FIR Filter Optimization Toolbox
User’s Guide Version 2.0

Jeff Coleman Dan Scholnik Josef Brandriss

March 8, 2004

Contents

1 Introduction 1
L1 Overview oo 1
1.1.1 OPT Directory Structure 1

1.2 Quick Reference 1
1.3 Filter Design With OPT 2
1.3.1 SOCP Specification 3

2 Impulse Response Classes 5
2.1 optVector Class)
2.2 optSequence Class)
221 Examples 6

2.3 optArray Class L 7

3 Regions and Lattices 9
3.1 Creating Region Objects 9
3.1.1 Forming Composite Regions 10

3.1.2 Simple Region Transformations 11

3.2 Creating Lattice Objects 12
3.3 Region and Lattice Operations 13
3.3.1 disin Function oo 13

3.3.2 msop Functiono 14

3.3.3 bbFunction 15

1

CONTENTS iii
3.3.4 imbox function 18

3.3.5 points functiono Lo 19

3.4 Usage of Regions and LatticesinOpt 19
3.4.1 Examples 20

4 Random Processes 23
4.1 Processes in One Variable L. 23
4.1.1 Examples 24

4.2 Processes in Several Variables 000000 25
4.2.1 Average Output Power 25

4.2.2 Periodicity and Symmetry Issues 26

4.2.3 Basis Functionso 27

424 Examples 29

5 Design Examples 31
5.1 A Simple Notch Filter 31
5.1.1 Gridded Formulation oo 31

5.1.2 Random Process Formulation 33

5.2 Annular Filter 34

6 OPT Reference 37
6.1 MATLAB Library 37
6.1.1 Engine Functions oL oo 38

6.1.2 Continuous-Time Processes 48

6.1.3 Lattices o8

6.1.4 Linear Constraints 67

6.1.5 Multi-Dimensional Processes 72

6.1.6 Optimizable Arrays 83

6.1.7 Quadratic Optimizables 102

6.1.8 Quadratic Optimizable Vectors 119

v

6.1.9

6.1.10
6.1.11
6.1.12
6.1.13
6.1.14
6.1.15

CONTENTS

Optimizable Affine Sequences 130
Optimization Spaces 147
Optimizable Vectors 149
Discrete-Time Processes 175
Regions 185
Second-order Cone Constraints 199
Solutions 202

Chapter 1

Introduction

1.1 Overview

This manual is a user’s guide for the FIR Filter Optimization Toolbox (OPT, version 2.0)

1.1.1 OPT Directory Structure

Your OPT disk possesses the following files and subdirectories:

©@CTProcess Continuous time random process source files
O@CTProcess/private Private functions for CTProcess class

Doc Documentation files

examples Example scripts

©LinConstr Linear constraint source files

Q@optArray Optimizable array source files
@optGenSequence Optimizable non-uniform sequence source files
@optQuad Optimizable quadratic source files
©@optQuadVector Optimizable quadratic vector source files
@optSequence Optimizable sequence source files
@optVector Optimizable vector source files

©@Process Discrete-time random process source files
©Process/private Private functions for Process class
@SOCConstr Second-order cone constraint source files

1.2 Quick Reference

Tables 1.1 through 1.2 summarize operators in Opt.

1

2 CHAPTER 1. INTRODUCTION

notation function
a+b add
a-b subtract
axb pointwise multiply
a/c pointwise divide
a(n) extract
real(a) real part
imag(a) imaginary part
conj(a) | complex conjugate
sum(a) element sum

Table 1.1: Overloaded operators for objects of class optVector. a and b are of class
optVector, c is a constant vector, and n is an integer vector.

notation function
h.x*g convolve
h|M shift
h./M interpolate
h.\M decimate
h.’ flip about origin
h’ flip and conjugate

Table 1.2: Additional operators for objects of class optSequence. g and h are of class
optSequence and M is a positive integer.

