Therefore,

$$ab=0$$
 ,

either a=0 and/or b=0.

But a and b are arbitrary.

A Contradiction!

No Cloning Theorem

Definition. Let $\mathcal H$ be a Hilbert space. Then a quantum replicator consists of an auxiliary Hilbert space $\mathcal H_A$, a fixed state $\left|\psi_\#\right>\in\mathcal H_A$ (called the initial state of replicator), and a unitary transformation

$$U: \mathcal{H}_A \otimes \mathcal{H} \oplus \mathcal{H} \longrightarrow \mathcal{H}_A \otimes \mathcal{H} \oplus \mathcal{H}$$

such that, for some fixed state $|blank\rangle \in \mathcal{H}$,

$$U\left|\psi_{\#}
ight
angle\left|a
ight
angle\left|blank
ight
angle=\left|\psi_{a}
ight
angle\left|a
ight
angle\left|a
ight
angle$$
 ,

for all states $|a\rangle\in\mathcal{H}$, where $|\psi_a\rangle\in\mathcal{H}_A$ (called the replicator state after replication of $|a\rangle$) depends on $|a\rangle$.

Key Idea

Key Idea. Cloning is inherently non-linear, whereas, quantum mechanics is inherently linear. Ergo, quantum replicators do not exist.

Quantum Mechanics from the Two Perspectives

Kets ψ⟩	Density Ops. $ ho$	
$i\hbar \frac{\partial \psi\rangle}{\partial t} = H \psi\rangle$	$i\hbar\frac{\partial\rho}{\partial t}=[H,\rho]$	Schröd. Eq.
$ \psi_0\rangle\mapsto U \psi_0\rangle$	$ ho_0\mapsto U ho_0 U^\dagger$	Unitary Evol.
$\langle A \rangle = \langle \psi \mid A \mid \psi \rangle$	$\langle A \rangle = Trace(A\rho)$	Observ.

69

• We now have a more powerful way of representing quantum states

 Density operators are absolutely crucial when discussing and dealing with quantum noise.

Example. Consider the following state for which we have incomplete knowledge, called a **mixed ensemble**:

Ket	ψ1⟩	ψ2⟩		$ \psi_k\rangle$	$\leftarrow \left\{egin{array}{l} ext{all unit Ingth} \ ext{\& not nec.} \ ext{ } \ ext{.} \end{array} ight.$
Prob	p_1	p_2	•••	p_k	

Johnny von Neumann suggested that we use the following operator to represent this state:

$$\rho = p_1 |\psi_1\rangle\langle\psi_1| + p_2 |\psi_2\rangle\langle\psi_2| + \dots + p_k |\psi_k\rangle\langle\psi_k|$$

 ρ is called a **density operator**. It is a Hermitian positive definite operator of trace 1. For our pure ensemble:

Ket	$ \psi\rangle$
Prob	1

where

$$p_1 + p_2 + \dots + p_k = 1$$

We have incomplete knowledge of this state

$$\rho = 1 \cdot |\psi\rangle\langle\psi|$$

2

We begin by noting that U_f when restricted to the orthonormal basis $\{|y,x_1x_0\rangle\}$ is a classical permutation, i.e.,

$$|y,x_1x_0\rangle \longmapsto |y \oplus f(x_0,x_1),x_1x_0\rangle$$

0	$ 000\rangle \longmapsto 000\rangle$	0
1	$ 001\rangle \longmapsto 101\rangle$	5
2	$ 010\rangle \longmapsto 110\rangle$	6
3	$ 011 angle \longmapsto 111 angle$	7
4	$ 100\rangle \longmapsto 100\rangle$	4
5	$ 101\rangle \longmapsto 001\rangle$	1
6	$ 110\rangle \longmapsto 010\rangle$	2
7	$ 111\rangle \longmapsto 011\rangle$	3

This is the permutation

ecceccececcecceccecceccecce

which when written as the product of disjoint cycles becomes

It follows that the the corresponding permutation matrix is

which when interpreted as a unitary transformation becomes the unitary transformation U_f .

Moreover,

$$\begin{array}{c|cccc} |1\rangle & \longrightarrow & \bullet & \longrightarrow & |1\rangle \\ & |1\rangle & \longrightarrow & \bullet & \longrightarrow & |1\rangle \\ & |0\rangle & \longrightarrow & \oplus & \longrightarrow & |1\rangle \\ \hline & |011\rangle & \longmapsto & |111\rangle \end{array}$$

denotes

2 3 4 5 6 7

Example. Let U be an n-qubit unitary transformation, Then a controlled-U gate is

$$|x\rangle \longrightarrow \longrightarrow \longrightarrow \longrightarrow \qquad |x\rangle$$

$$|\overrightarrow{y}\rangle \longrightarrow n \qquad U^x |\overrightarrow{y}\rangle$$

Observation. CNOT and CNOT' can be transformed into one another by the coordinate transformation $H \otimes H$, i.e.,

In other words, if we "tilt our heads by 45 degrees," the target and control switch.

