
Lecture 4 Information Retrieval 1

Searching with Inverted Files

Information Retrieval
Lecture 4



Lecture 4 Information Retrieval 2

Motivation and Recap

� Users search the database with short queries

� Query components usually not present in every 
document

� Sequential search not efficient for large 
collections

� An index speeds up access by query term



Lecture 4 Information Retrieval 3

Types of Queries

� Basic

� set of n words

� phrase, proximity, pattern

� Logical (Boolean)

� basic queries joined with AND, OR, BUT

� Structural

� basic queries keyed to document structures 
(sections, headers, hyperlinks)



Lecture 4 Information Retrieval 4

� Most common search structure for text

� Vocabulary

� a.k.a dictionary or lexicon

� set of all words in text

� Occurrences

� a.k.a postings

� each occurrence of the word in the text

Inverted Index



Lecture 4 Information Retrieval 5

How big is the index?

For an n word collection:

� Lexicon

� Heaps’ Law: V = O(nβ), 0.4 < β < 0.6

� TREC-2: 1 GB text, 5 MB lexicon

� Postings

� at most, one per occurrence of the word in 
the text: O(n)



Lecture 4 Information Retrieval 6

Inverted Search Algorithm

1. Find query elements (words, patterns, 
etc) in the lexicon

2. Retrieve postings for each lexicon entry
3. Manipulate postings according to the 

retrieval model



Lecture 4 Information Retrieval 7

Inverted Search Example

1. Chocolate mousse 
pie

2. Chocolate chip 
cookies

3. Spinach Pie
4. Baklava

2

2
2

3

1
1 3

1

bake
baklava

chip
chocolate

cookie
mousse

pie
spinach

4
3

4
4

2

"I want to bake something with chocolate"



Lecture 4 Information Retrieval 8

Lexicon

� Every query goes here first

� keep in memory or a separate file

� search should be fast

� support prefix or pattern matching

� support updating

� Each entry in the vocabulary has

� the word

� a pointer into the postings structure

� word metadata

bake
baklava

chip
chocolate

cookie
mousse

pie
spinach



Lecture 4 Information Retrieval 9

Lexicon Data Structures

� Hash table

� O(1) lookup, with constant h() and collision 
handling

� Trie

� O(c) lookup, c = length(word)

� B-Tree

� On-disk storage with fast retrieval and good 
caching behavior



Lecture 4 Information Retrieval 10

Postings

� Addresses of words in text

� Indexing granularity

� character, word, document, 
logical block

� A posting usually holds

� document ID

� count in document

� positions within document?

2

2
2

3

1
1 3

1

4
3

4
4

2



Lecture 4 Information Retrieval 11

Inversion Example

1. Pease porridge hot, pease porridge 
cold,

2. Pease porridge in the pot,
3. Nine days old.
4. Some like it hot, some like it cold,
5. Some like it in the pot,
6. Nine days old.

(from Managing Gigabytes)



Lecture 4 Information Retrieval 12

In-memory Inversion
1. Create an empty lexicon
2. For each document d in the collection,

1. Read document, parse into terms
2. For each indexing term t,

1. fd,t = frequency of t in d

2. If t is not in lexicon, insert it
3. Append <d, fd,t> to postings list for t

3. Output each postings list into inverted file
1. For each term, start new file entry
2. Append each <d,fd,t> to the entry

3. Compress entry
4. Write entry out to file.



Lecture 4 Information Retrieval 13

Complexity of In-memory Inv.

� Time: O(n) for n-byte text

� Space

� Lexicon: space for unique words + offsets

� Postings, 10 bytes per entry

� document number: 4 bytes

� frequency count: 2 bytes (allows 65536 max occ)

� "next" pointer: 4 bytes

� Is this affordable?



Lecture 4 Information Retrieval 14

A Sample 5GB collection

fr
om

 M
an

ag
in

g 
G

ig
ab

yt
es



Lecture 4 Information Retrieval 15

Inverting the 5GB collection

� Time to invert in-memory

� At 2MB/sec, ~40 minutes to scan 5GB

� With parsing, stemming, lookup: 4 hours

� Writing out inverted file: ~40 min

� Space required

� at 10 bytes/entry, for 400M entries, need 
4GB of main memory

� OK for small collections, not for large



Lecture 4 Information Retrieval 16

Idea 1: Partition the text

� Invert a chunk of the text at a time

� Then, merge each sub-indexes into one 
complete index



Lecture 4 Information Retrieval 17

Idea 2: Sort-based Inversion

� Invert in two passes
1. Output records <t, d, ft> to a temp. file

2. Sort the records using external merge sort

� read a chunk of the temp file

� sort it using Quicksort

� write it back into the same place

� then merge-sort the chunks in place

3. Read sorted file, and write inverted file



Lecture 4 Information Retrieval 18

The Moral of the Story

� Indexing is something done rarely

� It pays to trade space for time

� disk is cheap!

� It pays to use RAM and disk wisely

� disk may be cheap, but disk access is 
expensive.


