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Abstract
A framework of complementary behavior has been proposed which maintains that direct

manipulation and speech interfaces have reciprocal strengths and weaknesses. This suggests that
user interface performance and acceptance may increase by adopting a multimodal approach that
combines speech and direct manipulation. This effort examined the hypothesis that the speed,
accuracy, and acceptance of multimodal speech and direct manipulation interfaces will increase
when the modalities match the perceptual structure of the input attributes. A software prototype
that supported a typical biomedical data collection task was developed to test this hypothesis. A
group of 20 clinical and veterinary pathologists evaluated the prototype in an experimental
setting using repeated measures. The results of this experiment supported the hypothesis that the
perceptual structure of an input task is an important consideration when designing a multimodal
computer interface. Task completion time, the number of speech errors, and user acceptance
improved when interface best matched the perceptual structure of the input attributes.
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Introduction
For many applications, the human computer interface has become a limiting factor. One

such limitation is the demand for intuitive interfaces for non-technical users, a key obstacle to the
widespread acceptance of computer automation [Landau, Norwich, and Evans 1989]. Another
difficulty consists of hands-busy and eyes-busy restrictions, such as those found in the
biomedical area during patient care or other data collection tasks. An approach that addresses
both of these limitations is to develop interfaces using automated speech recognition. Speech is a
natural form of communication that is pervasive, efficient, and can be used at a distance.
However, widespread acceptance of speech as a human computer interface has yet to occur.

This effort sought to cultivate the speech modality by evaluating it in a multimodal
environment with direct manipulation. Preliminary work on this effort has already been
published [Grasso, Ebert and Finin 1997]. The specific focus was to develop a theoretical model
on the use of speech input with direct manipulation in a multimodal interface. Such information
can be used to predict the success of multimodal interface designs using an empirically-based
model [Cole 1995]. The specific objective of this study was to apply the theory of perceptual
structure to multimodal interfaces using speech and mouse input. This was based on previous
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work with multimodal interfaces [Cohen 1992; Oviatt and Olsen 1994] and work that extended
the theory of perceptual structure to unimodal interfaces [Jacob et al. 1994].

Multimodal Interfaces
The history of research in multimodal speech and direct manipulation interfaces has led

to the identification of two key principles relevant to this research: the complementary
framework between speech and direct manipulation, and contrastive functionality. Both
principles are introduced along with general background information on speech and direct
manipulation interfaces.

Speech Interface
Compared to more traditional modalities, speech interfaces have a number of unique

characteristics. The most significant is that speech is temporary. Once uttered, auditory
information is no longer available. This can place extra memory burdens on the user and severely
limit the ability to scan, review and cross-reference information. Speech can be used at a
distance, which makes it ideal for hands-busy and eyes-busy situations. It is omnidirectional and
therefore can communicate with multiple users. However, this has implications related to privacy
and security. Finally, more than other modalities, there is the possibility of anthropomorphism
when using a speech interface. It has been documented that users tend to overestimate the
capabilities of a system if a speech interface is used and that users are more tempted to treat the
device as another person [Jones, Hapeshi, and Frankish 1990].

At the same time, speech recognition systems often carry technical limitations, such as
speaker dependence, continuity, and vocabulary size. Speaker dependent systems must be trained
by each individual user, but typically have higher accuracy rates than speaker independent
systems, which can recognize speech from any person. Continuous speech systems recognize
words spoken in a natural rhythm while isolated word systems require a deliberate pause
between each word. Although more desirable, continuous speech is harder to process, because of
the difficulty in detecting word boundaries. Vocabulary size can vary anywhere from 20 words
to more than 40,000 words. Large vocabularies cause difficulties in maintaining recognition
accuracy, but small vocabularies can impose unwanted restrictions. A more thorough review of
this subject can be found elsewhere [Peacocke and Graf 1990].

Direct Manipulation
Direct manipulation, made popular by the Apple Macintosh and Microsoft Windows

graphical user interfaces, is based on the visual display of objects of interest, the selection by
pointing, rapid and reversible actions, and continuous feedback [Shneiderman 1993]. The display
in a direct manipulation interface should indicate a complete image of the application’s
environment, including its current state, what errors have occurred, and what actions are
appropriate. A virtual representation of reality is created, which can be manipulated by the user
through physical actions like pointing, clicking, dragging, and sliding.

While this approach has several advantages, arguments have been made that direct
manipulation is inadequate for supporting fundamental transactions in applications such as word
processing, CAD, and database queries. These comments were made in reference to the limited
means of object identification and how the non-declarative aspects of direct manipulation can
result in an interface that is too low-level [Buxton 1993; Cohen and Oviatt 1994]. Shneiderman
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[1993] points to ambiguity in the meanings of icons and limitations in screen display space as
additional problems with direct manipulation.

Complementary Framework
It has been suggested that direct manipulation and speech recognition interfaces have

complementary strengths and weaknesses that could be leveraged in multimodal user interfaces
[Cohen 1992]. By combining the two modalities, the strengths of one could be used to offset the
weaknesses of the other. For simplicity, speech recognition was used to mean the identification
of spoken words, not necessarily natural language recognition, and direct manipulation focused
on mouse input.
 The complementary advantages of direct manipulation and speech recognition are
summarized in Figure 1. Note that the advantages of one are the weaknesses of the other. For
example, direct engagement provides an interactive environment that is thought to result in
increased user acceptance and allow the computer to become transparent as users concentrate on
their tasks [Shneiderman 1983]. However, the computer can only become totally transparent if
the interface allows hands-free and eyes-free operation. Speech recognition interfaces provide
this, but intuitive physical actions no longer drive the interface.

