| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

Jian Chen%*

Department of Computer Science
Brown University

Providence, RI 02912

Doug A. Bowman
Department of Computer Science
Center for Human-Computer
Interaction

Virginia Tech

Blacksburg, VA 24061-0002

Presence, Vol. 18, No. 5, October 2009, 000—000
© 2009 by the Massachusetts Institute of Technology

Domain Specific Desigh of 3D
Interaction Techniques: An
Approach for Designing Useful
Virtual Environment Applications

Abstract

Few production virtual environment (VE) applications involve complex three-
dimensional (3D) interaction. Our long-term collaboration with architects and engi-
neers in designing 3D user interfaces (3D Uls) has revealed some of the causes:
existing interaction tasks and/or techniques are either too generic when isolated
from the application context, or too specific to be reusable. We propose a new
design approach called domain specific design (DSD) that sits between the generic
and specific design approaches, with an emphasis on using domain knowledge in
3D interaction techniques. We also describe an interaction design framework en-
compassing generic, domain specific, and application specific interaction tasks and
techniques. This framework can be used by designers to think of ways to produce
domain specific interaction techniques. We present a particular DSD method, and
demonstrate its use for the design of cloning techniques in a structural engineering
application. Results from empirical studies demonstrate that interaction techniques
produced with domain knowledge in mind outperformed other techniques by im-

proving task efficiency, work flow, and usefulness of the 3D UL

1 Introduction

A great deal of work has been done, especially in the past decade, on the
design of effective three-dimensional (3D) interaction techniques and user in-
terfaces (Uls) for virtual environments (VEs). In the mid-1990s, many interac-
tion techniques were invented for the so-called “universal tasks” of travel, ma-
nipulation, selection, system control, and symbolic input (Bowman, Kruijff,
LaViola, & Poupyrev, 2004; Foley, Wallace, & Chan, 1984; Hand, 1997).
This led to most of today’s interaction research efforts on interaction styles,
metaphors, and cognition for these tasks (Bowman et al., Plumlee & Ware,
2006; Zhai, Buxton, & Milgram, 1994).

Despite this research on 3D interaction, few production VE applications
involve complex 3D interaction. Our experience suggests that at least two bar-
riers exist. First, existing interaction tasks are generic and thus do not directly

address application scenarios; second, the generic nature of tasks leads to the

*Correspondence to jchen@cs.brown.edu.

Chen and Bowman 1

F1

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

2 PRESENCE: VOLUME 18, NUMBER 5

Figure 1. A structure built by an architect using the Virtual-SAP

application. Modeling such a large structure would be time-consuming
if not impossible using conventional 3D interaction techniques in VEs;
with our domain-specific interaction techniques, it takes less than 2

min.

design of generic interaction techniques that may be
impractical. For example, Go-Go (Poupyrev, Billing-
hurst, Weghorst, & Ichikawa, 1996) is a manipulation
technique that is generic and should be applicable to
any 3D UI. When used for modeling real-world build-
ings in a structural engineering application, however,
Go-Go is not practical when the number of building
clements exceeds a few dozen, such as the structure
shown in Figure 1.

We claim that one reason for the lack of broad useful-
ness of 3D interaction techniques is that these tech-
niques have failed to exploit domain knowledge. Most
techniques designed for universal tasks are too generic
to be practical. Design methods, such as those related to
usability engineering (UE), can be used to improve the
work flow of the 3D UI, but do not address the design
of 3D interaction techniques directly. In addition, de-

veloping 3D interaction techniques is complex and ex-
pensive, as directly migrating techniques from 2D to 3D
does not always produce usable and useful techniques
and the 3D design space is too large to investigate with-
out any guiding principles.

In this paper we propose a domain specific design
(DSD) approach that directly addresses the design of
3D interaction techniques and circumvents the limita-
tions of generic design. DSD uses domain knowledge to
structure design tasks and techniques. We also propose a
new framework that classifies interaction design into
three levels based on domain specificity, aiding in the
assessment of a technique’s reusability and design of
domain specific techniques. We describe a three step
DSD method that can be used by designers. Finally, we
present the results of several studies indicating the effec-

tiveness of the DSD approach.

2 Related Work

3D interaction is a type of human-computer inter-
action (HCI) in which tasks are performed directly in a
3D spatial context (Bowman et al., 2004). The value of
3D interactivity has been supported by much prior re-
search. For example, effective 3D interaction has been
found to improve task performance by an order of mag-
nitude over conventional 2D input for some scientific
visualization tasks (van Dam, Forsberg, Laidlaw,
LaViola, & Simpson, 2000); interactivity is also claimed
to provide better spatial understanding for training and
modeling, and to improve the user experience (Allison,
Wills, Bowman, Wineman, & Hodges, 1997).