1.3 Filter Design With OPT

A MATLAB session for Opt filter design typically takes the form in Fig. ?7. InitOpt is called
once per session. An optimization space is created by newOptSpace, which returns a handle to
a new set of optimization variables. A solution point in that space can be obtained thereafter
by passing its handle to minimize with an , a list of , and name of a solver
routine. Impulse response variable h in Fig. 7?7 is an example of an Opt quantity that does not
store numerical values but instead stores relationships to optimization variables. Numerical
values are substituted into those relationships only when optimal evaluates the relationships
at a solution point. This is the heart of Opt:

Opt permits meaningful algebraic operations on quantities that, because opti-
mization has not yet taken place, have no numeric values.

The last argument to minimize selects a solver. Here we use
'sedumi’ (http://fewcal.kub.nl/sturm /software /sedumi.html),
a high-performance noncommerical (free) numeric solver for SOCPs. Other options include

1.3. FILTER DESIGN WITH OPT 3

the remarkably fast 'mosek’ (www.mosek.com) and 'loqosoclp’, an SOCP /LP interface to the
LOQO (www.princeton.edu/ rvdb) package, which accepts a callback function for plotting in-
termediate results.

1.3.1 SOCP Specification

The SOCP specification in Fig. 77 generally takes this form:

e specification of an
e specification of the

e specification of the

The is often simple and is just defined in minimize’s argument list. This is occasion-
ally true of the also.
The SOCP and in Fig. 7?7 are generally functions of the

to be optimized. For information on specifying an impulse reponse, see chapter 2.

Construction of Error Measures

Frequency-Domain Grids Ref. 77?7 discusses the use of SOC constraints, one for each
frequency, in a grid across a band of interest, to construct measures of frequency-domain
errors in the Lo, (or Chebyshev or minimax) sense, in the Ly (or mean squared error) sense,
and in the L; (mean absolute error) sense. Those techniques begin here:

f = linspace(f1, f2, (f2-f1) * 20 * length(h)) ;
H = fourier(h, f) ;

If h is an impulse response, H is the corresponding frequency response “evaluated” on the
MATLAB vector f of frequencies. If h is optimizable then H is also, and its samples remain
indeterminant because they depend on impulse-response coefficients that as yet have no
numeric values. Here MATLAB’s linspace function creates a vector with elements stretching
between its first two arguments of length specified by the third argument, here set high
enough for typical FIR design work. Factor 20 might be as low as 5 for quick experimentation
or as high as 50 or more when the Fourier samples are to be used for precise approximation
of an L; norm.

If h is linear phase, so that H is real by construction,

4 CHAPTER 1. INTRODUCTION

C = {-10 A (-55/20) < real(H) , ...
real(H) <10 A (-55/20) } ;

sets C to a list containing two linear constraints for each frequency sample to bound H between
—e and €, where 20log,,e = —55 dB. Taking the real part of H eliminates computational
noise in imaginary components (which should be zero) in order that the “<” operator has
real arguments as required. If h is instead nonlinear phase, so that H must be complex,

d = optVar(X) ;
C=abs(H) <d;

sets C to a list of SOC constraints, one for each sample in H, that constrain the magnitute
response by optimization variable d. A constant bound would be valid, but here d can be
passed as the to minimize in order to minimize the peak magnitude of the samples
in H. (Using abs(-) would also work for the linear-phase case, but a degenerate second-order
cone would be used at each frequency instead of a linear-constraint pair as before.)

The forms just presented typically specify stopbands but apply to passbands as well if, when
C is defined, H is replaced with (1 - H) to specify a desired complex passband gain of unity.

Random Processes as Drive Signals DSP often requires error measures of the form

MSE = / H(f) — D()PW(F) df.

where H(f) approximates, with error weighting W (f), some desired function D(f). If
JW(f)df =1 with W(f) taking only values {0,a} for some «, then this is the mean
squared error (MSE) between H(f) and D(f) in the support of W (f). But if W(f) is the
power spectral density (PSD) of a zero-mean random process driving filters H(f) and D(f),
the integral is also the average power in the output-error signal (the difference between the
filter outputs). An MSE specified as an error power can be derived by Opt automatically
and to machine precision.

Chapter 2

Impulse Response Classes

2.1 optVector Class

The optVector class is the most fundamental in the toolbox, as it provides the basic repre-
sentation of a quantity to be optimized. An optVector is an extension of the basic MATLAB
vector, where each element of the vector is an affine (linear plus a constant) combination of
the underlying optimization variables.