Direct Manipulation Speech Recognition
Direct engagement Hands/eyes free operation
Simple, intuitive actions Complex actions possible
Consistent look and feel Reference does not depend on location
No reference ambiguity Multiple ways to refer to entities

Figure 1: Complementary Strengths of Direct Manipulation and Speech

Taking these observations into account, a framework of complementary behavior was
proposed, suggesting that direct manipulation and speech interfaces have reciprocal strengths and
weaknesses [Cohen and Oviatt 1994]. This suggests that user interface performance and
acceptance may increase by adopting a multimodal approach that combines speech and direct
manipulation. Several applications were proposed where each modality would be beneficial.
These are summarized in Figure 2. For example, direct manipulation interfaces we believed to be
best used for specifying simple actions when all references are visible and the number of
references are limited, while speech recognition interfaces would be better at specifying more
complex actions when references are numerous and not visible.

Direct Manipulation Speech Recognition
Visible References Non-Visible References
Limited References Multiple References
Simple Actions Complex Actions

Figure 2: Proposed Applications for Direct Manipulation and Speech

Contrastive Functionality
A study by Oviatt and Olsen [1994] examined how people might combine input from

different devices in a multimodal computer interface. The study used a simulated service
transaction system with verbal, temporal, and computational input tasks using both structured
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and unstructured interactions. Participants were free to use handwriting, speech, or both during
testing.

This study evaluated user preferences in modality integration using spoken and written
input. Among the findings, it was noted that simultaneous input with both pen and voice was
rare. Digits and proper names were more likely written. Also, structured interaction using a
form-based approach were more likely written.

However, the most significant factor in predicting the use of integrated multimodal
speech and handwriting was what they called contrastive functionality. Here, the two modalities
were used in different ways to designate a shift in context or functionality. Input patterns
observed were original versus corrected input, data versus command, and digits versus text. For
example, one modality was used for entering original input while the other was reserved for
corrections.

While this study identified user preferences, a follow-up study explored possible
performance advantages [Oviatt 1996]. It was reported that multimodal speech and handwriting
interfaces decreased task completion time and decreased errors for certain tasks.

Theory of Perceptual Structure
Along with key principles of multimodal interfaces, the work we present is also based on

an extension of the theory of perceptual structure [Garner 1974]. Perception is a cognitive
process that occurs in the head, somewhere between the observable stimulus and the response.
This response is not just a simple representation of a stimulus, because perception consists of
various kinds of cognitive processing with distinct costs. Pomerantz and Lockhead [1991] built
upon Garner's work to show that by understanding and capitalizing on the underlying structure of
an observable stimulus, it is believed that a perceptual system could reduce these processing
costs.

Structures abound in the real world and are used by people to perceive and process
information. Structure can be defined as the way the constituent parts are arranged to give
something its distinctive nature. It often involves redundancy. Relying on this phenomenon has
led to increased efficiency in various activities. For example, a crude method for weather
forecasting is that the weather today is a good predictor of the weather tomorrow. An instruction
cache can increase computer performance because the address of the last memory fetch is a good
predictor of the address of the next fetch. Software engineers use metrics from previous projects
to predict the outcome of future efforts.

While the concept of structure has a dimensional connotation, Pomerantz and Lockhead
[1991] state that structure is not limited to shape or other physical stimuli, but is an abstract
property that transcends any particular stimulus. Using this viewpoint, information and structure
are essentially the same in that they are the property of a stimulus that is perceived and
processed. This allowed us to apply the concept of structure to a set of attributes that are more
abstract in nature. That is, the collection of histopathology observations.

Integrality of Stimulus Dimensions
Garner documented that the dimensions of a structure can be characterized as integral or

separable and that this relationship may affect performance under certain conditions [Garner
1974; Shepard 1991]. The dimensions of a structure are integral if they cannot be attended to
individually, one at a time; otherwise, they are separable.
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Whether two dimensions are integral or separable can be determined by similarity
scaling. In this process, similarity between two stimuli is measured as a distance. Subjects are
asked to compare pairs of stimuli and indicate how alike they are. For example, consider the
three stimuli, A, B, and C. Stimuli A and B are in dimension X (they differ based on some
characteristic of X). Similarly, stimuli A and C are in the Y dimension. Given the values of dx

and dy, which each differ in one dimension, the value of dxy can be computed.
The distance between C and B, which are in different dimensions, can be measured in

two ways as diagrammed in Figure 3. The city-block or Manhattan distance is calculated by
following the sides of the right triangle so that dxy = dx + dy. The Euclidean distance follows the
Pythagorean relation so that dxy = (dx + dy)

1/2. This value is then compared to the value between
C and B given by the subjects. If the given value for dxy is closer to the Euclidean distance, the
two dimensions are integral. If it is closer to the city-block distance, the dimensions are
separable.
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dx

dxy

X Dimension
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 D
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Euclidean Metric: dxy = (dx + dy)1/2

City-Block Metric: dxy = dx + dy

Figure 3: Euclidean Versus City-Block Metrics

Integrality of Unimodal Interfaces
Considering these principles, one research effort tested the hypothesis that performance

improves when the perceptual structure of the task matches the control structure of the input
device [Jacob et al. 1994]. The concept of integral and separable was extended to interactive
tasks by noting that the attributes of an input task correspond to the dimensions of an observable
stimulus. Also, certain input attributes would be integral if they follow the Euclidean metric, and
separable if they follow the city-block metric.

Each input task involved one multidimensional input device, either a two-dimensional
mouse or a three-dimensional tracker. Two graphical input tasks with three inputs each were
evaluated, one where the inputs were integral (x location, y location, and size) and the other
where the inputs were separable (x location, y location, and color).

Common sense might say that a three-dimensional tracker is a logical superset of a two-
dimensional mouse and therefore always as good and sometimes better than a mouse. Instead,
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the results showed that the tracker performed better when the three inputs were perceptually
integral, while the mouse performed better when the three inputs were separable.