The principal way to study 3D interaction is to design
techniques for the “universal 3D tasks” of travel, manip-
ulation, selection, system control, and symbolic input
(Bowman, Gabbard, & Hix, 2002). Research in this
area has addressed such issues as the empirical design
and evaluation of displays (Lin, Duh, Parker, Abi-
Rached, & Furness, 2002), design and comparison of
novel interaction techniques (Bowman et al., 2004),
evaluation in a specific application setting (Lin &
Loftin, 2000), and the use of constraints and various

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

Chen and Bowman 3

aids (e.g., navigation aids, Darken & Cevik, 1999; and
physical props, Ullmer & Ishii, 1997).

Another approach to studying 3D interaction is to
design a 3D UI for a specific application. For example,
Hix and her co-authors (1999) used an iterative design
method to develop a 3D UI for a military training appli-
cation. In this design method, designers uncover usabil-
ity problems through empirical studies and then tweak
(often existing) techniques to work in that situation.
Such “situated” design locates the design in a familiar
world with specific practices, artifacts, goals, and plans.
The goal, however, is to improve the overall usefulness
of'a 3D UI rather than to design interaction techniques.
In fact, it has been argued that the UE approach does
not suggest design solutions (Myers, 1994; Wolf, Rode,
Sussman, & Kellogg, 2006) and designers do not always
intend to create novel interaction techniques (Beau-
douin-Lafon, 2000; Wolf et al., 2006). To our knowl-
edge, few studies have attempted to advance design
methods for 3D interaction techniques.

Understanding of 3D interaction design is still lim-
ited. Design guidelines exist, but they are targeted
mostly at the standard universal tasks rather than real-
world task scenarios (Bowman et al., 2004; Gabbard,
1997, Kalawsky, 1999; Sutcliffe, 2003). Our work ad-
dresses the design of domain specific 3D interaction
techniques that apply to real-world tasks.

Several attempts have been made to guide the design
process. Kaur, Maiden, and Sutcliffe (1999) extended
Norman’s seven stage HCI model to VEs to measure
and improve the user’s action sequences related to the
work flow of the target use and developed a model inte-
grating interaction and design guidance for VEs. Mills
and Noyes (1999) proposed generic design issues for
VEs, and Drettakis, Roussou, Reche, and Tasigos
(2007) proposed improving work flow in order to in-
crease the use of VEs in highly interactive applications.
Hix and her collaborators extended conventional UE
design practices to 3D UI design (Hix & Hartson,
1993; Hix et al., 1999). Our work focuses instead on
improving the design of 3D interaction techniques by
using domain knowledge to help us understand what to
design.

Domain knowledge has proved its value in 3D mod-

eling tools. For example, Wonka, Wimmer, Sillioin, and
Ribarsky (2003) define semantic knowledge to trans-
form, scale, and extrude texture when modeling large
structures. Artifact knowledge, such as constraints, has
been applied to define physically correct object behav-
ior, for example, that objects sit on top of each other
rather than floating in space (Bukowski & Sequin,
1995; Oh & Stuerzlinger, 2005; Wonka et al.). Domain
knowledge has also been used in designing intelligent
interaction techniques to improve work flow. For exam-
ple, Feiner and MacIntyre (1993) designed a rule-based
system for maintenance tasks in which a pointer auto-
matically indicates the user’s intended target. However,
domain knowledge has not been used extensively in de-
signing 3D interaction techniques and framing interac-
tion tasks. Our work establishes a domain specific ap-
proach to 3D interaction design and introduces the
concepts of domain specificity and domain specific de-
sign to guide designers” work and thinking. Thus, our
aim is not to design intelligent interaction or improve
work flow per se, but rather to use general domain
knowledge to frame more meaningful 3D tasks and to
produce more effective and efficient 3D interaction
techniques for real-world use.

3 Motivating Example: VE for Structural
Design

Our long-term collaboration with architects led to
the design of Virtual-SAP, a head mounted display
(HMD) based immersive VE for structural design, anal-
ysis, and visualization (Bowman et al., 2003). Architects
using this program expect to construct realistic build-
ings, run stability tests using finite element methods,
and modify the structure until a satisfactory design is
achieved.

The first implementation of Virtual-SAP followed a
usability engineering process for iterative design, proto-
typing, and evaluation (Hix et al., 1999). Task analyses
were conducted with domain experts actively involved
in collecting designer needs and making usability studies
(Setareh, Bowman, & Kalita, 2005). Results from the
task analyses were used for functional decomposition

F2

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

4 PRESENCE: VOLUME 18, NUMBER 5

Run simulation

Tasks View structures Edit structures
Sub-tasks ['j Move objects Create objects Delete objects

[

Load a new
structure

. n Clone objects

Copy & paste

Universal
tasks

[;'}l Navigation |

Techniquest—) |~ ~. .

| Selection I IManipuIationl

System control

Pen-and-
tablet
metaphor

Widget-based

Figure 2. Task decomposition in the original Virtual-SAP using the task composition and decomposition approach.

and composition, a common method in design disci-
plines (Schon, 1983; Simon, 1981; see Figure 2). First,
a top-down approach breaks the high-level activity (such
as “edit structure”) into small executable steps (such as
“create objects” and “delete objects”) based on work
flow analyses. This decomposition continues until a
technique is reached that can be used for a lower-level
task. For example, “create objects” was decomposed
into “clone objects” and further decomposed to “selec-
tion” and “manipulation.” Finally, a bottom-up ap-
proach was used to adapt subsolutions (techniques such
as ray-casting and Go-Go, Poupyrev et al., 1996) to
obtain a group of interaction techniques supporting the
application goal.