As per MATLAB convention, a length-/N optVector a has first element a(1) and last element
a(N). A new optVector is created by calling

a = optVector(N, ov)

which allocates N new optimization variables from the pool ov and then assigns one variable
to each element of a. When called with a single constant vector argument, optVector returns
a constant optVector. This is rarely needed, since operators and functions treat a constant
optVector the same as a standard MATLAB vector. Most of the usual MATLAB operators
are overloaded to accept and return variables of class optVector, as listed in Table ?7. In
addition to the usual MATLAB requirements on size compatibility, the multiply and divide
operators have the restriction that one of the two arguments must be constant, so that the
result is still affine in the optimization variables.

2.2 optSequence Class

The optSequence class builds on the optVector class, adding a time index n. This is used to
represent FIR filters, as well as constant input signals and non-optimized filters. Additional
operators defined for this class are shown in Table ??. In addition, the function fourier(h, f)
is defined, returning an optGenSequence in which the elements hold the frequence response
of h at the normalized frequencies f.

6 CHAPTER 2. IMPULSE RESPONSE CLASSES
2.2.1 Examples

Opt supports a finite-length-sequence data type incorporating both values and times of sam-
ples. Opt code

w = optSequence(vect) ;

associates times 0, ..., length(vect) — 1 with the elements of MATLAB vector vect, effectively
making w a fixed, nonoptimizable impulse response. Alternate form

u = optSequence(N, X) ;

adds N new variables to the set X of real optimization variables and creates a sequence in
which samples 0, ..., N —1 are associated with the new variables.

Here Opt variable u is the optimizable impulse response of a real nonlinear-phase filter. Such
sequences also represent uniformly-spaced trains in continuous time; other optSequence forms
place impulses nonuniformly and in multiple dimensions.

Overloaded MATLAB operators allow construction of structured impulse reponses. The prime
operator (') yields the time-reversed conjugate (match) and is used to impose a linear-phase
response:

u = optSequence(N, X) ;
v=u-+u';

Here v is a real impulse response with linear phase and support on —(N —1),..., N —1.
The creation instead of a complex linear-phase impulse response is straightforward using the
delay operator (|) and simple arithmetic operations:

a = optSequence(N, X) ;

b = optSequence(N, X) ;
r=(+j*b)|1;

p = r + optSequence(l, X) +r ' ;

Here p depends on 2N + 1 distinct optimization variables. The center sample is real by
construction, as required.

Opt’s time-axis scale-up operator (./) used here makes a complex linear-phase impulse re-
sponse be halfband:

2.3. OPTARRAY CLASS 7

= optSequence(N, X) ;
optSequence(N, X) ;
optSequence(N, 1) ;
= (it /2) |1
h=r'"+c+r

< Cc
I

@]
Il

(Operator .\ would perform decimation.)

A convolution operator allows certain cascades to be defined. If two filters have impulse
responses p and w, then

q=p. wj

makes q the impulse response of their cascade. There is an important restriction, however.
Every sample in an Opt sequence must depend affinely (linearly plus a constant) on opti-
mization variables. To avoid quadratic dependencies, which are not allowed, convolution
and multiplication must have at least one “fixed” or nonoptimizable argument, like the fixed
sequence w defined earlier. These optimizable-fixed cascades are used when designing a filter
to meet specifications on a cascade of which it is a member

2.3 optArray Class

The optArray class similarly is an extension of the optVector class, with the addition of
location information, used for the representation of multi-dimensional sequences. Location
information is stored in a matrix, each row of which contains the coordinates of an individual
location. For example, for a three-dimensional optArray, the locations matrix locs is

Iy Y1z

locs = :
xn y’I’L Zn

The locations matrix is stored in sorted form; sorted by the first dimension first, then the
second, and so on. A location can be any vector x € R".

All of the operators defined for the one-dimension optSequence class are present in the
optArray class, with some slight modifications, as well as the addition of a few others.
The transpose (.’) and conjugate-transpose (’) operators flip a sequence about the origin;
that is, each element is moved to the inverse of its location. The flip function inverts the
sequence in a single dimension. The rot(seq, ang, dims) function rotates the sequence in
a 2-dimensional subspace by applying a rotation matrix to the two columns of locs indicated
by dims. A vector x is rotated by an angle 6 by premultiplying it by a rotation matrix

cosf —sinf
sin 6 cos

o]

8 CHAPTER 2. IMPULSE RESPONSE CLASSES

After the rotation matrix is applied the locations are resorted. For example,
rot(seq, pi/4, [1 31)
will rotate seq 45 degrees in the zz-plane (about the y-axis).