Application of Perceptual Structure to Multimodal Interfaces
Previous work on multimodal interfaces reported that such interfaces should result in

performance gains [Cohen 1992]. Also, it was reported that a multimodal approach is preferred
when an input task contains a shift in context [Oviatt and Olsen 1994]. This shift in context
suggests that the attributes of those tasks were perceptually separable.

In addition, the theory of perceptual structures, integral and separable, was extended with
the hypothesis that the perceptual structure of an input task is key to the performance of
unimodal, multidimensional input devices on multidimensional tasks [Jacob et al. 1994]. Their
finding that performance increased when a separable task used an input device with separable
dimensions suggests that separable tasks should be entered with separate devices in a multimodal
interface. Also, since performance increased when integral tasks were entered with an integral
device suggests that a single device should be used to enter integral tasks in a multimodal
interface.

Based on these results, a follow-on question was proposed to determine the effect of
integral and separable input tasks on multimodal speech and direct manipulation interfaces.
Predicted results were that the speed, accuracy, and acceptance of multidimensional multimodal
input would increase when the attributes of the task are perceived as separable, and for unimodal
input would increase when the attributes are perceived as integral. Three null hypotheses were
generated.

(H10) The integrality of input attributes has no effect on the speed of the user.
(H20) The integrality of input attributes has no effect on the accuracy of the user.
(H30) The integrality of input attributes has no effect on acceptance by the user.

In this experiment, the theory of perceptual structure was applied to a multimodal
interface similar to Jacob et al. [1994]. One important difference is that Jacob et al. used a single
multidimensional device while we used multiple single dimensional devices. Note that we
viewed selecting items with a mouse as a one-dimensional task, while Jacob viewed selecting an
X and Y coordinate with a mouse as a two-dimensional task. The attributes of the input task
correspond to the dimensions of the perceptual space. The structure or redundancy in these
dimensions reflects the correlation in the attributes. Those dimensions that are highly correlated
are integral and those that are not are separable. The input modality consists of two devices:
speech and mouse input. Those input tasks that use one of the devices are using the input
modality in an integral way and those input tasks that use both devices are using the input
modality in a separable way. This is shown in Figure 4.

Input Device Perception Modality
Speech Only Integral Unimodal
Mouse Only Integral Unimodal
Speech and Mouse Separable Multimodal
Figure 4: Input Device Perception Versus Modality
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Histopathologic data collection in animal toxicology studies was chosen as the
application domain for user testing. Applications in this area include several significant hands-
busy and eyes-busy restrictions during microscopy, necropsy, and animal handling. It is based on
a highly structured, specialized, and moderately sized vocabulary with an accepted medical
nomenclature. These and other characteristics make it a prototypical data collection task, similar
to those required in biomedical research and clinical trials, and therefore a good candidate for a
speech interface [Grasso 1995].

Methodology

Independent Variables
The two independent variables for the experiment were the interface type and task order.

Both variables were counterbalanced as described below. The actual input task was to enter
histopathologic observations consisting of three attributes: topographical site, qualifier, and
morphology. The site is a location on a given organ. For example, the alveolus is a topographical
site of the lung. The qualifier is used to identify the severity or extent of the morphology, such as
mild or severe. The morphology describes the specific histopathological observation, such as
inflammation or carcinoma. Note that input task was limited to these three items. In normal
histopathological observations, there may be multiple morphologies and qualifiers. These were
omitted for this experiment. For example, consider the following observation of a lung tissue
slide consisting of a site, qualifier, and morphology: alveolus, multifocal, granulosa cell tumor.

The three input attributes correspond to three input dimensions: site, qualifier, and
morphology. After considering pairs of input attributes, it was concluded that qualifier and
morphology (QM relationship) were related by Euclidean distances and therefore integral.
Conceptually, this makes sense, since the qualifier is used to describe the morphology, such as
multifocal, granulosa cell tumor. Taken by itself, the qualifier had little meaning. Also, the site
and qualifier (SQ relationship) were related by city-block distances and therefore separable.
Again, this makes sense since the site identified what substructure in the organ the tissue was
taken from, such as alveolus or epithelium. Similar to SQ, the site and morphology (SM
relationship) was related by city-block distances and also separable. Based on these relationships
and the general research hypothesis, Figure 5 predicted which modality would lead to
performance, accuracy, and acceptability improvements in the computer interface.

Data Entry Task Perception Modality
(SQ) Enter Site and Qualifier Separable Multimodal
(SM) Enter Site and Morphology Separable Multimodal
(QM) Enter Qualifier and Morphology Integral Unimodal

Figure 5: Predicted Modalities for Computer-Human Interface Improvements

The three input attributes (site, qualifier, morphology) and two modalities (speech,
mouse) yielded a possible eight different user interface combinations for the software prototype
as shown in Figure 6. Also in this table are the predicted interface improvements for entering
each pair of attributes (SQ, SM, QM) identified with a “+” or “-” for a predicted increase or
decrease, respectively. The third alternative was selected as the congruent interface, because the
choice of input devices was thought to best match the integrality of the attributes. The fifth
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alternative was the baseline interface, since the input devices least match the integrality of the
attributes.

Modality Site Qual Morph SQ SM QM Interface
1. Mouse M M M - - +
2. Speech S S S - - +
3. Both M S S + + + Congruent
4. Both S M M + + +
5. Both S S M - + - Baseline
6. Both M M S - + -
7. Both S M S + - -
8. Both M S M + - -

Figure 6: Possible Interfaces Combinations for the Software Prototype

 The third and fifth alternatives were selected over other equivalent ones, because they
both required two speech inputs, one mouse input, and the two speech inputs appeared adjacent
to each other on the computer screen. This was done to minimize any bias related to the layout of
information on the computer screen.

