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Fig. 1. Five 3D DMRI visualization tasks on two display devices.

Abstract—We report the impact of display characteristics (stereo and size) on task performance in diffusion magnetic resonance
imaging (DMRI) in a user study with 12 participants. The hypotheses were that (1) adding stereo and increasing display size would
improve task accuracy and reduce completion time, and (2) the greater the complexity of a spatial task, the greater the benefits of
an improved display. Thus we expected to see greater performance gains when detailed visual reasoning was required. Participants
used dense streamtube visualizations to perform five representative tasks: (1) determine the higher average fractional anisotropy
(FA) values between two regions, (2) find the endpoints of fiber tracts, (3) name a bundle, (4) mark a brain lesion, and (5) judge if
tracts belong to the same bundle. Contrary to our hypotheses, we found the task completion time was not improved by the use of the
larger display and that performance accuracy was hurt rather than helped by the introduction of stereo in our study with dense DMRI
data. Bigger was not always better. Thus cautious should be taken when selecting displays for scientific visualization applications.
We explored the results further using the body-scale unit and subjective size and stereo experiences.

Index Terms—Display characteristics, diffusion tensor MRI, virtual environment.

1 INTRODUCTION

Recent advances in display technologies for scientific visualization
have allowed once exotic and expensive techniques to become so in-
expensive, accessible, and lightweight that they can be used directly in
scientific research. Visualization researchers have increasingly been
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using advanced displays to build applications and toolkits in three di-
mensions (3D) using a variety of techniques [25]. Our collaborators
in brain sciences are also excited about making use of such displays
in data analysis (Fig. 1). However, the DMRI data are often highly
dense, imposing greater visualization challenges to produce legible vi-
sualizations. Nevertheless, usability studies are necessary for visual-
izations to reach their full potential; guidelines are needed concerning
the added value or appropriateness of alternative solutions that will
lead to more fundamental insights into why a particular solution is
effective [23].

Brain researchers are using DMRI techniques to study human brain
structure in pathological conditions, such as stroke and Alzheimer’s
disease. DMRI is a MRI technique that measures the directional de-
pendence of motion of water molecules in tissue. Experimental evi-
dence has shown that water diffusion is anisotropic in organized tis-
sues, such as white matter and muscle, and that reconstructing the ori-
entation and curvature of white matter can provide detailed informa-
tion about pathways. The curves (or fibers) are portrayed graphically



using streamline algorithms or glyphs such as hyperstreamlines initial-
ized at seed points to show fiber tracts. Tracts following similar direc-
tions are called fiber bundles [38]. Displaying the fiber tracts as tubes
is a popular way to visualize DMRI data. Given the advances in im-
age capturing and processing techniques, we can display human brain
features at millimeter scales, making the visualization highly dense,
where a whole-brain tractography can have about ten thousand tubes
within the volume of a human head.

Numerous studies have found benefits in using large stereoscopic
displays. Most would agree that large displays lead to fundamentally
different user experiences [7]. Some have reported benefits in task
completion time when using large displays and have suggested that
people tend to use more egocentric navigation strategies on large dis-
plays and hence improve their task performance [42]. This is true
even when a semi-immersive display with small field-of-view (FOV)
is used for tasks requiring mental rotation. Psychophysics studies also
suggested that bigger is better when the amount of information is the
same, because visual acuity increases with distance through the so-
called Aubert-Forster law [6]. The law states that “objectively small
objects can be distinguished as two at greater distances from the fovea
than objectively larger objects subtending the same visual angle” (page
471 in [35]). These interesting results suggested that we should al-
ways choose large displays.

The overarching objective of our work is to systematically under-
stand the relationships between display characteristics and dense data
visualization. The present study is the first to study dense stream-
tube visualizations on size and viewing distance tradeoffs and the uses
of stereopsis to understand whether, if we equalize the retinal images
between conditions, we need to have a large display. Our work is mo-
tivated by the visual complexity of the streamtubes brain researchers
use in answering their scientific questions. We sampled every voxel
of a DMRI capture from a normal person, yielding tractography with
about ten thousand dense lines rendered using tubes and displayed un-
der two monitors: a small 24′′ and a large 72′′ displays with or without
stereo (Fig. 2). The retinal images were kept similar in size between
conditions, at least between the large and small displays under the
same mono/stereo conditions by carefully arranging FOV and viewing
distance. Participants could rotate the data during the experiment.

The evaluation covered major and representative fiber bundles in the
brain regions suggested by neurologists; the metrics for user task per-
formance were accuracy, task completion time, and subjective com-
ments in post-study interviews. Our data were carefully selected by
computer scientists and brain researchers working together.

This paper contributes to the growing literature on design and eval-
uation of scientific visualization using large displays. It describes new
results in which experimental evidence on display characteristics was
systematically collected, and discusses how to explore this evidence to
examine human task performance and guide display choices based on
stereo and size when the retinal images are the same. This paper also
contributes to experimental task collection for diffusion MRI studies,
as we have made the datasets publicly accessible for benchmarking
future experimental studies [8]. In addition, applying these results ap-
propriately to design can also increase the usefulness of high-impact
large-display applications in practical scientific visualization.

2 BACKGROUND AND RELATED WORK

Many people have addressed, with quantitative or anecdotal advice,
how best to use displays for a variety of cognitive and user perfor-
mance benefits in 3D [7]. In general, it is believed that when the com-
plexity of 3D data increases, stereoscopic display often provides better
insight into the datasets. A major benefit of stereoscopy is binocular
disparity that provides a better depth awareness. For example, Ware
and Franck studied stereo, interaction, and motion in a network graph
data visualization [46]. A stereo display was found to be 1.6 times
more accurate than a two-dimensional (2D) display in detecting paths
of length two through the complex structures, and stereo combined
with head-coupled motion produced the best results. In their visual-
ization comparison, the graph sizes ranged from 24 to 132 nodes with
32 to 176 arcs where participants could still see the structure clearly.