The or function, with its equivalent operator | is used as before as a shift operator, with
the requirement that the offset operand be a vector of the same dimension as the sequence.

Convolution in multiple dimensions is expressed as
y(n) = xz(n)*h(n)
— (a+h)(n)
= Y a(k)h(n—k)

Kk
where n, k € R".

The Fourier transform of a multi-dimensional sequence h(n) is

H(f) =) h(n)e/?7<fr>

If soln contains a solution obtained by minimize, optimal(h, soln) returns a constant optArray
of identical structure which is the optimal impulse response.

Chapter 3

Regions and Lattices

3.1 Creating Region Objects

The Region class in Opt provides a convenient way of describing regions in space. Regions
are built from a selection of primitive shapes and using the various set operations.

A new Region object is created by calling
reg = Region(type, parameters)

type is one of the primitive shape names, which at this point include sphere, halfspace and
convpoly. parameters is a structure whose fields are the various parameters that describe
the shape. Each shape requires the field dim which indicates the dimension of the region.

In addition, sphere requires the fields center and radius. center is a vector of real numbers
giving the coordinates of the center of the sphere object. The radius of the sphere is a real
number given in radius.

A halfspace is the set described by
{x e R"|a'x > b}

and thus requires the fields a and b.

convpoly is short for convex polytope. A convpoly object is created as the convex hull of
the list of points given in points. points is a matrix with dim columns, with each row giving
the coordinates for a separate point. The convpoly is more easily represented internally as
an intersection of halfspaces, or the set

{x € R"| Ax > b}

9

10 CHAPTER 3. REGIONS AND LATTICES

which is determined as follows.

First the convex hull is determined using MATLAB’s convhulln routine, which returns a list
of the facets which make up the surface of the polytope. A facet in N dimensions is an
(N-1)-dimensional simplex, each of which lies on a hyperplane. A hyperplane is the set

{x e R"|a'x = b}
or

N
{X e R" ’ Zaixi = b}
=1

Let x'...x" be the points which determine a facet, and thus its hyperplane. z? is the
kth coordinate of the nth point. Then the coefficients of the hyperplane are given by the
following determinants:

ap=|: : L ag = | : Lo
T rho, 1 T Th
ay = | : L : b=
o N o1 x N

This hyperplane is the boundary of one of the halfspaces whose intersection describes the
polytope. The direction of the inequality of the corresponding halfspace is determined by
checking points in other facets of the polytope. It is possible that there are multiple coplanar
facets of the polytope. Points of a coplanar facet should give an inconclusive result, but
because of numerical error can give an incorrect answer. Because of this, all of the points on
the surface of the convex hull are checked, and direction is chosen as that indicated by the
majority of the points.

3.1.1 Forming Composite Regions

Composite Region objects may be formed by using the familiar set operations such as union,
intersect and not. For ease of expressing unions and intersections of a series of objects, the
operators + and * may be substituted for union and intersect, respectively. setdiff(a,b)
returns the region which is the set difference a/b, or a N —b.

A composite region object is always formed as a result of a binary operation, and therefore
contains the data indicating the type of operation and the two operands. Thus, a complicated
composite Region can be thought of as a binary operation tree whose leaves are primitive
shapes.

3.1. CREATING REGION OBJECTS 11

The operation not (a) or ~a where a is a primitive Region returns a primitive region object
identical to a but with the complement flag set. If, however, a is a composite region, the
complement operation is applied recursively down through the operation tree.

3.1.2 Simple Region Transformations

Two functions are available to perform simple transformations on a Region object.

Offset

A region offset is done using the or function. This is more conveniently called using the
equivalent operator |. The syntax, for an n-dimensional region, is

oreg = reg | offset

where offset is a vector of length n, giving the offset amount in each coordinate direction.
Shifting a sphere is straightforward; its center is simply adjusted by the offset amount.

