?

g) Does the inverse function $k^{-1}: S \longrightarrow S$ exist? Why?

h) Is $f \circ k$ a bijection? Why?

i) Compute $(f \circ g \circ h \circ k)(2)$

Answer: Since

S	$\stackrel{k}{\longrightarrow}$	S	$\stackrel{h}{\longrightarrow}$	S	$\overset{g}{\longrightarrow}$	S	$\stackrel{f}{\longrightarrow}$	S
2	\longmapsto	1	\longmapsto	4	\longmapsto	3	\longmapsto	3

it follows that $(f \circ g \circ h \circ k)(2) = 3$

j) Compute $(f \circ g)(1)$. Please show how you computed your answer. **k)** Compute $(g \circ f)(1)$. Please show how you computed your answer.

19. Find the unique integer x in $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$ such that

 $7x = 1 \,(\mathrm{mod}\,11)$

20. Find the unique integer x in $\{0, 1, 2, 3, 4, 5, 6, 7, 8\}$ such that $(723)^2 \cdot (16756) = x \pmod{9}$

 $\mathbf{6}$