The initial design resulted in a pen-and-tablet-
metaphor user interface for architectural modeling. The
user held a tablet and used a stylus to operate widgets in
order to load structural elements (beams, columns, and

slabs). Having grabbed an object, the user could place it
with Go-Go (Poupyrev et al., 1996). Finally, the user
could run and observe simulations and edit the structure
all within the same environment.

The results of several user studies suggested that the
interface was relatively effective and had few usability
problems (Bowman et al., 2003). When we gave the
application to students and engineers for real-world
structural design, however, we found that the UI was
not very useful for complex structure modeling: it could
take users hours to create and move the hundreds of
beams and columns in a moderately complex structure.

This example demonstrates that decomposition and
composition can result in less than optimal 3D UI de-
sign when only generic interaction techniques are avail-
able. We realized that the design issue was not to tweak
existing interaction techniques but rather to define new
tasks and techniques that meet the application require-

F3

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

Chen and Bowman 5

ments. Existing categories of interaction tasks, such as
object selection and placement, were too generic to de-
scribe the needs of the application. But designing new
tasks and techniques for each new application would not
be practical or efficient. This led to our overall research
question: how can we design useful and effective 3D
interaction tasks and techniques without customizing
them for each application?

It might seem that this problem could be addressed
with further iterations of the usability engineering (UE)
method, focusing specifically on the task of cloning, as
in most conventional 2D interface design approaches or
user centered design practice. We would argue, how-
ever, that UE is of limited value in producing effective
interaction without a reasonably rich set of domain spe-
cific interaction techniques from which to draw.

Ultimately, all 3D Uls must be to some degree appli-
cation specific in order to ensure usability and usefulness
for real-world work. But the design of 3D interaction
techniques need not always be application specific. For
interaction techniques to be reusable and useful in de-
signing 3D user interfaces, three design requirements
must be met:

o Interaction tasks must ensure adequate representa-
tion of the domain in use.

o Interaction techniques must be useful in other ap-
plications without significant modification.

e A design method must allow designers to create a
collection of interaction tasks and techniques that
are supported by the usage guidelines.

4 Existing Approaches to 3D Interaction
Design

Before introducing domain specific design, let us
consider the characteristics of existing design ap-
proaches for 3D interaction. The approaches can be
classified into two categories: generic and application
specific design (see Figure 3). This classification makes
use of the concept of specificity, which indicates the
amount of knowledge used from the application domain
in the interaction design. We describe interaction using

Application Tasks Techniques
level

ition
WN dec!
Tog-d0

Generic

lovel | Tasks k:j Techniques I

Navigation, e.g., gaze-based travel
Sele_ction and Go-Go, HOMER, Menu,
manipulation, hand-writing in a VE

System control,
Symbolic input

Figure 3. Conventional two-level design framework.

tasks (what to design for) and techniques (how to ac-
complish the tasks).

4.1 Generic Design Approach

We call a technique generic it it is designed for a
generic (universal) task, with no specific application
context. Thus, the specificity for this type of task or
technique is the lowest. The pros and cons of this
design approach include a well defined design space,
widely available evaluation results, and low specificity /
high reuse.

1. Well Defined Design Space Various taxono-
mies are available to describe the structure, ac-
tion sequences, and parameter space of a generic
task, and to classify generic techniques into use-
ful categories (Bowman & Hodges, 1999;
Poupyrev, Weghorst, Billinghurst, & Ichikawa,
1997).

2. Widely Available Evaluation Results Test beds
have been designed to measure task performance
and user behavior. Designers have plentiful re-
sources from which to chose (Bowman, Johnson,
& Hodges, 1999; Poupyrev, Weghorst, Billing-
hurst, & Ichikawa, 1998; Tan, Robertson, &
Czerwinski, 2001).

3. Low Specificity/High Reuse The techniques
are designed not with any particular application or

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

6 PRESENCE: VOLUME 18, NUMBER 5

application domain in mind, but rather to work
with any application. When used in real-world
cases, however, significant modifications might
be required to meet application requirements.
In some cases, generic techniques and tasks will
be completely inadequate to meet application
needs.

When the generic design approach is used, high-
level user activities are decomposed into simple subtasks
to form a hierarchical representation of user activity.
Then the designer decides how to integrate solutions to
the generic tasks into a final solution to the high-level
design task.

This approach was used in the original Virtual-SAP
application described in Section 3. The modeling task
was decomposed into manipulation and selection tasks.
We then selected several practical generic interaction
techniques (e.g., Go-Go) and considered cross tech-
nique consistency issues to generate the final applica-
tion.