A halfspace, as mentioned earlier, is described by
{x e R"|a'x > b}

and has the hyperplane a’x = b as its boundary. a can be thought of as the hyperplanes’s
normal vector, and b as the distance of the hyperplane from the origin along the normal
vector a. Shifting a hyperplane has the effect of sliding it along its normal vector. The
distance slid is the length of the projection of the offset vector along the normal direction,
or a - offset. Therefore the b parameter must be adjusted as follows:

boff = b+ a - offset

Since a convpoly is simply an intersection of several halfspaces, the procedure for shifting
it is the same; each element of the convpoly’s b vector is adjusted as follows:

bk,off = b, + ay - offset

where each vector ay is a row of the A matrix. In addition, the extreme points of the
convpoly are shifted by the same vector, like the center point of a sphere.

12 CHAPTER 3. REGIONS AND LATTICES

Rotation

A region can be rotated using the rot function. The syntax is
rreg = rot(reg, ang, dims)

This function rotates reg by ang radians in the 2-dimensional subspace indicated by the
2-vector dims. For example, rot(reg, pi/4, [1 3]) will rotate reg 45 degrees in the
xz-subspace; that is, about the y-axis.

For a sphere, the center point is rotated by an angle 6 by premultiplying the vector of
coordinates in the specified 2-dimensional subspace by the rotation matrix

Q [cos@ —siHG}
0 — .

sin @ cos

For a halfspace with boundary hyperplane a’x = b, the rotation is accomplished similarly
by premultiplying the components a vector corresponding to the specified 2-dimensional
subspace by Q. Since a is the normal vector of the hyperplane, it can be rotated like any
other vector, while b, the distance of the hyperplane from the origin along the normal vector,
remains constant.

For a convpoly, which is the intersection of halfspaces, each component halfspace is treated
the same as above. In addition, the extreme points of the convpoly are rotated as well, like
the center point of the sphere.

If either of these functions is called on a composite region, the operation is applied recursively
down through the operation tree so that each primitive object is offset or rotated by the same
amount.

3.2 Creating Lattice Objects

The Lattice class in Opt is used to specify a lattice, or pattern of points. A lattice in n
dimensions is described by its basis matrix M € R™*™. M is post-multiplied by an integer
vector £ € Z" to generate the coordinates of the lattice points in cartesian space. While m
can be any integer greater than n, it is most convenient to require that m = n. A lattice
can be scaled and offset as well. The full expression for a point on a lattice is then

x = aM¢ +c

where o € R and ¢ € R™.

A Lattice object is created by calling

3.3. REGION AND LATTICE OPERATIONS 13
lat = Lattice(M)

where M is the n X n basis matrix. The Lattice object will also contain a scale factor, preset
to 1, and an offset, preset to the zero-vector, both of which can be adjusted as follows.

A Lattice can be scaled by using the * operator. The syntax
slat = a * lat}

scales 1at by a scalar a and returns the Lattice object slat. The object slat will contain
the same basis matrix as well as the scale factor.

A Lattice can be offset by using the + operator. The syntax
olat = lat + off

shifts lat by the amounts in the vector off and returns the result in olat. As with the *
operator, olat will have the same basis matrix as lat, with only the offset data adjusted.

3.3 Region and Lattice Operations

3.3.1 isin Function

The function isin takes a list of points and returns those located inside a Region. The
syntax of the function is

result = isin(reg, points)

Both result and points are matrices in which each row gives the coordinates of a point.

If reg is a region primitive, the result is determined by checking each input point against
the rules for that type of shape.

A point x = (z1,...,xy) is inside a sphere of radius p and center c if

or

14 CHAPTER 3. REGIONS AND LATTICES

A point x is in a halfspace if

~

ax>b

A point x is in a convpoly if
Ax>Db

where A and b are determined as described above.

If reg is a composite region, then it was formed as a result of set operations on primitive
regions. Each of the two child regions is queried, and the result for a given point is computed.
For example, if the two child regions were combined by an intersect operation, the a point
is in the region only if the point is both of the child regions. If a child region is itself a
composite, the process continues until a primitive region is queried. The results for the
component primitive regions are then combined using set operations to produce the result
for the composite region.