In the present study, where the number of tubes used could reach thou-
sands, we expected some improvement of stereo over 2D but perhaps
not as much as in Ware and Franck’s study [46].

Bowman summarized and comprehensively discussed the factors
related to immersion that can have an impact on visualization experi-
ences [7]. These factors include FOV, field of regard (FOR), display
size, stereoscopy, head-based rendering, realism of lighting, and frame
and refresh rates. Laha et al. studied three of these (head tracking,
FOR, and stereoscopic rendering) in the volume rendering of mouse
limb and fossil datasets [24]. Their experimental tasks were mostly
open-ended; participants had 1 to 1.5 minutes to describe what they
could see and the experimental results were evaluated by experts for
quality. Though their study suggested that high levels of FOR, stereo,
and head tracking improved task performance in general, they also
found stereo worsen task performance on internal feature search and
general descriptive tasks. Many of our DMRI structures are related
to internal structures in dense tubes, and it is thus worth considering
whether or not stereo is helpful when data are highly dense.

Many studies have addressed the benefit of displaying images in
large size. For one thing, large size can increase FOV when users are
free to move. And the benefit of large FOV seems to be substantial.
For example, a large field of view (FOV) has been found to improve
task performance and generate better situation awareness and presence
in navigating 3D environments [42]. Pausch et al. attributed the ben-
efits to a sense of presence that inspires more efficient egocentric and
cognitive strategies for 3D navigation in letter search tasks [29].

The large-size display has also been found to make possible differ-
ent forms of visual presentation and interaction modalities. For ex-
ample, a large display with gigapixels can accommodate more data
to support more scalable visualizations [47]. Ball, North, and Bow-
man reported that when display reached the giga-pixel scale, interac-
tion with walking improved task performance [2]. Similarly, in large
3D virtual environments, Ruddle, Payne, and Jones found that par-
ticipants moved more and that such movement improved task perfor-
mance [37]. Zanbaka et al. also found the benefits of FOV to improve
memory [48]. Our study attempts to separate the interactivity and vi-
sualization to keep the interaction techniques constant and study the
visualization factor alone. Users can only rotate the data. We also kept
a constant FOV and a constant number of pixels so that the retinal pro-
jections were the same size among viewing conditions. This setting
allowed us to ask a different set of questions and compare the effect of
viewing small-close and large-far images.

While the aforementioned studies used an approach called display
characteristic-specific study method [7], Swan et al. were among the
first to compare the practical uses of displays and justified the value of
empirical studies in practical uses [41]. Their study provided a com-
prehensive evaluation of four display types (desktop, CAVE, work-
bench, and Wall), stereopsis, movement type, and frame of reference
in a map-based battlefield visualization environment. They found that
desktop outperformed CAVE. Similarly, Demiralp et al. compared the
effect of context on shape perception of a set of potato-shaped ob-
jects and found that CAVE were not beneficial in accomplishing tasks;
fishtank had sharper images leading to better user experiences [11].
Prabhat et al.’s experiment compared a small fishtank and a CAVE for
some volume rendering of biomedical datasets for counting tasks and
reported that the CAVE was significantly more efficient than the other
two displays [32]. They suggested that the benefits came from the em-
bodied interaction, i.e., from the fact that participants could move their
bodies freely and look at large “body-scale” images. In fact, Mizell,
Jones, and Slater suggested that the “super-scaling” of visual features
made possible by interactivity and zooming in large environments also
improved task performance for some engineering tasks [26].

Existing results seem to suggest that high-quality images or large
feature size are more important than display size when interaction is
relatively the same (e.g., in [11]) and that when the users work in a rel-
atively low-resolution environment (e.g., CAVE), enabling interaction
can compensate for the low-resolution by displaying larger features to
retain or improve task performance as in [32]. Following the sug-
gestion of Swan et al. to design tasks within the application context



to establish usage guidelines [41], we have designed tasks that brain
researchers would perform but have place these tasks in the context of
display characteristics studies.

It is not surprising that performance depends on data and task char-
acteristics. Qi et al. compared four volume-visualization problems
related to identification and judgment of size, shape, density, and con-
nectivity of objects in a volume using three displays: a head-mounted
display (HMD) and a fishtank with and without haptic input [33]. This
work suggested that, even though the HMD had larger fields of re-
gard (FOR), fishtanks were better in providing overview and context,
both useful in the volume visualization tasks and haptic-input-aided
comprehension. Laha et al. were among the first to report that stereo
worsens task performance in occluded structures [24]. Inspired by
these previous work, here we study very dense datasets with low leg-
ibility. We also expand the area of study by running a dataset under
a broad range of task conditions, including bundle tracing and some
other tasks from the DMRI domain.

3 EXPERIMENTS

Our experiments used a 2×2×5 within-subject design with the three
independent variables of size (small and large), stereo (mono and
stereo), and tasks. In general, we wanted to know if size and stereo
have an impact on task performance (time and accuracy) on DMRI
tasks using streamtube visualizations, especially when the retinal im-
ages are about the same. We had two general hypotheses: (1) we
followed the bigger was better [6, 42] and hypothesized that adding
stereo and increasing display size would improve task accuracy and
reduce completion time for DMRI visualizations; (2) furthermore, the
greater the complexity of spatial tasks, the greater the benefit of an
improved display.