4.2 Application Specific Design
Approach

The clearest way to improve usability in any partic-
ular application is to design the interaction tasks and
techniques specifically for that application. A technique
designed for an application specific task, called an appli-
cation specific technique, often uses specific application
domain knowledge (see Section 5.1) that might not be
reusable. This approach typically requires starting from
scratch with each application and using a complete us-
ability engineering process to produce a usable 3D UI.
Design with this approach has the properties of (1) less
well-defined design space, (2) techniques designed with
context and activity in mind, (3) high specificity /low
reuse, and (4) high cost.

1. Less Well-Defined Design Space Because there
is no interaction technique for a given application
specific task, designers must perform task analysis
to determine design goals. Well-known methods
include field studies, interviews, and ethnometh-
odological studies.

2. Techniques Designed with Context and Activ-
ity in Mind Because the tasks are framed within
a specific application context, the techniques are
generally usable and useful for that context only.

3. High Specificity/Low Reuse There are many
definitions of reuse, such as the reuse of concept
solutions, and best practice software modules and
patterns. In this paper, reuse simply means the
reuse of interaction techniques, that is, how casy it
is to plug in and play a certain technique in an ap-
plication. Interaction techniques designed within a
specific application context will be highly useful
and usable in that context. However, it may be
difficult to reuse them in other applications with-
out modification. Thus, an interaction technique
designed for a particular use is often too specific to
be broadly applicable.

4. High Cost Designing for every application is
costly. Making a range of techniques available that
designers simply plug into an application will be
more cost-effective. The design often requires in-
tegration of and smooth transitions among several
interaction techniques that best fit a specific appli-
cation. For example, Hix et al. (1999) designed
several interaction techniques for battlefield visual-
ization applications. Some components of this type
of interaction technique can be reused, because
some fundamental design principles are invariant
over many applications, but the technique as a
whole is not reusable.

We developed the DSD approach in order to balance
the advantages and disadvantages of generic and appli-
cation specific interaction design.

5 Domain Specific Approach to 3D
Interaction Design

We define domain specific design (DSD) as an
interaction design approach in which tasks or techniques
are designed with domain knowledge in mind. Our ap-
proach is similar in spirit to procedure modeling
(Bukowski & Sequin, 1995) regarding the use and clas-

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

Chen and Bowman 7

sification of domain knowledge. For example, it is possi-
ble to describe the appearance of a building (e.g., the
shape of the land, land use, and streets) using semantics.
Our work, however, focuses on interactivity rather than
automatic model generation.

5.1 Domains and Domain Knowledge

Before discussing DSD, it is useful to define what
a domain is. We define a domain as a subject matter area
of study that can have subdomains. Often, a domain has
its own processes, data, objects, and artifacts that behave
according to the rules of that domain. Thus, the study
of a domain, or domain analysis, can determine the gen-
eralized characteristics of a particular domain. In partic-
ular, domain knowledge has the following characteris-
tics that make it suitable for interaction design: Stability,
intuitiveness, feasibility, and reusability.

1. Stability Domain knowledge is stable and reus-
able, since multiple applications can share com-
mon knowledge. UI designers can benefit from a
stable collection of tasks and techniques based on
domain knowledge, despite changing application
requirements (Chen & Bowman, 2006; Chen,
Bowman, Lucas, & Wingrave, 2004; Sutcliffe,
Benyon, & van Assche, 1996).

2. Intuitiveness Domain knowledge is generally
intuitive or systematic for uses in the domain. An
interface designed in line with that knowledge typ-
ically provides a better mental model and under-
standing of the environment. Users’ familiarity
with the task definition can make the interface
more intelligible and predictable.

3. Feasibility Domain knowledge can be collected
cffectively by knowledge elicitation techniques
(Gordon, 1994; Gordon, Schmierer, & Gill, 1993;
Wielinga, Schreiber, & Breuker, 1992).

4. Reusability Since knowledge is shared among
applications, techniques can be reused within a
domain or even in another domain with similar
characteristics.

Domain knowledge can be general or particular.
To illustrate, consider the task of cloning in the sense of

building modeling. The concept of cloning is general
domain knowledge, since the distinction between a win-
dow, a beam, or a chair is irrelevant—they are equally
good for cloning. However, the shape of beams in
welding operations is particular domain knowledge,
since differently shaped beams would sustain different
loads. This knowledge would lead to the design of tech-
niques that would be difficult to reuse in other situa-
tions. The DSD approach targets the general type of
domain knowledge to make the techniques more reus-

able.

5.2 Domain Specific Tasks and
Interaction Techniques

Domain specific tasks and techniques are two
components of DSD. A domain specific task is an ab-
straction of domain activities that can be shared among
applications in the targeted domain. Activities define
what users usually do in the real world, while goals and
subgoals of an activity are described as tasks through
task analysis (Diaper, 1989; Kirwan & Ainsworth, 1992;
Moran, 1983). A domain specific interaction technique
is a way to accomplish an interaction task that makes use
of domain knowledge. The goal is to increase the effec-

tiveness of interaction.