3.3.2 msop Function

The function msop takes a composite Region as input and determines a simplified sum-
of-products (or union-of-intersections) equivalent. This is useful in determining whether a
region is bounded, and if so, finding a bounding parallelpiped guaranteed to contain the
entire region.

Any function on primitive regions Ry, ..., R,, using the operations U, N and — can be reduced
to a sum-of-products form, for example

p

fBy,. . Rw) =] [0ijBm

i=1 je[1,m]

Each composite Region object stores the identity of each unique primitive object that it is
composed of. The function probett is then used to assemble the entire truth table of the
Boolean function that the composite Region represents. The function gm is then used to
find a reduced sum-of-products form for the truth table using the Quine-McCluskey method
of finding prime implicants.

The reduced function is returned as a cell array, of which each element represents a product
term. Each product term is represented as a vector of numbers, each of which is the index
number of a primitive region in the composite. An example output is

fcn =

[2 3 5] [1 2]

3.3. REGION AND LATTICE OPERATIONS 15

which indicates that the simplified representation of the composite region is

(Re N R3N Rs) U (R N Ry)

msop is used by the function bb.

3.3.3 bbb Function

The function bb determines whether a Region object is bounded, and if so, returns its
bounding box. It is necessary for determing the lattice points which lie in a given region.
Therefore, the function takes two arguments: a Region object and a Lattice object. The
bounding box is returned not as Cartesian coordinates, but in terms of intervals along the
lattice basis vectors. Thus the bounding box is in fact a parallelepiped which is guaranteed
to circumscribe the Region in question.

For a convpoly region of dimension n, the bounding parallelepiped is determined by testing
each of the region’s extreme points.

A bounding interval must be found for each lattice basis vector. For each basis vector, any
of the extreme points could contribute to the bounding interval, and as such each extreme
point must be tested.

Once the bounding interval is found for a given basis vector, two faces of the bounding
parallelepiped can be constructed. Each face of the bounding parallelepiped lies in the
hyperplane spanned by all of the other basis vectors, and is itself a parallelepiped of dimension
n — 1. Since we require that the lattice basis matrix be full-rank, any n — 1 basis vectors
will span an (n — 1)-dimensional subspace, and will have a 1-dimensional nullspace. This
nullspace can be seen as the normal vector of the (n — 1)-dimensional subspace. Together,
the nullspace and the current basis vector lie in a 2-dimensional subspace (although they
may be collinear, in which case they would not span the plane).

Each extreme point p is projected onto the orthonormal basis to the nullspace, u, and the
minimum and maximum projections determine the bounding interval. The projection for a
given extreme point and lattice basis vector is

. p-u
projyp = W‘l =(p-uu

The angle 6 between this projection and the current basis vector v is given by

proj,p - v

cosf = -
[projupl|v|
Together, proj,p and 6 determine the distance r’ along the direction of the basis vector v.
By the definition of cosine,
[Projup|

cosf = —F—
,r./

16 CHAPTER 3. REGIONS AND LATTICES

and rearranging gives

, _ |proj,pf’|v]
(proj,p - v)
(p-u)’lv|

(p-wu]-v

r’ must be scaled by the norm of the basis vector to determine its distance along that vector,
giving

/ 2

o (P

vl ((p-uju]-v
If it turns out that the projection onto the nullspace is the zero-vector, the distance along

the lattice basis vector zero, and the computation is not done, or a division-by-zero error
will result.

If the basis for the nullspace and the lattice basis vector are collinear, the angle between
them is 0, making
_ |proj,p|
r = —
v

Because lattice points are determined by multiplying an integer vector by the basis matrix,
the interval is rounded away from zero.

A sphere region’s bounding box is most easily determined by inscribing it inside a hypercube,
which has 2" extreme points. The hypercube’s bounding parallelepiped is then determined
the same way as the convpoly’s.

A halfspace, as well as a complemented sphere and convpoly are always unbounded.
However, the intersection of at least n + 1 halfspaces is possible bounded. This possibility is
covered by the treatment of composite regions.

The bounding parallelepiped of a composite region is found by properly combining the
bounding parallelepipeds of the constituent regions. This is accomplished by first obtaining
a sum-of-products (or union-of-intersections) representation of the composite region, using
the msop function described in section 3.3.2.