3.1 Display Settings

3.1.1 Equipment

We used two displays for the experiment with stereopsis on or off: a
24′′ small display (Alienware’s OptX AW2310) and a 72′′ large dis-
play (Mitsubishi WD-73738 3D Ready TV) with their native 1920×
1080 pixel resolution (Fig. 2). Displays were calibrated to be of
roughly equivalent brightness and contrast. We set up the displays
so that when either display was viewed from a specific distance, the
visual angle and hence the size of the retinal image would be identical
(Fig. 3). We used a 60◦ viewing angle, an optimal value suggested
by Ware [45] that was achieved by taking into account the horizon-
tal display size and the viewing distance. Coupled with the horizontal
screen size of 531.3 mm, we set the participants a comfortable view-
ing distance of 1.5 ft (460.1mm) for the small display. In order to get
identical retinal images, the large display was 4.5 ft (1380.3mm) away
from the user. We asked participants to keep their heads as static as
possible, although they were free to move closer or further away. In
our software implementation, we also kept the software FOV at 60◦

to equalize the two FOVs, as in our previous study [28] following the
suggested optimal solution by Czerwinski, Tan, and Robertson [10].
To minimize the environmental effects, all lights were turned off dur-
ing the study; and there was minimal reflective light in the room.

During the experiment, participants could rotate the data by left-
mouse dragging and the speed of the mouse movement was scaled to
the screen size. No zoom was enabled so as to make it impossible
to change the retinal images substantially. This setting gave a kinetic
depth effect to permit the viewer to integrate spatial information over
time and gain a continuous depiction of the spatial structure, similar to
[46].

3.1.2 Stereo Implementation

Fig. 4 illustrates the stereoscopic setting. Both displays supported
stereoscopic rendering which was turned on or off to control stereop-
sis. The participants saw the same visual angle of each pixel across
displays. The stereo used frame sequential (or quad buffer) stereo
in that each eye saw the full resolution of the entire screen, similar
to [41]. Participants sat at the same viewing distance as in the mono
condition with the software FOV set to 60◦ for each eye [8]. The

(a) Small stereo (b) Large stereo

Fig. 2. Brain researchers view 3D diffusion MRI tractography on two
displays (here showing the stereoscopic mode).

stereo was implemented using the viewing distance (or focal length),
camera (eye) position and separation, software FOV, and viewing frus-
tum. The eyes (camera) looked straight towards the screen along par-
allel vectors, separated by the viewing distance divided by 30 (30 was
empirically chosen to avoid double images; any number between 20
and 30 worked well on our displays). The code was implemented
in OpenGL running on a nVidia Quadro 4000 (by PNY) graphics
card [8]. Fig. 5 shows two camera shots of images presented on the two
displays in stereoscopic mode captured from the eye positions when all
lights in the room were off, as in the experiments. The datasets were
scaled to fill the screen and be displayed at zero disparity to reduce the
discomfort with stereo viewing.

3.1.3 Keep Contrast Constant

Contrast determines the quality of the display in terms of brightness
or luminance between white and black, and thus affects our ability to
see details in visualizations. We displayed the ANSI 4× 4 checker-
board pattern on each display, measured the brightness readings on a
AMPROBE LM-100 light meter at the center of all white squares and
all black squares, and calculated the contrast ratio using two meth-
ods. The first ratio was computed as (average (all white readings) -
average (all black readings)) / (average (all white readings) + average
(all black readings)), which is a good measure when gray-scale visu-
alizations are presented. The ratios were 0.979 and 0.975 on the small
and large displays accordingly. the ANSI ratio was also computed by
dividing white to black readings, yielding 92.2 for the small and 78.1
for the large displays. We also took the approach that “human observer
is always needed to carry out a color matching experiment” [42] and
asked participants if they observed differences of displays that would
affect their task performance, Our study participants reported no con-
trast problems while performing the tasks.

Participants wore the stereo glasses only in the stereo condition.
To keep the retina image brightness the same, we could have had the
participants to wear the stereoscopic glasses in 2D, similar to [41] and
our previous study [15]. We did not do this because the present study
was also designed to be faithful to real-world usage so as to ensure
external validity. Wearing glasses did make the stereoscopic images
dimmer than the 2D mono settings by about 50% measured using the
same light meter. No complaints were received in several pilot studies
about the low luminance caused by the glasses.

3.2 Tasks

Each participant completed 20 tasks on each display. They provided
the answer by clicking on the result button on the screen. The first
decision we have to make was to place those visual cues for tasks.
Neurologists suggested to cover questions related to five represen-
tative fiber bundles in brain anatomy: corpus callosum (CC, inter-
hemispheric fibers), cingulum bundles CG, (ventral-dorsal oriented),
corticospinal tract (CST, cranial-caudal oriented), ILF (interior longi-
tudinal occipitotemporal fasciculus, anterior to posterior), and IFO (in-
ferior frontaloccipital fasciculus, anterior to posterior to lateral). The
five bundles were chosen also because they represented two distinct



531.3 

2
9

8
.9

609.6

4
6

0
.1

60 o

531.3

460.1

0.277 a pixel

0.034 o

0
.2

7
7

Notes:

(1) The screen aspect ratio is 16:9.

(2) The unit is mm.

(3) The display condition is small-mono. For the 

large-mono condition, all lengths should be 

multiplied by three; all angles are the same. 

A

A

Fig. 3. Display setting (mono).

ES

Left 
camera

Right 
camera

Notes:
(1) VD: viewing distance.

(2) ES (eye separation) = VD / 30.

(3) Near viewing plane = VD / 2.5.

(4) Far viewing plane = bounding volume 

max edge length x 20.

(5) FOV = 60 o.

(6) The model is placed at zero disparity.

V
D

Near

V
ie

w
in

g
 

d
ir
e

c
ti
o

n

Display surface

Fig. 4. Display setting (stereo).

categories of fibers: association (i.e., intra-hemispheric) and commis-
sural (i.e., inter-hemispheric) fibers. Also, the size and numerosity
(number count) varied among these fibers, providing a range of sug-
gestions on how visual design could serve knowledge discovery in
these distinct structures.