5.3 Three-Level Design Framework

We extend the two-level framework shown in
Figure 3 by adding a third, domain level. This 3D
interaction design framework (see Figure 4) describes
the design of tasks and techniques at the generic, do-
main, and application levels and specifies paths de-
signers can take in designing and/or choosing inter-
action techniques for an application. This framework
can be used to describe all three of the design ap-
proaches we have discussed (generic design, applica-
tion specific design, and DSD). The goal of the DSD
approach is to reach the “Techniques” box at the do-
main level. These domain specific 3D interaction
techniques can be used in real-world applications
within the particular domain.

F4

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

8 PRESENCE: VOLUME 18, NUMBER 5

Top-down decomposition Bottom-up specification

Application .
B Techniques
Domain Tasks Techniques
level
Generic Tasks Techniques
level q

Figure 4. 3D interaction design framework.

5.4 Advantages and Disadvantages

DSD attempts to maximize the advantages and
avoid the disadvantages of the generic and the applica-
tion specific methods. DSD has the characteristics of a
less well defined design space, reusable domain specific
techniques, and high initial cost, low long-term cost.

1. Less well-defined design space: As in application
level design, the design space for domain knowl-
edge and domain specific interaction does not ex-
ist. However, such knowledge can be collected
and captured using the same methods as in appli-
cation level design.

2. Reusable domain specific techniques: The tech-
niques are designed with a domain in mind, and
thus can be reused in other applications in the
same domain without significant modifications.
For example, the cloning operation (see Section 7)
can be used in any application requiring multiple
object creation.

3. High initial cost/low long-term cost: The initial
design can be costly because it requires knowledge
space formation and significant evaluation. How-
ever, the long-term benefits are also high because
the resulting techniques are reusable. DSD be-
comes cost-effective once we have a range of do-
main specific interaction techniques that designers

can usc.

It is important to note that the three design ap-
proaches (generic, application specific, and domain-

specific) are not distinct, but rather form a continuum.
In fact, the same task can often be described in terms of
any approach. For example, the domain specific task of
cloning might be specialized from the generic task of
numeric input. One benefit of separating the three de-
sign approaches is to assist designers in thinking about
design goals and the utility of each approach, allowing
them to choose an approach that is appropriate to the

application they are designing.

6 Domain Specific Design Method

The previous section described the DSD approach
at a high level. In this section, we present a more de-
tailed DSD method—a three-step process that designers
can follow to design domain specific 3D interaction
techniques. In this DSD method, the designer performs
three steps: knowledge elicitation and representation,

task identification, and design interaction techniques.

6.1 Knowledge Elicitation and
Representation

The first step of the DSD method is to describe
knowledge representation based on target use. Knowl-
edge is first acquired during the design and evaluation
process, from the conversation with domain experts,
and from observation of work and artifacts in the do-
main. Designers ask experts to identify the bottlenecks
with existing tools (2D or 3D), leading to new design
solutions. Designers explore the range of activities that
experts conduct, the function of artifacts, and the pros
and cons with conventional tools and media. Domain
experts can also be invited to comment on the design of
the evolving 3D UI on a regular basis. The knowledge
thus elicited can be used to help frame tasks and choose
parameters that are critical to improve the usefulness of
the domain specific interaction techniques.

Such iterative design and testing provides valuable
insights for the generation of domain specific tasks and
techniques and for choosing critical design parameters
to form a knowledge base. Getting experts to use the

F5

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

Chen and Bowman 9

interactive system is also important because people are
more likely to recognize problems while interacting.
We are aware of a growing body of literature that is
directly concerned with understanding use in context as
a basis for design, including ethnographic approaches,
scenarios, critical incidents, and personal construct. We
did not make use of a specific method, since each of
these techniques is suited to particular situations and
delivers particular kinds of results. There is no guiding
principle indicating which techniques are suitable or
unsuitable for eliciting certain types of knowledge. We

use a mix of these approaches.

6.2 Task Identification

The second step of the DSD method is to specify
interaction tasks based on domain knowledge and its
representation. Tasks are formally described by means of
a taxonomy, an analytical description of features mean-
ingful in an application domain. The taxonomy typically
describes the set of parameters that characterize the
identified task and possible values for those parameters.
This description serves as a knowledge base for design-

ing interaction tasks and techniques.

6.3 Interaction Technique Design

The last step of the DSD method is to design in-
teraction techniques for the domain specific tasks. We
use test bed design and evaluation (Bowman et al.,
1999) to design domain specific interaction techniques.
In the test bed, we design a range of interaction tech-
niques for the domain specific task by following difter-
ent paths (see Figure 5) in our design framework and by
integrating different flavors of domain knowledge.

Specialization, generalization, direct design, and
mixed decomposition and composition approaches are
some of the possibilities described by the framework
shown in Figure 5. In specialization, we start with the
domain specific task, recharacterize it as a generic task,
select a generic interaction technique for that task, and
then specialize the generic technique by adding domain
knowledge (paths 7, 3, and 8). In generalization, we
cast the domain specific task as an application-specific

Application Technlques
level

Domain Techmques
level

Generic Techniques
level

Figure 5. Altemative design in the 3D interaction design framework.

task, design an application specific technique for that
task, and then remove some specific domain knowledge
to design domain specific interaction techniques from
the application level (paths 6, 1, and 9). In the direct
desiyn approach, we can design domain specific tech-
niques directly by following horizontal path 2. In mixed
decomposition and composition, we recast a domain level
task to a generic task then reuse generic techniques
without modification (paths 7 and 3).