Each product term is the intersection of primitive regions. If any of the product terms
is unbounded, the entire region, which is the union of all of the product terms, will be
unbounded. Otherwise, the bounding intervals are found by taking the minimum of the axis
minima of each product term and the maximum of the axis maxima of each product term.

For an individual product term, the bounding intervals are found by taking the maximum
of the axis minima of each primitive region, and the minimum of the axis maxima of each
primitive region. If at least n + 1 halfspaces are present in a product term, it is possible
that their intersection is bounded.

3.3. REGION AND LATTICE OPERATIONS 17

A halfspace, and intersections of halfspaces, are convex polytopes. To determine whether a
convex polytope is bounded, it is necessary to solve two linear programs, as follows.

For a convex polytope
P={xeR"|Ax > b}

the recession cone is the set of all directions d along which we can move indefinitely away
from a point inside P. The recession cone is the set

{deR"|Ad > 0}

If P is bounded, the recession cone will consist of only the zero-vector, which is always a
solution to Ad > 0. Therefore, if either of the two linear programs

min +c'x
subject to Ax >0

has a solution other than the zero-vector, a non-trivial recession cone exists, and the set P
is unbounded. Conversely, if the only solution to both linear programs is the zero-vector, no
non-trivial recession cone exists, and the set P is bounded.

It is possible for one choice of the cost vector ¢ for a false indication of boundedness to
result. If the unbounded direction is along the hyperplane ¢’y = 0 it is possible for a linear
program solver to return the zero-vector as an optimal solution for both linear programs, as
any solution along the hyperplane has minimum cost. However, if ¢ is chosen randomly, the
probability of this occurring is extremely small. If not for the finite precision of numbers on
a computer, the probability would in fact be zero.

The linear program solvers recommended for use with Opt require that the linear program
be given in standard form; that is,

min c'x
subject to Ax = b
x > 0
The duals of our linear programs are
min 0y
subject to Ay = =c
y > 0

which are in standard form. By duality theory, if the dual of a linear program is infeasible,
the primal is either infeasible or unbounded. As we know that the primal in our case is
feasible, it must be unbounded. If the dual is feasible and has a finite optimum, then the
primal must also be feasible and have a finite optimum.

18 CHAPTER 3. REGIONS AND LATTICES

Therefore, to test the boundedness of the intersection of halfspaces, we concatenate their a
vectors to form the matrix A, and we concatenate their b’s to form the vector b. We then
run both of the dual linear programs. If either is infeasible, the polytope P formed by the
intersection of halfspaces is unbounded. If both are feasible, and have finite optima, P is
bounded. If it is determined that P is bounded, the extreme points of P are found, and
we follow the procedure detailed above for finding the bounding parallelepiped of a convex
polytope.

A vector p is an extreme point of P if

1. All equality constraints are active.
2. At least n linearly independent constraints are active at p.

3. All constraints are satisfied.

Our representation of the convex polytope contains no equality constraints, so item 1 is auto-
matically satisfied. We test all possible combinations of n linearly independent constraints,
and solve the linear system

ai/X:bi, 1€ I,

where the [is an index set over the kth combination of n linearly independent constraints.
If the solution x satistfies all of the other constraints as well, it is an extreme point of the
polytope.

One final point: If the Lattice given is offset, the offset will be applied to the extreme
points before the bounding intervals are found. Therefore the bounding intervals which are
returned by the function describe a parallelepiped which circumscribes a Region offset by
the same amount.

3.3.4 inbox function

The function inbox returns a list of points on a given lattice that lie within a bounding box
(parallelepiped). The syntax is

locs = inbox(lat, box)
where lat is a Lattice object and box is a vector of the form

box = [1min 1max 2min 2max ...]

3.4. USAGE OF REGIONS AND LATTICES IN OPT 19

with entries which are the minimum and maximum extent of the parallelepiped along each
of the lattice basis vectors. The points in locs are returned as a matrix in which each row
lists the Cartesian coordinates of a single point.

To generate the list of points, we produce an integer grid within the bounding intervals.
Each point on this integer grid is used as ¢ in the expression

x = aM¢ +c

If the Lattice is offset, the offset ¢ will be applied after the points are calculated, and so
the bounding intervals must be given in terms of an offset region in space. This, as described
above, is automatically taken into account by the bb function.