It might have been useful to consider mouse-only and speech-only tasks (interface
alternatives one and two). However, because of performance differences between mouse and
speech input, any advantages due to perceptual structure could not be measured accurately.

The three input attributes involved reference identification, with no declarative, spatial, or
computational data entry required. This includes the organ sites, which may be construed as
having a spatial connotation. However, most of the sites used selected were not spatial, such as
the epithelium, a ubiquitous component of most organs. Sites were also selected from a list as
opposed to identifying a physical location on an organ, and were identified beforehand with each
slide. This should have minimized any built-in bias toward either direct manipulation or speech.

There are some limitations in using the third and fifth alternatives. Note in Figure 4 and
in Figure 5 that both the input device and the input attributes can be integral or separable. Figure
7 describes the interface alternatives in these terms. Note that the congruent interface compares a
separable device with separable attributes and an integral device with integral attributes. The
baseline interface compares a separable device with integral attributes and a separable device
with separable attributes. However, neither interface compares an integral device with separable
attributes.

Relationship Device Attributes
Alternative 3 (Congruent) SQ Separable Separable

SM Separable Separable
QM Integral Integral

Alternative 5 (Baseline) SQ Separable Integral
SM Separable Separable
QM Separable Integral

Figure 7: Structure of Input Device and Input Attributes

One other comment is that these specific user-interface tasks were not meant to identify
the optimal method for entering data. In fact, many pathologists would probably consider using
two input devices to enter histopathology observations counterproductive. The goal of this effort
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was not to develop an optimal user interface modality, but instead to discover something about
the efficiency of multimodal interfaces.

Dependent Variables
The dependent variables for the experiment were speed, accuracy, and acceptance. The

first two were quantitative measures while the latter was subjective.
Speed and accuracy were recorded both by the experimenter and the software prototype.

Time was defined as the time it took a participant to complete each of the 12 data entry tasks and
was recorded to the nearest millisecond. Three measures of accuracy were recorded: speech
errors, mouse errors, and diagnosis errors. A speech error was counted when the prototype
incorrectly recognized a spoken utterance by the participant. This was because the utterance was
misunderstood by the prototype or was not a valid phrase from the vocabulary. Mouse errors
were recorded when a participant accidentally selected an incorrect term from one of the lists
displayed on the computer screen and later changed his or her mind. Diagnosis errors were
identified as when the input did not match the most likely diagnosis for each tissue slide. The
actual speed and number of errors was determined by analysis of diagnostic output from the
prototype, recorded observations of the experimenter, and review of audio tapes recorded during
the study.

User acceptance data was collected with a subjective questionnaire containing 13 bi-polar
adjective pairs that has been used in other human computer interaction studies [Casali, Williges,
and Dryden 1990; Dillon 1995]. The adjectives are listed in Figure 8. The questionnaire was
given to each participant after testing was completed. An acceptability index (AI) was defined as
the mean of the scale responses, where the higher the value, the lower the user acceptance.

User Acceptance Survey Questions
1. fast slow 8. comfortable uncomfortable
2. accurate inaccurate 9. friendly unfriendly
3. consistent inconsistent 10. facilitating distracting
4. pleasing irritating 11. simple complicated
5. dependable undependable 12. useful useless
6. natural unnatural 13. acceptable unacceptable
7. complete incomplete

Figure 8: Adjective Pairs used in the User Acceptance Survey

Subjects
Twenty subjects from among the biomedical community participated in this experiment

as unpaid volunteers between January and February 1997. Each participant reviewed 12 tissue
slides, resulting in a total of 240 tasks for which data was collected. The target population
consisted of veterinary and clinical pathologists from the Baltimore-Washington area. Since the
main objective was to evaluate different user interfaces, participants did not need a high level of
expertise in animal toxicology studies, but only to be familiar with tissue types and reactions.
Participants came from the University of Maryland Medical Center (Baltimore, MD), the
Veteran Affairs Medical Center (Baltimore, MD), the Johns Hopkins Medical Institutions
(Baltimore, MD), the Food and Drug Administration Center for Veterinary Medicine (Rockville,
MD), and the Food and Drug Administration Center for Drug Evaluation and Research
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(Gaithersburg, MD). To increase the likelihood of participation, testing took place at the
subjects’ facilities.

The 20 participants were distributed demographically as follows, based on responses to
the pre-experiment questionnaire. The sample population consisted of professionals with
doctoral degrees (D.V.M., Ph.D., or M.D.), ranged in age from 33 to 51 years old, 11 were male,
9 were female, 15 were from academic institutions, 13 were born in the U.S., and 16 were native
English speakers. The majority indicated they were comfortable using a computer and mouse and
only 1 had any significant speech recognition experience.

The subjects were randomly assigned to the experiment using a within-group design. Half
of the subjects were assigned to the congruent-interface-first, baseline-interface-second group
and were asked to complete six data entry tasks using the congruent interface and then complete
six tasks using the baseline interface. The other half of the subjects were assigned to the
baseline-interface-first, congruent-interface-second group and completed the tasks in the reverse
order. Also counterbalanced were the tissue slides examined. Two groups of 6 slides with
roughly equivalent difficulty were randomly assigned to the participants. This resulted in 4
groups based on interface and slide order as shown in Figure 9. For example, subjects in group
B1C2 used the baseline interface with slides 1 through 6 followed by the congruent interface
with slides 7 through 12. Counterbalancing into these four groups minimized unwanted effects
from slide order and vocabulary.