One advantage of using this framework is to make it
possible to reuse existing generic-level or application-
level techniques and to cover a broad range of tech-
niques. The framework also covers existing interaction
tasks and techniques and can be used to describe inter-
action design in the overall 3D UI design process. In
our original Virtual-SAP design, we used this approach
(starting with application specific tasks, then following
paths 4, 3, and 5) to design the 3D interaction tech-
niques. Following path 4 decomposes an application
level task into the generic level; following path 3 pro-
duces a generic level interaction technique; following
path 5 lets one specify an interaction technique to fit an

application.

7 Using DSD for Virtual-SAP

We illustrate the design method by our case study
application, Virtual-SAP. As described in Section 3, the
purpose of Virtual-SAP is to let the user model building
structures while immersed in a VE. We use the domain

AQ: 1

T1

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

10 PRESENCE: VOLUME 18, NUMBER 5

Table I. Domain Knowledge Organization

Category

Characteristic

Characteristics of domain objects
Geometrical
Physical
Mechanical

Characteristics of the environment
Spatial
Dynamic
Topology

Characteristics of the users
Mental model
Attitude
Expertise

Standard size and shape
Objects have mass, material, texture, etc.
Objects are rigid

Repetitive and symmetrical patterns, large in size
Simulation followed objects’ properties
Object relationship

Workflow /domain of study
Cognitive and noncognitive abilities
Novice, expert

specific task of cloning (Chen & Bowman, 2006; Chen,
Bowman, Lucas, et al., 2004; Chen, Bowman, Win-
grave, & Lucas, 2004) as an illustration of the use of
the DSD method. Choosing the architecture domain
and cloning also lets us use the knowledge framed in
2D desktop tools, so that we can examine the effective-
ness of the framework and the DSD method, rather
than the effectiveness of knowledge acquisition.

7.1 Knowledge Elicitation and
Representation

We used interviews with domain experts, observa-
tion of experts and students in the architecture and
structural engineering domains, and comments from
users of our early prototypes to elicit domain knowl-
edge. We classified the domain knowledge into three
categories, based on object, environment, and user’s
characteristics (see Table 1). These factors were found
to be important for a structural engineering application

while iterating our design with structural engineers. The

most important knowledge for our application is proba-
bly the geometric arrangement of structural elements
(e.g., beams, columns, slabs, and walls, etc.) in space.
These objects obey certain geometrical, physical, and

mechanical rules that form the knowledge base we used
in designing interaction techniques.

We implemented several geometry constraints based
on this domain knowledge.

Coincidence The system defines point coincidence
and element coincidence. Beams and columns are
connected. Two elements have the same algebraic
representation, the same position, and the same ori-
entation.

Parallelism Objects follow regular shapes. Beams and
columns that are parallel remain parallel.

Distance and Size Constraints Distance can be speci-
fied between elements and this distance defines the
size of an object. Any distances used in the system are
integers or integers plus 0.5 mm for ease of manufac-
ture.

Alignment Objects are snapped to a grid and thus can
automatically change their length when the size of
the grid is updated.

7.2 Task Identification

By knowledge elicitation with people and artifacts
in the architecture domain, we found that many struc-

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

Chen and Bowman 11

slid

Space metaphor

Domain specificity

Figure 6. Various cloning techniques sorted by domain specificity.

tures contain spatially repeating elements. Thus the
cloning task was identified. We have defined cloning as
the task of generating multiple copies of spatially dis-
tributed objects in an environment (Chen, Bowman,
Lucas, et al., 2004). This is a similar concept to instanc-
ing multiple copies used in desktop computer-aided de-
sign tools, such as AutoCAD, SketchUp, and others.
Cloning is a higher-level task compared to selection and
manipulation. Interaction techniques for cloning allow
users (here architects) to take the techniques as a whole
rather than performing the individual small steps of ma-
nipulation to create copies. It might seem obvious to
design for cloning; however, our experiences suggested
this was not the case. In the initial design, we tended to
choose a set of good existing generic interaction tech-
niques rather than designing new techniques.

We further learned that these elements can be de-
scribed by a set of parameters, including the distance
between spatially distributed copies, number of copies,
shapes of the cloned objects, and visual attributes such
as color and size. These parameters were placed in a for-

mal taxonomy of the cloning task (Chen, Bowman, Lu-
cas, et al., 2004).

7.3 Interaction Technique Design

We designed a series of domain specific interaction
techniques at various levels of specificity by making use
of domain knowledge (see Figure 6). Complete descrip-
tions of these domain specific interaction techniques
appear in our previous publications (Chen & Bowman,
2006; Chen, Bowman, Lucas, et al., 2004). Here, we
use these techniques to illustrate how we have made use
of the framework to produce a range of interaction
techniques.