3.2.1 Task Selection Approach

Our approach to selecting tasks was to review the literature and dis-
cuss with four brain researchers their activities and expectations for an
interactive visualization design. The results indicated that 3D visual-
izations of fiber tractography could be used to answer questions in the
following categories with some subtasks in each category: (1) certain
numerical measurement metrics [9], (2) spatial relationships of fiber
bundles (e.g., for resolving brain connectivity), (3) pathological con-
dition search and manipulation (e.g., is there a lesion? How can fibers
be cut to remove a tumor?), (4) comparisons (e.g., how different are
two bundle volumes in two hemispheres? Are two brain tractographies
the same? Are they normal?), (5) categorical (e.g., to which anatomi-
cal structure does a bundle belong?), (6) tube tracing (e.g., where does
a tube bundle go?) and (7) understanding of functional or structural
images.

Our experiments included five tasks chosen from these seven cate-
gories (Fig. 1) and our selection criteria balanced task difficulty, use-
fulness, and experiment length as tested in several pilot studies. The
first criterion was related to data. We excluded those conditions for
which we either did not have a ground truth or could not simulate
graphically due to unknown pathological characteristics. One such
task was tumor detection. Understanding tumors, in particular know-
ing if a tumor infiltrated, displaced edematous tracts, or destroyed

(a) small-stereo                                            (b) large-stereo

physical screen upper boundary

physical screen lower boundary

Fig. 5. Photos of the two stereoscopic displays: the dataset was scaled
to fill the screen during the experiment.

Table 1. Tasks (SIM: simple; CPX: complex).

Complexity Acronym Type

SIM FA Which of boxes 1 and 2 has higher

average FA value?

CPX TRACING Which of the boxes covers the ending

points of the tubes originating from

the yellow spheres?

SIM NAMING What is the name of the fiber bundle?

CPX LESION Is there a lesion in the given region?

SIM SAME Do the yellow fibers belong to the

BUNDLE same bundle?

tubes, was crucial to surgical planning [20], yet generating tumor ef-
fects was unlikely to be grounded because we did not know how the
tubes would change. In a previous study, we placed tumors in an area
and asked people to judge if tumor and tracts were in contact, and we
found that the task became arbitrarily more or less complex depending
on tumor location [31]. Thus we excluded such tasks from this study.
We also excluded tasks in category two for which we did not have
enough data. Finally, we excluded CG fibers in the summative evalu-
ation because most CG fibers from our tractography were too short to
be clinically meaningful.

The second data selection criterion was related to tasks. We ex-
cluded those open-ended qualitative tasks, such as in category 7, which
would deserve a full-blown study, perhaps with the insight-based eval-
uation method or well-controlled experiment [24]. We did use this task
in a pilot study as a complex task, but decided to remove it because pi-
lot participants (neurologists) commented that they would need more
than 10 minutes to describe the data features meaningfully. This may
suggest that our datasets were far more complex than in Laha et al.’s
study [24], where their participants were given about a minute to work
on descriptive tasks. Task difficulty was also a consideration. The
choice of the tasks related to these seven categories could differ widely
and affect task difficulty profoundly. For example, gauging if two bun-
dles are the same or not (a binary-choice task) is much easier than con-
sidering the percentage difference between two bundles (a numerosity
task). We originally used the numerosity task (task 5) because it would
be more interesting, but changed it to the binary-choice one, because
pilot study results suggested that participants guessed the answers.

3.2.2 Example Tasks

Our final task set includes five tasks based on the above selection cri-
teria. All tasks only have either right or wrong answers and there is
only one correct answer for each question. Participants must make a
choice before moving on to the next. Our pilot test results show that
task difficulty is within a reasonable range and participants can pro-
vide an answer in our settings. The accuracy of each task is defined by
the percentage of correct answers. Since we were not interested in dif-
ferences among tasks, tasks were executed sequentially by alternating
the complexity in the order of the task index below. Task completion
time, accuracy, and subjective workload were recorded.



Fig. 1a (FA) shows a sample stimulus for comparing the average
fractional anisotropy (FA) values in two boxes. The participants were
instructed to choose the box covering voxels of higher average FA
values. The participant was also told that FA was a quantity used in
DMRI to measure the anisotropy in each voxel of the brain volumes.
The FA color map was shown on the right: the redder the color, the
higher the FA value, following the color mapping in Zhang et al. [49].
Participants indicated the higher FA value by pressing the ‘Similar’ or
‘1 is higher’ or ‘2 is higher’ button from the three choices. The FA
value similarity threshold was set at 0.05, i.e., the two box values were
considered similar if the difference was less than 0.05. We chose this
value because the small threshold was not clinically interesting given
the measurement uncertainty. The chances of selecting each of the
three answers were about the same.

Fig. 1b (TRACING) shows a sample interface for the fiber-tracing
task in the DMRI streamtube visualizations; the yellow spheres mark
the starting points and the three boxes show possible ending positions.
Participants were asked to find the box in which the ending points
lay. They were told that the marked fibers belonging to the same bun-
dle followed the same orientation. Participants were also told that the
three boxes were placed at the end of bundles, each belonging to one
of the three anatomical orientations (anterior-posterior, dorsal-ventral,
and left-right), and that no two enclosed the bundles on the same orien-
tation. For example, the box 1 in Fig. 1b covers cranial-caudal fibers,
the box 2 (the correct answer) encloses anterior to posterior fibers, and
the box 3 is at the end of the only inter-hemispheric fibers.

Fig. 1c (NAMING) shows the dataset used in the bundle-naming
task: participants were asked to name the fiber bundle marked in yel-
low. The participants, regardless of their background, were trained
to recognize the fiber bundles in order to ensure sufficient knowledge
about the task and datasets. During the experiment, a cheat sheet was
provided displaying the CC, CST, ILF, and IFO bundles, so they did
not have to remember the names.

Fig. 1d (LESION) shows a task condition for the lesion task: partic-
ipants were asked to locate the lesion and indicate it by right-clicking
as close to the center of the lesion area as possible. Participants were
also told that the lesion was located in one of the five bundles and they
need to right-mouse click the center of the lesion (where the red cross
is in Fig. 1d). All points within the lesion area in the screen coordi-
nates were considered to be the correct answers.