First Task
Interface       Slides

Second Task
Interface       Slides

B1C2 Baseline 1-6 Congruent 7-12
B2C1 Baseline 7-12 Congruent 1-6
C1B2 Congruent 1-6 Baseline 7-12
C2B1 Congruent 7-12 Baseline 1-6

Figure 9: Subject Groupings for the Experiment

Materials
A set of software tools was developed to simulate a typical biomedical data collection

task in order to test the validity of this hypothesis. The prototype computer program was
developed using Microsoft Windows 3.11 (Microsoft Corporation, Redmond, WA) and Borland
C++ 4.51 (Borland International, Inc., Scotts Valley, CA).

The PE500+ was used for speech recognition (Speech Systems, Inc., Boulder, CO). The
hardware came on a half-sized, 16-bit ISA card along with head-mounted microphone and
speaker, and accompanying software development tools. Software to drive the PE500+ was
written in C++ with the SPOT application programming interface. The Voice Match Tool Kit
was used for grammar development. The environment supported speaker-independent,
continuous recognition of large vocabularies, constrained by grammar rules. The vocabulary was
based on the Pathology Code Table [1985] and was derived from a previous effort establishing
the feasibility of speech input for histopathologic data collection [Grasso and Grasso 1994].
Roughly 1,500 lines of code were written for the prototype.

The tissue slides for the experiment were provided by the National Center for
Toxicological Research (Jefferson, AK). All the slides were from mouse tissue and stained with
H&E. Pictures were taken at high resolution with the original dimensions of 36 millimeters by 24
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millimeters. Each slide was cropped to show the critical diagnosis and scanned at two
resolutions: 570 by 300 and 800 by 600. All scans were at 256 colors. The diagnoses for the
twelve slides are shown in Figure 10.

Slide Diagnosis (Organ, Site, Qualifier, Morphology)
Group 1 1 Ovary, Media, Focal, Giant Cell

2 Ovary, Follicle, Focal, Luteoma
3 Ovary, Media, Multifocal, Granulosa Cell Tumor
4 Urinary Bladder, Wall, Diffuse, Squamous Cell Carcinoma
5 Urinary Bladder, Epithelium, Focal, Transitional Cell Carcinoma
6 Urinary Bladder, Transitional Epithelium, Focal, Hyperplasia

Group 2 7 Adrenal Gland, Medulla, Focal, Pheochromocytoma
8 Adrenal Gland, Cortex, Focal, Carcinoma
9 Pituitary, Pars Distalis, Focal, Cyst

10 Liver, Lobules, Diffuse, Vacuolization Cytoplasmic
11 Liver, Parenchyma, Focal, Hemangiosarcoma
12 Liver, Parenchyma, Focal, Hepatocelluar Carcinoma

Figure 10: Tissue Slide Diagnoses

The software and speech recognition hardware were deployed on a portable PC-III
computer with a 12.1 inch, 800x600 TFT color display, a PCI Pentium-200 motherboard, 32 MB
RAM, and 2.5 GB disk drive (PC Portable Manufacturer, South El Monte, CA). This provided a
platform that could accept ISA cards and was portable enough to take to the participants’
facilities for testing.

The main data entry task the software supported was to project images of tissue slides on
a computer monitor while subjects entered histopathologic observations in the form of
topographical sites, qualifiers, and morphologies. Normally, a pathologist would examine tissue
slides with a microscope. However, to minimize hands-busy or eyes-busy bias, no microscopy
was involved. Instead, the software projected images of tissue slides on the computer monitor
while participants entered observations in the form of topographical sites, qualifiers, and
morphologies. While this might have contributed to increased diagnosis errors, the difference in
relative error rates from both interfaces could still be measured. Also, participants were allowed
to review the slides and ask clarifying questions as described in the experimental procedure.

The software provided prompts and directions to identify which modality was to be used
for which inputs. No menus were used to control the system. Instead, buttons could be pressed to
zoom the slide to show greater detail, adjust the microphone gain, or go to the next slide. To
minimize bias, all command options and nomenclature terms were visible on the screen at all
times. The user did not need to scroll to find additional terms.

A sample screen is shown in Figure 11. In this particular configuration, the user would
select a site with a mouse click and enter the qualifier and morphology by speaking a single
phrase, such as moderate, giant cell. The selected items would appear in the box above their
respective lists on the screen. Note that the two speech terms were always entered together. If
one of the terms was not recognized by the system, both would have to be repeated. A transcript
for the congruent and baseline interfaces for one of the subjects is given in Figure 12 and Figure
13.
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Figure 11: Sample Data Entry Screen
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Time Device Action Comment
Task 1 0 Mouse Press button to begin test.

3 Mouse Click on “media”
7 Speech “Select marked giant cell”
14 Mouse Click on “press continue” button

Task 2 20 Mouse Click on “follicle”
29 Speech “Select moderate hyperplasia” Recognition error
36 Speech “Select moderate hyperplasia”
42 Mouse Click on “press continue” button

Task 3 44 Mouse Click on “media”
50 Speech “Select moderate inflammation”
57 Mouse Click on “press continue” button

Task 4 61 Mouse Click on “wall”
65 Speech “Select marked squamous cell carcinoma”
71 Mouse Click on “press continue” button

Task 5 74 Mouse Click on “epithelium”
81 Speech “Select moderate transitional cell carcinoma”
89 Mouse Click on “press continue” button

Task 6 94 Mouse Click on “transitional epithelium”
96 Speech “Select marked transitional cell carcinoma”
104 Mouse Click on “press continue” button

Figure 12: Congruent Interface Transcript
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Time Device Action Comment
Task 1 0 Mouse Press button to begin test.