7.3.1 Specializing Generic Techniques. One
way to design domain specific interaction techniques
is to specialize generic interaction techniques by add-
ing domain knowledge. For instance, the copy-by-
example technique was a specialization of the generic
HOMER technique (Bowman & Hodges, 1997).

Fo6

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

12 PRESENCE: VOLUME 18, NUMBER 5

Copy by example has relatively greater domain speci-
ficity compared to HOMER because it uses repetition, a
common characteristic in building and construction.
Instead of placing each object individually, copy by ex-
ample only requires the user to place the first copy; the
rest are placed automatically when the user issues a
“paste” command by a button click. The user needs to
reposition only if the pattern changes—the program
calculates the next position accordingly. With this tech-
nique, users can build stairs, towers, and buildings that
are not necessarily square in shape.

7.3.2 Designing Directly for Domain-Level
Tasks. We can also design techniques directly for the
cloning task using horizontal path 2 from Figure 5. For
example, PORT takes into account several constraints of
structural design, such as the square shape and the re-
petitive distribution of architectural elements. The dy-
namic slider techniques uses a pen-and-tablet interface
while PORT uses a direct pointing technique to specify
the number of copies and the distances in each direc-
tion. The user can push a joystick on a handheld wand
device to change the number of copies and the distances
between copies. Both methods support continuous in-
put and the axes of the sliders and the directions of
wand pointing indicate the direction of input in an intu-
itive manner.

Another example is the space metaphor interaction
technique, which uses PORT and also allows users to
explicitly define the horizontal span (dimensions in space
that a building will occupy) before cloning. The span con-
straint was suggested by our architect collaborators. Using
the space metaphor interaction technique, adjusting the
distance between columns or beams changes the number
of copies, so the building is always confined to the pre-
specified area. Any objects out of the span are automati-
cally erased. This technique had the highest level of do-
main specificity among those we designed.

7.3.3 Mixed Decomposition and Composition
Approach. One way to think about the cloning task is
to recast it (path 7 in Figure 5) as a numeric input task,
which is a symbolic input task at the generic level; there-
fore any interaction techniques that allow users to input

numbers should work. The keypad technique we de-
signed for cloning used very little domain knowledge;
users simply specify which building axis they are work-
ing with and input a number.

8 Evaluation of DSD

We conducted a series of user studies on the eftec-
tiveness of the DSD approach in the case study applica-
tion. Details are given elsewhere (Chen & Bowman,
20006); here we briefly summarize the evaluation
method and results. Although these studies do not
compare DSD directly with other design approaches,
they provide helpful insights into the relative usability
and usefulness of 3D interaction techniques produced
by DSD and by more traditional design methods.

8.1 The Effect of a Domain Specific
Task

The purpose of the first experiment (Chen, Bow-
man, Lucas, et al., 2004) was to study the effects of
considering a domain specific task during design. A do-
main specific cloning technique (PORT) and a generic
object manipulation approach (HOMER) were com-
pared. Users performed three tasks ranging from simple
(fewer than 10 elements) to complex (200 or more ele-
ments) building modeling. We found that the domain-
specific task was suitable for describing users’ activities
in modeling complex structures. PORT outperformed
HOMER for large building modeling.

8.2 The Effect of Domain Knowledge
Use

The second experiment studied the effect of using
domain knowledge in designing interaction techniques
(Chen & Bowman, 2006). Comparing the five domain
specific interaction techniques presented in Section 4,
we found that the usefulness of the interaction was asso-
ciated with specificity—the greater the domain specific-
ity, the better the task performance when modeling a
large number of structural elements. As Figure 7 shows,

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

Chen and Bowman 13

PR—
Copy-by-example «4—— Dynamic-slider

Space metaphor

Domain specificity

Figure 7. Techniques designed with higher specificity lead to shorter task completion time than lower ones when generating hundreds of

architectural elements. Lower specificity increases flexibility in the range of objects that architects can build. Arrows indicate a statistically

significant difference for overall task completion time.

the space metaphor, PORT, and dynamic slider tech-
niques (those with greater domain specificity) were sig-
nificantly faster than the copy-by-example and keypad
techniques for a modeling task where thousands of ele-
ments were to be built. On the other hand, techniques
with less domain specificity support a wider range of
tasks. For instance, the copy-by-example technique can
be used to build structures of any shape that has repeti-
tive patterns, since it does not require a regular square
shape. The keypad technique is flexible enough to be
used in any numeric input task.

Participants commented that they preferred copy by
example for simple tasks and PORT or the space meta-
phor for complex modeling work. When participants
created only one element, they perceived the task as re-
quiring a single object copy and placement rather than a
cloning operation.

8.3 The Effect of DSD on a Complete
Application

DSD will not be practical if the interaction tech-
niques developed cannot be used in real-world appli-
cations. We therefore designed a new version of the
Virtual-SAP application by integrating several new clon-
ing techniques. The keypad, copy-by-example, and
PORT cloning techniques were incorporated so as to
provide alternatives to the user in modeling a structure.
Figure 8 shows the new design with multiple object se-
lection and cloning. A pen and tablet metaphor user
interface is also used in this design. A user study was
conducted to examine whether results produced in
DSD increase the overall usefulness of Virtual-SAP.