Fig. 1e (SAME BUNDLE) shows an example of task 5, in which
participants were asked whether or not the fibers in yellow all belonged
to the same bundle. 50% of the data were in the same bundle and
50% were not. The choice of distracting fibers was based on fiber
orientations; often fibers from the closest perpendicular bundles were
selected. The example in Fig. 1e shows that the highlighted fibers do
belong to the same bundle, with a set from the CST (cranial-caudal
oriented). In the not-the-same-bundle condition, we would add noisy
fibers from the CC (inter-hemispheric) bundles and ask the participants
to make a judgment.

3.3 Diffusion MRI Datasets

3.3.1 Dimensions of legibility in DMRI visualizations

The ultimate goal of the experimental study is to guide the design
of effective visualizations when choosing displays, and thus the data
characteristics of the application must be considered [27]. Clutter is
a notorious problem in DMRI tractography when a uniform sampling
at each voxel of DMRI is used, as witnessed by the continuous ef-
forts to improve spatial structure understanding [14]. Clutter remains
a problem in all further stages in the data-analysis pipeline, since it can
limit structural recognition and visual segmentation [36]. In graphics,
clutter can be addressed by managing occlusion [13] and enhancing
legibility so that individual graphics items are unambiguous and can
be read by the users (p. 175 [5]) even when displayed in 3D or small
pixels [21].

Bertin’s three dimensions of legibility for map drawings (Table 2),
density, angular legibility, and retinal legibility, can be usefully ap-
plied to 3D visualizations. We added the dimension of context [3],
i.e., the direct relevance of the surrounding data to the tasks at hand.

We believe that context is orthogonal to the other dimensions applica-
ble to DMRI visualizations: it can provide spatial references and thus
aid the tasks at hand, but it can also obscure the internal structures,
making diagnosis more difficult due to occlusion. The most obvious
examples of this occur when small U-shaped fibers are shown in such a
way that we cannot see inside regardless of visualization method, and
when the seeding resolution becomes so high that removing irrelevant
fibers would require significant user interaction.

Table 2. Dimensions of legibility.

Dimensions definition

density number of marks per area

angular legibility - a global picture

occupying the right scale on the primary axes

- shape of a readable variable

retinal legibility separate foreground and background by

using the right amount of ink

context visual objects in surroundings often

embedded with other related objects

3.3.2 Density

The first factor that could affect our results is the visual clutter caused
by dense streamtube visualizations. Given different displays, we
would expect adding stereo and increasing size to help legibility in
general. In this study, we did not vary density in the datasets.

3.3.3 Context

We collaboratively identified a three-step workflow to choose con-
text presentation, expanded from the information visualization mantra:
overview first, zoom and filter, then detail-on-demand [40], and from
the report of neurologists’ data analysis workflow in [12]. In the first
step, initial global examination of the data, the full brain is exam-
ined, since this can facilitate the study of related measurement met-
rics that can provide more robust markers of white-matter structural
integrity [9]. The second step is a deeper analysis in which some
fiber tracts are removed from the whole brain in such a way that some
contexts are preserved. This partial brain study is an intermediate
data-exploration stage in which users remove some irrelevant block-
ing fibers and focus on the study at hand before approaching the region
of interest (ROI). The final step is to investigate a certain ROI that is
associated with task-relevant bundles, so as to make a more precise
pathological assessment without visual occlusion after the surround-
ing fibers are sufficiently understood. Using this workflow, here we
used fibers from the half-hemispherical partial volume to reduce the
complexity of seeing the full volume while preserving some context
information.

3.3.4 Tube Rendering

Tractography data were computed from the source MRI images cap-
tured from a normal human brain at resolution (0.9375×0.9375×4.52
mm3). Diffusion tensors of each seeding resolution are calculated with
tricubic B-spline interpolation and then fiber tracts are approximated
using the second-order Runge-Kutta solver [4, 49]. During the trac-
tography, the full volume seeding algorithm [43] is adopted for seed
selection to produce a tractography sequence.

3.4 Experimental Design

3.4.1 Design

Table 3 shows our experimental design, which followed random order-
ing with a Latin square design. Each participant (column 1) performed
20 tasks (4 datasets × 5 task types) on each display (row); the order
of the displays followed a Latin-square design. We prepared four data
groups with each of the CC, CST, ILF, and IFO (column 3) to coun-
terbalance the task difficulties on four displays (column 2). The task
difficulties depend on these four datasets and the only changes were



Table 3. Experimental Design.

participant display data

p1-3 SM CC1 CST1 ILF1 IFO1

LM CST2 ILF2 IFO2 CC2

SS IFO3 CC3 CST3 ILF3

LS ILF4 IFO4 CC4 CST4

p4-6 LM CC1 CST1 ILF1 IFO1

SM CST2 ILF2 IFO2 CC2

LS IFO3 CC3 CST3 ILF3

SS ILF4 IFO4 CC4 CST4

p7-9 SS CC1 CST1 ILF1 IFO1

LS CST2 ILF2 IFO2 CC2

SM IFO3 CC3 CST3 ILF3

LM ILF4 IFO4 CC4 CST4

p10-12 LS CC1 CST1 ILF1 IFO1

SS CST2 ILF2 IFO2 CC2

LM IFO3 CC3 CST3 ILF3

SM ILF4 IFO4 CC4 CST4

the target locations on these bundles. The clinical validity of these
data conditions were also confirmed by neurologists.

3.4.2 Participants

Twelve medical residents on rotation to the neurology department vol-
unteered for the study. Half of them were female and their average
age was 32.5 years. One reason for choosing this expert group was
that we observed in a pilot study the significant main impact of exper-
tise on timing. Though the accuracies were about the same between
expert and novice groups and were consistent in all task conditions,
we recruited only neuroscientists in the formal study to avoid the con-
founding factor of participant expertise.