15 Mouse Click on “medulla” Incorrect action
20 Speech “Select medulla mild”
21 Mouse Click on “pheochromocytoma”
27 Mouse Click on “press continue” button

Task 2 35 Speech “Select cortex marked” Recognition error
39 Mouse Click on “pheochromocytoma”
42 Speech “Select cortex marked”
51 Mouse Click on “press continue” button

Task 3 70 Speech “Select pars distalis moderate”
76 Mouse Click on “granulosa cell tumor”
77 Mouse Click on “press continue” button

Task 4 82 Speech “Select lobules marked”
88 Mouse Click on “vacuolization cytoplasmic”
89 Mouse Click on “press continue” button

Task 5 97 Speech “Select parenchyma moderate” Recognition error
101 Mouse Click on “hemangiosarcoma”
103 Speech “Select parenchyma moderate”
109 Mouse Click on “press continue” button

Task 6 114 Speech “Select parenchyma marked” Recognition error
118 Mouse Click on “hepatocellular carcinoma”
124 Speech Click on “press continue” button
128 Mouse Click on “press continue” button

Figure 13: Baseline Interface Transcript

Procedure
A within-groups experiment, fully counterbalanced on input modality and slide order was

performed. Each subject was tested individually in a laboratory setting at the participant’s place
of employment or study. Participants were first asked to fill out the pre-experiment questionnaire
to collect demographic information. The subjects were told that the objective of this study was to
evaluate several user interfaces in the context of collecting histopathology data and was being
used to fulfill certain requirements in the Ph.D. Program of the Computer Science and Electrical
Engineering Department at the University of Maryland Baltimore County. They were told that a
computer program would project images of tissue slides on a computer monitor while they enter
observations in the form of topographical sites, qualifiers, and morphologies.

After reviewing the stated objectives, each participant was seated in front of the computer
and had the headset adjusted properly and comfortably, being careful to place the microphone
directly in front of the mouth, about an inch away. Since the system cam with a speaker-
independent vocabulary provided with the PE500+ speech recognition engine, there was no need
to enroll or train the speech recognizer. However, a training program was run to allow
participants to practice speaking typical phrases in such a way that the speech recognizer could
understand. The objective was to become familiar speaking these phrases with reasonable
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recognition accuracy. Participants were encouraged to speak as clearly and as normally as
possible.

Next, each subject went through a training session with the actual test program to practice
reading slides and entering observations. Participants were instructed that this was not a test and
to feel free to ask the experimenter about any questions they might have.

The last step before the test was to review the two sets of tissue slides. The goal was to
make sure participants were comfortable reading the slides. This was to ensure that the
experiment was measuring the ability of subject to enter data, not their ability to read slides.
During the review, participants were encouraged to ask questions about possible diagnoses.

For the actual test, participants entered two groups of six histopathologic observations in
an order based on the group they were randomly assigned to. They were encouraged to work at a
normal pace that was comfortable for them and to ask questions before the actual test began.
After the test, the user acceptance survey was administered as a post-experiment questionnaire.
A summary of the experimental procedure can be found in Figure 14.

Task
Step 1 Pre-experiment questionnaire and instructions
Step 2 Speech training
Step 3 Application training
Step 4 Slide review
Step 5 Evaluation and quantitative data collection
Step 6 Post-experiment questionnaire and subjective data collection

Figure 14: Experimental Procedure

Results
For each participant, speed was measured as the time to complete the 6 baseline interface

tasks, the time to complete the 6 congruent interface tasks, and time improvement (baseline
interface time - congruent interface time). The mean improvement for all subjects was 41.468
seconds. A t test on the time improvements was significant (t(19) = 4.791, p = .0001, two-tailed).
A comparison of mean task completion times is in Figure 15. For each subject, the 6 baseline and
6 congruent tasks are graphed.

A two-factor ANOVA with repeated measures was run as well. A 2 x 4 ANOVA was set
up to compare the 2 interfaces with the 4 treatment groups. The sample variation comparing the
baseline interface times to the congruent interface times was significant (p = .028). The ANOVA
showed that the interaction between interface order and task order had no significant effect on
the results (p = .903).

Three types of user errors were recorded: speech recognition errors, mouse errors, and
diagnosis errors. The baseline interface had a mean speech error rate of 5.35, and the congruent
interface had mean of 3.40. The reduction in speech errors was significant (paired t(19) = 2.924,
p = .009, two-tailed). A comparison of mean speech error rates by task is shown in Figure 16.
Similar to task completion times, a two-factor ANOVA with repeated measures was run for
speech errors to show that the sample variation was significant (p = .009) and that the interaction
between interface order and task order had no significant effect on the results (p = .245).

Mouse errors for the baseline interface had mean error rate of 0.35, while the congruent
interface had mean of 0.45. Although the baseline interface had fewer mouse errors, these results
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were not significant (paired t(19) = 0.346, p = .733, two-tailed). For diagnosis errors, the baseline
interface had mean error rate of 1.95, and the congruent interface had mean of 1.90. Although the
rate for the congruent interface was slightly better, these results were not significant (paired t(19)
= 0.181, p = 0.858, two-tailed).

For analyzing the subjective scores, an acceptability index by question was defined as the
mean scale response for each question across all participants. A lower AI was indicative of
higher user acceptance. One subject’s score was more than 2 standard deviations outside the
mean AI and was rejected as an outlier. This person answered every question with the value of 1,
resulting in a mean AI of 1. No other subject answered every question with the same value,
suggesting that this person did not give ample consideration. With this outlier removed, the
baseline interface AI was 3.99 and the congruent interface was 3.63, which was a modest 6.7%
improvement. The result was significant using the 2x13 ANOVA (p = .014) and the interaction
between groups was not (p = .999). A comparison of these values is shown in Figure 17.