Caveat Emptor. Wiring diagrams, like matrices, are basis dependent.

Example. The SWAP gate

The n-Qubit Hadamard Transform

For the n-qubit Hadamard transform

$$H^{\otimes n} = \underbrace{H \otimes \cdots \otimes H}_{n}$$
,

we have

$$H^{\otimes n} |x\rangle = H |x_0\rangle \otimes \cdots \otimes H |x_{n-1}\rangle = \bigotimes_{j=0}^{n-1} H |x_0\rangle$$

$$= \bigotimes_{j=0}^{n-1} \frac{|0\rangle + (-1)^{x_j}|1\rangle}{\sqrt{2}} = \bigotimes_{j=0}^{n-1} \left(\sum_{z_j=0}^{1} \frac{(-1)^{x_j \cdot z_j}|z_j\rangle}{\sqrt{2}}\right)$$

$$= \frac{1}{2^{n/2}} \sum_{z_0=0}^{1} \cdots \sum_{z_{n-1}=0}^{1} (-1)^{\sum_{j=0}^{n-1} x_j z_j} |z_0\rangle \dots |z_{n-1}|$$

$$= \frac{1}{2^{n/2}} \sum_{z=0}^{2^{n}-1} (-1)^{x \cdot z} |z\rangle$$

Please note that

$$|x
angle=|x_0
angle\cdots|x_{n-1}
angle$$
 and $|z
angle=|z_0
angle\ldots|z_{n-1}
angle$

where the labels \boldsymbol{x} and \boldsymbol{z} within the kets denote respectively the integers

$$x=\sum_{j=0}^{n-1}x_j2^j$$
 and $z=\sum_{j=0}^{n-1}z_j2^j$,

and that

$$x \cdot z$$

denotes the inner product of two binary n-tuples, i.e.,

$$(x_0,\ldots,x_{n-1})\cdot(z_0,\ldots,z_{n-1})=x_0z_0+\ldots x_{n-1}z_{n-1}$$

Wiring Diagrams

of

Qubit Devices

Wiring Diagrams

Wiring diagrams are a convenient way to describe unitary transformations.

Reason. While the size of the matrix representation grows exponentially with the dimension d of the quantum system, the complexity of the wiring diagram grows only linearly with d.

Example. The NOT gate, a.k.a., the Bit Flip gate is

$$\sigma_1 = X = \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array}\right)$$

with corresponding wiring diagram

$$|x
angle \longrightarrow X \longrightarrow |x\oplus 1
angle$$

From Observables to Unitary Transfs.

Let \mathcal{O} be an observable. Then

$$U = e^{i\mathcal{O}} = \sum_{k=0}^{\infty} \frac{(i\mathcal{O})^k}{k!}$$

is a unitary transformation.

Example. Let

$$\mathcal{O} = heta \sigma_2 = heta \left(egin{array}{cc} 0 & -i \ i & 0 \end{array}
ight)$$

Then

$$U = e^{i\theta\sigma_2} = \cos(\theta)\sigma_0 + i\sin(\theta)\sigma_2$$

$$= \left(\begin{array}{cc} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{array}\right)$$

which is a rotation θ , where

$$\sigma_0 = \left(egin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}
ight)$$

In general, if

$$\mathcal{O} = \theta (a_1\sigma_1 + a_2\sigma_2 + a_3\sigma_3)$$

$$= \theta (a_1, a_2, a_3) \cdot (\sigma_1, \sigma_2, \sigma_3)$$

$$= \theta \overrightarrow{a} \cdot \overrightarrow{\sigma}$$

where

$$\overrightarrow{a} = (a_1, a_2, a_3)$$

is a unit length vector in \mathbb{R}^3 , and where

$$\overrightarrow{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$$

Then

$$e^{i\theta \overrightarrow{a} \cdot \overrightarrow{\sigma}} = \cos(\theta) \sigma_0 + \sin(\theta) (\overrightarrow{a} \cdot \overrightarrow{\sigma})$$

which is a rotation about the axis \overrightarrow{a} by the angle θ .

For this reason, $\overrightarrow{a} \cdot \overrightarrow{\sigma}$ is an infinitesimal rotation.