In that pilot study, we compared performance with 10 participants:
five novices (avid computer users who had no knowledge in medicine)
and five experts (neuroscientists). One reason to run this pilot study
was that recruiting busy medical experts had been difficult and time-
consuming. If they got similar performances, we might in the future
use members of the general public to run this type of study. The other
reason was due to participants’ expertise. Though past work used
novices to replace experts in 3D flow studies [15], we thought doc-
tors might outperform the general population, since they were used to
examining images. In addition, we hoped to learn the population us-
age patterns in the study so that results obtained would be suitable for
the end users. The novice group included participants who were un-
dergraduate computer science majors. The medical expert group had
faculty and residents in the neurology department of the University of
Mississippi Medical Center. That pilot study aimed to discover per-
formance differences between novices and experts. Because we found
a significant main effect in that pilot study, we chose to use medical
experts only in the formal experiment presented here.

3.4.3 Procedure

Participants were asked to confirm that they had the normal and nor-
mal color vision. Participant stereoscopy was tested using our own
pictorial presentation; all confirmed during training that they could
see stereo on our displays. Participants were told about brain struc-
ture and were given a brief description of DMRI techniques and their
clinical use. They also had a short (about 15 minutes) warm-up ses-
sion that presented two trials under each of the tasks, using different
data from the formal study for each condition: these training sessions
ensured that the participants understood the conditions and the brain
anatomical structures. An example training document, with video and
audio, is available online at [8]. Participants completed 80 tasks total
or 20 tasks on each display. The task completion time was recorded
from the time when the model was loaded to when the answer but-
ton was clicked. Participants were allowed to change their answers

and that time was included as well. The time between clicking an an-
swer button and clicking the “next” button to advance the task was not
recorded. Participants were suggested to take breaks between these
two clicks when needed. They filled out a post-questionnaire to rate
their experiences in the four display conditions and their overall expe-
rience. Participant generally spent 1 to 1.5 hours to finish the experi-
ment and were compensated for their participation.

4 RESULTS AND ANALYSES

We collected 960 data points with 12 participants while performing
five tasks using two displays with on and off stereopsis. Before a sta-
tistical analysis was conducted, we used a quantile-quantile plot (QQ
plot), a graphical method, to test the normality. We removed outliers
if they lay more than three standard deviation of the mean in each ex-
perimental condition. Overall, we removed about 10 outliers from the
960 samples. All error bars in all graphs in this result section represent
one standard error from the mean.

We first looked the overall main effects by performing two types
of factorial analyses: three-way (size, stereo, and task) and two-way
(display and task). We called the combined size and stereo conditions
“display”, because it allowed us to examine individual devices. We
then performed the Tukey post-hoc analysis on the display factor when
there was significant main effect. We summarize overall performance
measurement results and test statistics in Fig. 6 and show performance
by tasks in Fig. 7. We omit the F and p values in the text part if the
values are in the figures.

4.1 Performance by Task

4.2 Performance Summary

We were surprised to see that our first hypothesis that size and stereo
would improve task performance was not supported. A three-way
ANOVA, with stereotype, size, and task being within-subject factors,
was used to analyze task completion time and accuracy. There was
a significant main effect by tasks ((F(4,19) = 48.1, p < 0.0001),
size (F(1,19) = 5.28), p = 0.02), and stereopsis (F(1,19) = 11.1,
p = 0.001) settings for task completion time. Only tasks and stereop-
sis settings were significant for the accuracy (task: F(4,19) = 8.36,
p < 0.0001; stereopsis: F(1,19) = 21.1, p < 0.0001). Size had no ef-
fect on accuracy. There was a significant two-way interaction between
stereopsis and task (F(4,19) = 3.4, p = 0.01).

A two-way ANOVA with display (stereotype and size combined)
and task showed that a significant main effect of display on task per-
formance (time: F(3,19)= 5.5, p< 0.001; accuracy: F(3,19)= 7.17,
p < 0.0001). SM (15.4 s) had the best task completion time, followed
by LM (18.0 s), SS (19.2 s), and LS (21.2 s) (Fig. 6(c)). LM (0.87)
and SM (0.88) also led to the most accurate answers, followed by LS
(0.75) and SS (0.77) (Fig. 6(f)). A post-hoc Tukey test revealed two
groups: < SM,LM > and < SS,LS > and no significant main effect
was found for the displays within the same group. Because task com-
pletion time is very influential, the following sections report the results
by task only rather than the overall results.

4.2.1 Task Completion Time and Accuracy

We first examined for which tasks we could observe the significant
main effect. Fig. 7 plots the performance by tasks. The small display
outperformed the large display for the FA and SAME BUNDLE tasks
and the main effect of size on task completion time was significant
(Fig. 7a 1-2). The mono also outperformed the stereo condition in task
completion time for the FA, LESION, and SAME BUNDLE tasks and
the main effect of stereopsis on task completion time was significant
(Fig. 7b 1-3).

Because both main effects of size and stereo were significant, we
collapsed the data by stereopsis for the FA and SAME BUNDLE tasks
to learn under which condition, the main effect occurred. We found
that the main effect of size on task completion time was only signifi-
cant in the mono condition but not in stereo (FA: mono: F(1, 1)=4.7,
p=0.03, <mean: S: 15.4s vs. L: 19.3s>; stereo: F(1,1)=0.7, p=0.40,
<mean: S: 19.7s vs. L: 21.8s>; SAME BUNDLE: mono: F(1,1)=6.3,
p=0.01, <mean: S:8.6s vs. L: 11.8s>; stereo: F(1, 1)=2.4, p=0.13,



(a) size vs. time                                       (b) stereopsis vs. time                                       (c) display vs. time

(d) size vs. accuracy                               (e) stereopsis vs. accuracy                                (f) display vs. accuracy

Fig. 6. Task completion time and accuracy by display characteristics across all tasks. All error bars in the graphs in this result section represent
one standard error from the mean.