Comparison of Mean Task Completion Times
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Figure 15: Comparison of Mean Task Completion Times
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Mean Speech Error Rates
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Figure 16: Comparison of Mean Speech Errors

Acceptability Index by Question
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Discussion
The results of this study showed that the congruent interface was favored over the

baseline interface. This supported the hypothesis that the perceptual structure of an input task is
an important consideration when designing a multimodal computer interface. As shown in Figure
7, the QM relationship compared entry of integral attributes with an integral device in the
congruent interface and a separable device in the baseline interface. Based on this, the three null
hypotheses were rejected in favor of alternate hypotheses stating that performance, accuracy, and
user acceptance were shown to improve when integral attributes are entered with a single device.
However, since separable attributes were not tested with both integral and separable devices, no
conclusion can be made about whether it was advantageous to enter separable attributes with
either a single device or multiple devices.

With respect to accuracy, the results were only significant for speech errors. Mouse errors
showed a slight improvement with the baseline interface, but these were not significant. This was
possibly because there were few such errors recorded. Across all subjects, there were only 16
mouse errors compared to 175 speech errors. A mouse error was recorded only when a subject
clicked on the wrong item from a list and later changed his or her mind, which was a rare event.

Diagnosis errors showed a slight improvement with the congruent interface. There were
77 diagnosis errors, but the results were not statistically significant. Diagnosis errors were really
a measure of the subject’s expertise in identifying tissue types and reactions. Ordinarily, this type
of finding would suggest that there is no relationship between perceptual structure of the input
task and the ability of the user to apply domain expertise. However, this cannot be concluded
from this study, since efforts were made to avoid measuring a subject’s ability to apply domain
expertise by allowing them to review the tissue slides before the actual test.

As stated earlier, 175 speech errors were recorded for the 240 data entry tasks. Each task
consisted of an average of 4 words, yielding an error rate of about 18%. Contributing to this rate
was the fact that this was the first time most subjects used a speech recognition interface.

A general understanding with speech recognition is that phrases with less syllables or that
sound alike will have higher error rates. In the experiment, speech was used for entering the site
and qualifier (SQ) in the baseline interface and the qualifier and morphology (QM) in the
congruent interface. The average QM phrase was about 20% longer than the average SQ phrase
(9.8 syllables versus 8.2 syllables). However, both phrases were reasonably long and all of the
sites and morphologies had very unique pronunciations. Based on user training before the
experiment, the greatest source of recognition errors was from qualifiers. This was most likely
because the qualifiers consisted of shorter terms, many of which sounded alike. Since qualifiers
were part of both the SQ and QM phrases, it was concluded that differences between sites and
morphologies did not contribute significantly to the error rate.

Pearson correlation coefficients were computed to reveal possible relationships between
the dependent variables. This includes relationships between the baseline and congruent
interface, relationships with task completion time, and relationships with user acceptance.

A positive correlation of time between the baseline interface and congruent interface was
probably due to the fact that a subject who works slowly (or quickly) will do so regardless of the
interface (p < .001). The positive correlation of diagnosis errors between the baseline and
congruent interface suggests that a subject’s ability to apply domain knowledge was not effected
by the interface (p < .001) since the slides were reviewed beforehand. The lack of correlation for
speech errors was notable. Under normal circumstances, one would expect there to be a positive
correlation, implying that a subject who made errors with one interface was predisposed to



The Integrality of Speech in Multimodal Interfaces Page 19
Michael A. Grasso

making errors with the other. Having no correlation agrees with the finding that the user was
more likely to make speech errors with the baseline interface, because the interface did not match
the perceptual structure of the input task.

When comparing time to other variables, several relationships were found. There was a
positive correlation between the number of speech errors and task completion time (p < .01).
This was expected, since it took time to identify and correct those errors. There was also a
positive correlation between time and the number of mouse errors. However, due to the relatively
few mouse errors recorded, nothing was inferred from these results. No correlation was observed
between task completion time and diagnosis errors since the slides were reviewed before the test.

Several relationships were identified between the acceptability index and other variables.
Note that for the acceptability index, a lower score corresponds to higher user acceptance. A
significant positive correlation was observed between acceptability index and the number of
speech errors (p < .01). An unexpected result was that no correlation was observed between task
completion time and the acceptability index. This suggests that accuracy is more critical than
speed, with respect to whether a user will embrace the computer interface. No correlation was
found between the acceptability index and mouse errors, most likely due to the lack of recorded
mouse errors. A significant positive correlation was observed between the acceptability index
and diagnosis errors (p < .01). Diagnosis errors were assumed to be inversely proportional to the
domain expertise of each subject. What this finding suggests is that the more domain expertise a
person has, the more he or she is likely to approve of the computer interface.

Summary
A research hypothesis was proposed for multimodal speech and direct manipulation

interfaces. It stated that multimodal, multidimensional interfaces work best when the input
attributes are perceived as separable, and that unimodal, multidimensional interfaces work best
when the inputs are perceived as integral. This was based on previous research that extended the
theory of perceptual structure [Garner 1974] to show that performance of multidimensional,
unimodal, graphical environments improves when the structure of the perceptual space matches
the control space of the input device [Jacob et al. 1994]. Also influencing this study was the
finding that contrastive functionality can drive a user’s preference of input devices in multimodal
interfaces [Oviatt and Olsen 1994] and the framework for complementary behavior between
speech and direct manipulation [Cohen 1992].

A biomedical software prototype was developed with two interfaces to test this
hypothesis. The first was a baseline interface that used speech and mouse input in a way that did
not match the perceptual structure of the attributes while the congruent interface used speech and
mouse input in a way that best matched the perceptual structure. The results of this experiment
supported the hypothesis that the perceptual structure of an input task is an important
consideration when designing a multimodal computer interface. Task completion time, accuracy,
and user acceptance all increased when a single modality was used to enter attributes that were
integral. It should be noted that this experiment did not determine whether or not a unimodal
speech-only or mouse-only interface would perform better overall. It also did not show whether
separable attributes should be entered with separate input devices or one device.