The empirical evaluation (Chen, 2006) was con-
ducted with two groups: a control group using a version

F8

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

14 PRESENCE: VOLUME 18, NUMBER 5

Figure 8. New Virtual-SAP user interface. The semi-transparent box was used for multiple object selection: objects intersecting with the box
were selected. The wireframe structure was generated using one of our cloning techniques.

of Virtual-SAP without support for cloning and an ex-
perimental group using an application version that was
identical except for the inclusion of a cloning technique
(PORT). Both user interfaces had rich functionality,
such as choosing architectural elements, placing objects,
and visualizing earthquake simulations. The VE system
was HMD-based.

Participants were architectural engineering students and
were grouped into pairs. In each pair, one participant used
the system to build a structure that he or she had previ-
ously drawn on paper, while the other participant watched
the process on a monitor. They were allowed to talk about
the modeling process. We collected participants’ verbal
communication with their partners, task performance,
comments, and the structures they designed.

The results showed that participants from the domain
specific group modeled a wider range of complex build-
ings. Many of the conversations in the domain group
were regarding activity-relevant information (e.g., what
is the horizontal span of a building), as compared to
action-based information (e.g., how to place a beam) in
the generic group. As expected, the domain specific
group had better task performance.

8.4 Discussion

The results from the experiments favor the user
interfaces produced by DSD. Considering domain spe-
cific tasks and using domain knowledge in design led to
higher performance on individual tasks, and integrating

| tapraid4/z92-psen/z92-psen/z9200509/2922113d09g | colesona | S=12 | 9/22/09 | 0:40 | Art: 292-2113 | Input-Kil(kll |

Chen and Bowman 15

domain specific interaction techniques into an existing
application led to greater overall usefulness.

Of course, increasing domain specificity can also
reduce the reusability of an interaction technique. For
example, the keypad can be used for any numeric in-
put task, not just in the architecture domain. Copy by
example is flexible enough to be used to form shapes
similar to spiral stairs and frame structures for
bridges.

Our evaluation of interaction techniques and the
Virtual-SAP application provides empirical support
for the effectiveness and general principles of DSD,
although we cannot claim from these results that
DSD is superior to other design methods for 3D in-
teraction. An alternative way to compare design
methods would be to compare the training time and
resources needed for different approaches. We did
not do this because we believe that the increased cost
of DSD arises from the cost of collecting domain
knowledge in order to frame domain specific tasks
and thus design domain specific interaction tech-
niques. Such costs exist, in the form of task analysis,
in any effective design method.

9 Conclusions and Future Work

We have described DSD, a design approach for
3D interaction techniques with the ultimate goal of
providing effective and efficient 3D Uls for real-
world applications. We have presented a 3D interac-
tion design framework that describes the relationship
between DSD and the existing generic and applica-
tion specific design approaches. The framework can
help designers understand and think more systemati-
cally about 3D interaction tasks and 3D interaction
techniques. We have also introduced a three-step
DSD method that designers can follow for the devel-
opment of domain specific 3D interaction techniques.
Finally, we illustrated the use of the DSD approach
and method through a case study in the architecture
domain, and presented evidence for the effectiveness
of DSD through empirical studies.

Major empirical findings from this research include

the following. First, an interaction technique for a
domain specific task increased usability over an inter-
action technique designed for generic level tasks. Sec-
ond, in general, techniques designed with more do-
main specificity outperformed techniques with less
domain specificity for domain specific tasks. Third,
integrating a domain specific technique into an appli-
cation yielded an effective and efficient interface.

The current research is limited in that we have con-
ducted only one case study and did not perform and
compare formal domain knowledge acquisition and
organization methods. In addition, our ability to pro-
duce many interaction techniques might be due in
part to our expertise rather than to the DSD method
alone. DSD is a high level method, not a detailed
process. We leave these topics as future work.

We also plan to further address the reuse of domain
specific interaction techniques. One possibility is to cre-
ate a mapping between knowledge representation and
interaction techniques, and build a collection of knowl-
edge possessed by domain experts. In this way, knowl-
edge and the relevant interaction techniques can be pro-
cessed, stored, and improved over time.

We also hope to broaden the impact of our theories
of domain specific interaction techniques. For example,
the domain of visual analytics that includes multivariate
and multidimensional data sets is a promising area for
future research in domain specific interaction.

Finally, we plan to explore other types of specificity to
improve 3D interaction. For example, emerging tech-
nologies such as large, tiled, high-resolution displays
may require display specific 3D interaction techniques

to ensure usability.

Acknowledgments

This work was supported by the National Science Foundation
under grant NSF-IIS-0237412. The authors gratefully ac-
knowledge the support of Dr. Mehdi Setareh, who was ac-
tively involved in the design and evaluation process. The au-
thors also appreciate those who gave their valuable time to

participate in the empirical evaluations.