<S: 10.8s vs. L: 13.1>). For both tasks, the small display had bet-
ter task completion time than the large display when the display was
mono. But under the stereoscopic condition, size did not have a sig-
nificant impact on task performance.

The increase in accuracy would be more important than efficacy
in clinical setting and it was calculated from the percentage of cor-
rect answers. The main effect of size on accuracy was not signifi-
cant (Fig. 7d). The mono conditions led to more accurate answers
for LESION and SAME BUNDLE (Fig. 7e 1-2). There was a trend
that the mono conditions led to more accurate answers for TRACING
(F(1,2) = 2.6, p = 0.1), though the effect was not significant.

4.2.2 Combined Display Effects

When evaluating the displays by task, we observed that the displays
had significant impact on efficiency for the FA and SAME BUNDLE
tasks; and the only differences of mean was between SM and LS. The
impact of display on efficiency was also significant for the LESION
task and two groups were found: < SM,LM > and < SS,LS > (Fig. 7f
1-2).

For FA, though we did not observe significant differences of display
on accuracy, LM led to the most accurate answers (about at least 6%
higher than all other conditions) (Fig. 7f first column). Considering
these tasks were used for medical diagnosis, this accuracy differences
were high enough to be considered important. Similar observations
could be made for the TRACING tasks where LM also led to the high-
est accuracy (Fig. 7f second column). We did not find any significant
main effect of size and stereo on TRACING and NAMING (Fig. 7).
Participants generally felt NAMING was an easy task.

4.3 Subjective Ratings and Comments

We collected subjective self-evaluation data using a post-questionnaire
asking about the effectiveness (EFFE, this system’s capabilities to
meet requirements), overall satisfaction (SAT, using this system is
not a frustrating experience), ease of use (EoU), and efficiency (EFFI,
don’t have to spend too much time correcting things with this system)
for the four display conditions (Fig. 8) on a scale of 7 with 1 being the
worst and 7 the best. In general, participants were positive about all
display conditions and were comfortable using them all, as all mean
scores are larger than 4.5.

 3
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Fig. 8. Subjective rating scores comparing these four displays ordered
in Large-Stereo (LS), Small-Stereo (LS), Large-Mono (LM), and Small-
Mono (SM) with regard to effectiveness (EFFE), satisfaction (SAT), ease
of use (EoU), and efficiency (EFFI).

Participants thought the small displays were easier to use, more ef-
ficient, and more effective than the large display. They suggested that
they did not need the large display to understand the brain datasets.
About half the participants remarked that they would use the stereo-
scopic setting with the small-stereo display because they felt the stereo
allowed better depth so they could see better. They especially com-
mented that they liked small-stereo for the TRACING tasks. On the
one hand, they felt they could touch the tubes on the small-stereo with
clearer depiction. Tubes on the display were too far to reach especially
in the stereoscopic case. This might explain why participants rated SS
highest in almost all categories except for effectiveness (Fig. 8 first
column). Almost all participants preferred the small display and five
of the 12 participants commented that they were confident to infer 3D
shapes from mono images because the mono images were used in their
textbooks.

Almost all participants felt that the large display seemed over-
whelming, especially when stereo was activated. They thought the
stereo was “cool” but offered them no benefits for the DMRI tasks,
at least in its current form. Participants generally reported that they
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Fig. 7. Task completion time and accuracy by tasks. Different color symbols in c and f represent different Tukey groups from post-hoc analyses.

looked much harder at the stereoscopic conditions simply because the
structures became clearer for some tasks and thus more interesting.
However, doing this did not improve accuracy. This might explain why
participants spent much longer looking in the LS condition (Fig. 7c)
but had the worst accuracy (Fig. 7f). They felt the stereoscopic display
for LESION was the worst possible combination.

Three participants saw possible value for tasks different from those
in our experiment. They would like to have multiple-views on the
large displays, so they could place multiple data side-by-side for com-
parative analyses, a task frequently performed by neurologists. Four
participants who preferred small displays reported that the screen size
of the small monitor matched their expected size of the human brain
and they did not need the large display to understand the data.

Perhaps most remarkably to visualization design, participants also
suggested using more non-photorealistic rendering or illustration-
based techniques similar to those used in their textbooks to show the
bundles. The current tube rendering did not seem to help very much to
‘assist’ them to ‘see’ more. Some of them remarked that they liked us-
ing hand-held devices for them to ‘carry’ the data, hold them close-by
their eyes, and experiment with how best to see the complex structures.

5 DISCUSSION

5.1 Stereo Experience

Doubt is raised by the observation that stereo viewing leads to worse
task performance, against our hypothesis and general findings that two
eyes are better than one. Most participants commented that the stereo-
scopic viewing of dense tubes triggered pictorial depth, but to our
surprise few perceived any benefit in using stereoscopic display. In

LESION and SAME BUNDLE, participants were more accurate with
monocular than with binocular presentations. Note that both tasks re-
quired the participants to derive patterns from tubes.

We think this negative effect is perhaps more related to some intrin-
sic drawback with stereoscopic displays for pattern analysis tasks that
require seeing internal structures. This lesion structures are somewhat
similar to the internal structures in the Laha et al.’s study where that
study also presents detrimental stereoscopic performance [24]. Their
paper reports that such negative stereo experience could have been
caused by participants’ eye strains from the stereoscopic viewing. The
other explanation for the worse task performance on the large stereo
display is related to cue conflicts. One important distance cue is that
our eyes converge more for near than for far objects [17]. This con-
vergence effect also explains why we always look smaller in mirrors.
or images on the Wheatstone stereoscopic display look smaller even
though the retinal image is not changed.