A group of 20 clinical and veterinary pathologists evaluated the interface in an
experimental setting, where data on task completion time, speech errors, mouse errors, diagnosis
errors, and user acceptance was collected. Task completion time improved by 22.5%, speech
errors were reduced by 36%, and user acceptance increased 6.7% for the interface that best
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matched the perceptual structure of the attributes. Mouse errors decreased slightly and diagnosis
errors increased slightly for the baseline interface, but these were not statistically significant.
User acceptance was related to speech recognition errors and domain errors, but not task
completion time.

Additional research into theoretical models which can predict the success of speech input
in multimodal environments are needed. This could include a more direct evaluation of
perceptual structure on separable data. Another approach could include studies on minimizing
speech errors. The reduction of speech errors has typically been viewed as a technical problem.
However, this effort successfully reduced the rate of speech errors by applying certain user-
interface principles based on perceptual structure. Others have reported a reduction in speech
errors by applying different user-interface techniques [Oviatt 1996]. Also, noting the strong
relationship between user acceptance and domain expertise, additional research on how to build
domain knowledge into the user interface might be helpful.

Acknowledgements
The authors wish to thank Judy Fetters and Alan Warbritton from the National Center for

Toxicological Research for providing tissue sides and other assistance with the software
prototype. The authors also thank Lowell Groninger, Greg Trafton, and Clare Grasso for help
with the experiment design, and Tulay Adali, Charles K. Nicholas, and Anthony W. Norcio for
serving as doctoral dissertation committee members at the University of Maryland Baltimore
County. Finally, the authors thank those who graciously participated in this study from the
University of Maryland Medical Center, the Baltimore Veteran Affairs Medical Center, the
Johns Hopkins Medical Institutions, and the Food and Drug Administration.

References
Buxton, B. (1993). HCI and the Inadequacies of Direct Manipulation Systems. SIGCHI Bulletin,

25(1):21-22.
Casali, S. P., Williges, B. H., and Dryden, R. D. (1990). Effects of Recognition Accuracy and

Vocabulary Size of a Speech Recognition System on Task Performance and user
Acceptance. Human Factors, 32(2):183-196.

Cohen, P. R. (1992). The Role of Natural Language in a Multimodal Interface. In Proceedings of
the ACM Symposium on User Interface Software and Technology, Monterey California,
pp. 143-149, ACM Press, November 15-18.

Cohen, P. R. and Oviatt, S. L. (1994). The Role of Voice in Human-Machine Communication. In
Voice Communication Between Humans and Machines, pp. 34-75, National Academy
Press.

Cole, R., et al. (1995). The Challenge of Spoken Language Systems: Research Directions for the
Nineties. IEEE Transactions on Speech and Audio Processing, 3(1):1-21.

Dillon, T. W. (1995). Spoken Language Interaction: Effects of Vocabulary Size, User
Experience, and Expertise on User Acceptance and Performance. Doctoral Dissertation,
University of Maryland Baltimore County.

Garner, W. R. (1974). The Processing of Information and Structure. Lawrence Erlbaum,
Potomac, Maryland.

Grasso, M. A. (1995). Automated Speech Recognition in Medical Applications. M.D.
Computing, 12(1):16-23.



The Integrality of Speech in Multimodal Interfaces Page 21
Michael A. Grasso

Grasso, M. A. Ebert, D. S. and Finin, T. W. (1997). Acceptance of a Speech Interface for
Biomedical Data Collection. AMIA 1997 Annual Fall Symposium.

Grasso, M. A. and Grasso, C. T. (1994). Feasibility Study of Voice-Driven Data Collection in
Animal Drug Toxicology Studies. Computers in Biology and Medicine, 24(4):289-294.

Jacob, R. J. K. et al. (1994). Integrality and Separability of Input Devices. ACM Transactions on
Computer-Human Interaction, 1(1):3-26.

Jones, D. M., Hapeshi, K., and Frankish, C. (1990). Design Guidelines for Speech Recognition
Interfaces. Applied Ergonomics, 20:40-52.

Landau, J. A., Norwich, K. H., and Evans, S. J. (1989). Automatic Speech Recognition - Can it
Improve the Man-Machine Interface in Medical Expert Systems? International Journal of
Biomedical Computing, 24:111-117.

Oviatt, S. L. (1996). Multimodal Interfaces for Dynamic Interactive Maps. In Proceedings of the
Conference on Human Factors in Computing Systems (CHI’96), ACM Press, New York,
pp. 95-102.

Oviatt, S. L. and Olsen, E. (1994). Integration Themes in Multimodal Human-Computer
Interaction. In Proceeding of the International Conference on Spoken Language
Processing, volume 2, pp. 551-554, Acoustical Society of Japan.

Pathology Code Table Reference Manual, Post Experiment Information System (1985). National
Center for Toxicological Research, TDMS Document #1118-PCT-4.0, Jefferson, Ark.

Peacocke, R. D. and Graf, D. H. (1990). An Introduction to Speech and Speaker Recognition.
IEEE Computer, 23(8):26-33.

Pomerantz, J. R. and Lockhead, G. R. (1991). Perception of Structure: An Overview. In The
perception of Structure, pp. 1 - 20, American Psychological Association, Washington,
DC.

Shepard, R. N. (1991). Integrality Versus Separability of Stimulus Dimension: From an early
Convergence of Evidence to a Proposed Theoretical Basis. In The perception of
Structure, pp. 53 - 71, American Psychological Association, Washington, DC.

Shneiderman, B. (1983). Direct Manipulation: A Step Beyond Programming Languages. IEEE
Computer, 16(8):57-69.

Shneiderman, B. (1993). Sparks of Innovation in Human-Computer Interaction, Ablex
Publishing Corporation, Norwood, NJ.