The visual system “thinks” it is looking at a closer object and scales
the visual perception in the direction of the object’s physical size. This
effect might explain why participants felt the lesion areas ‘shrank’ with
the distance in stereo. To some extent, the lesion area “looked smaller”
in the stereo mode as participants commented, thus making the visual
search difficult. On the other hand, we are likely to get more correct
stereo-readings on the near-small display than the far-large display. In
our setting, the disparity increases with the viewing distance and does
not exactly match physical eye separations. We did this purposefully
to equalize the retinal images. Then the stereo disparity for the near
view would be more close to the physical eye separation compared to
the far view, which would have slightly exaggerated disparity, though



the effect might be small [44].

Additionally, the stereoscopic images were darker than the mono
displays or that the stereoscopic display had low contrast. An inter-
esting future direction would be to study how performance varies with
differences in screen contrast and brightness. One way to do this is to
compare 3D TV with some high-end display with compatible bright-
ness and contrast to examine if performance differences will be found.

Our results also indicate that our knowledge about stereoscopic
viewing for dense tube-based visualizations is limited. We need to
understand shape as a collection of mutually dependent lines for shape
representations. One way is to alter the data rendering method to in-
crease internal structure legibility. One solution might be to allow
effective surface structure detection by adding a “cap” at the end of
a tube to allow the perception of surfaces and provide a clear view
of those broken fibers, for example, depicting the tensor field with
glyphs or volume rendering methods [22]. We may alter the data-
rendering method to increase visual legibility, especially since the ren-
dering method will alter the perceived structure, for example by ap-
plying flow maps [16] or showing topological structures [30, 39]. One
possibility is to study the tradeoffs between display characteristics and
more advanced depth-enhancement techniques, e.g., adding halos and
providing better color design [19].

5.2 Size Experience

In general, contrary to our hypothesis, the large screen did not improve
task performance. This result could have at least two explanations.
First, it might be argued that the brain structures are familiar to medi-
cal school clinicians and that they are used to examining 2D structures
in textbooks as well as 3D structures. This may explain why partici-
pants dislike the large displays or in another words, they would suggest
a different use in multiple-views. The brain tractography visualization
on the small monitor was presented at its expected actual size and that
there might not be a benefit from presenting it larger-than-life. Also,
participants were experts who had good mental model about the brain
structure, that they did not need the large display to provide situa-
tion awareness, as in other settings [28]. Second, we might posit that
the size experience is enhanced in ‘super-scale’ as large as our body
size [26], but our large display did not support zooming to bring large
model to participants’ eyes.

5.3 Retinal Images Experience

We observed that the small display improved task completion time
only when the display was in mono mode. Under the stereo display
condition, the two sizes performed equally well. Since the far-large
and near-close should project the same retinal images when the stereo-
type was the same, we might predict that the retinal image was a stable
estimate of task performance only under the stereoscopic condition.
With the mono display, retinal image was generally a good estimate
of accuracy but not of task completion time, at least for the tasks used
here.

There did appear to be a penalty associated with large-stereo view-
ing. A number of participants stated that they found viewing the same
DMRI tubes in the LS mode somewhat stressful. Part of this stress may
be due to the difficulty of the tasks: trying to find the structures from
several tens of tubes in a tangle of thousands of tubes is not easy. They
also felt some loss of control of the data when they sat further away.
For example, while performing the TRACING tasks, participants used
their fingers to point to the tubes to trace them; but they could not do
this on the far-large settings. We also suspected that coupling a body-
centric view so that participants could move their bodies around or to
zoom would improve viewing accuracy in the stereoscopic mode.

5.4 Tasks

Not surprisingly, we found a main effect of task type on completion
time, since the tasks differed in difficulty and cognitive activity in-
volved. The stereo and size had no significant effects on accuracy for
NAMING tasks, suggesting that NAMING might not require stereo
viewing or large displays. Indeed, all participants described that this

was the simplest task. Originally, we thought FA and SAME BUN-
DLE were very different tasks because FA was similar to visually map-
ping the colors to numerical values while SAME BUNDLE involved
counting and searching for differences, and because in the FA tasks
the target fibers constituted only a small chunk of the overall structure,
while participants needed to find only one difference in order to an-
swer the SAME BUNDLE questions. The two tasks apparently shared
some similarities with regard to the display choices. Participants also
reported that they mostly focused their attention on the fibers within
the two boxes.

5.5 Implications for Design

In this study, we used DMRI data carefully selected with neurologists
in a controlled experiment to learn the impact of stereo and size on
a set of DMRI tasks. The results can be generalized to cases where
users examine large dense tube visualizations. We have the following
recommendations for designers in choosing size and stereo: (1) Stereo
seems to have a greater impact on performance than size at least for
the tasks and visualizations in this study. We will need to design better
stereoscopic display experience that makes it useful for visual feature
extraction from dense dataset; (2) When a stereo display is chosen, the
task execution time did not vary with display size as long as the retinal
image is unchanged. Thus the retinal image is a fairly good estimate
of task execution time for the task and datasets we have studied; and
(3) For tasks that require seeing a fiber track (e.g, FA and TRACING
tasks), large-mono display may be a better choice. For complex tasks
that require shape understanding from thin tubes along the depth di-
mension (e.g., LESION), further considerations are needed to balance
the stereo and mono displays.

6 CONCLUSIONS

Overall, we think we still know very little about complex dense dataset
visualizations in 3D environments. One future direction is perhaps to
revisit those complex 3D shape understandings for better visualiza-
tion experience [1, 18, 34]. Previous work has shown that large dis-
plays and stereoscopic displays can increase task performance in many
types of environments. This study focuses on the impact of displays
on streamtube visualizations in real-world DMRI tasks measured with
medical doctors. The major contribution of this article is to provide
the first quantitative estimate of the benefits of stereo and size for per-
ceiving dense structured tube data based on the taxonomy of legibil-
ity. We provide a taxonomy of legibility and a rare counterexample in
which small mono displays were sufficient. Our results surprised us:
the easy-to-understand large stereo did not yield the best performance
as we expected. All the possibilities are to be further investigated, but
they do not detract from the practical utility of our findings.
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