3.3.5 points function

The points function return a list of the points on a given lattice that lie within a given
region. The syntax is

locs = points(reg, lat)
The function works by calling three previously-described functions as follows:

1. bb is called to determine the bounding parallelepiped for the region;
2. inbox is called to find the lattice points within the bounding parallelepiped;

3. isin is called to determine which of the points returned by inbox are in fact within
the region

3.4 Usage of Regions and Lattices in Opt

Two useful applications of Region and Lattice to Opt are

e Easy formation of optimizable sequences in a variety of shapes and patterns

e Easy specification of frequency responses
An n-dimensional optimizable sequence can be created using the command

seq = optArray(lattice, region, pool)

20 CHAPTER 3. REGIONS AND LATTICES

where pool is a handle to a pool of optimizables. This command creates a sequence with
support on lattice points within the given region. If the region and lattice given are not of
the same dimensionality, or if the region given is unbounded, an error is returned. Other-
wise, we compute the bounding parallelepiped, and then determine which points within that
parallelepiped are inside region.

In addition, if seq has already been specified as an optArray , the command
sseq = seq(reg)

creates a subsequence sseq which contains only those points located within reg.

For frequency gridding, a convenient procedure is to define a region of the desired shape
and a lattice of sufficient tightness, and use the points function to output a grid of point
locations.

3.4.1 Examples

As an example, let us create a 2-D filter with its impulse response on a circular region of
support. Such an impulse response pattern is useful when a circularly-symmetric frequency
response is desired. In addition, the impulse response is to be real and symmetric about the
origin so that the frequency response will be symmetric as well.

To produce an impulse response with the desired symmetry properties, we must take care
that the coefficient at each point (n;,n2) depend on the same optimization variables as its
reflection at (—ny, —ng). First we define a square Lattice of points from which the impulse
response locations will be chosen.

sqlat = Lattice(eye(2));

Then, we define a Region enclosing a single quadrant
pl.dim = 2;

pl.points = [0 O; O N; N O; N NJ;

quadrantBoundary = Region(’convpoly’, pl);

where integer parameter N can be increased if better performance is desired. The following
code defines a circular region centered at the origin with radius N.

p2.dim = 2;
p2.center = [0 0];
p2.radius = N;

circleReg = Region(’sphere’, p2);

3.4. USAGE OF REGIONS AND LATTICES IN OPT 21
Next, we create the quarter-circle region by intersecting region circleReg with quadrantBoundary.
gCircle = quadrantBoundary * circleReg;

The following creates two optArrays with support on the points on the lattice sqlat within
the region qCircle, with X a space of optimization variables:

optArray(sqlat, qCircle, X);
optArray(sqlat, qCircle, X);

aal
aa2

Finally, we combine various reflections of the two impulse responses to create the whole
circular array:

aa = aal + aal’ + flip(aa2, 1) + flip(aa2, 2);

The command flip(a, dim) flips an optArray in dimension dim; that is, all point locations
are changed from » = {...,2g4jy,---} to @ = {...,—2gjy,---}. So aal is in the first
quadrant, aal’ in the third, flip(aa2, 1) in the second and flip(aa2, 2) in the fourth.
Although points along the axes will depend on two optimization variables each,

The array is shown in Fig. 3.1.

22

10

CHAPTER 3. REGIONS AND LATTICES

[]
e © 6 6 0 0 0 0 0O
o 0 0 0 06 060 06 0 0 06 0 0
® © © 6 06 0 06 00 0 0 0 0 0 0
o 0 000000600 0 00 0 0 00
® © 06 06 06 06 06 0 006 0 0 06 0 0 0 0
o 0 0 00 0 060 060 06 0 06 0 0 0 0 0 0
® ®© 6 06 06 06 06 606 06060 06 06 0 0 0 0 00
O 0 0 06060606 0606 0606 06 0 0 0 0 0 o0 0
® © 06 06 06 06 06 0606 006 06 06 0 0 0 0 0 0
o 0 0 0 060 0600 06 0 0606 06 0 06 0 0 0 0 0
® © © 6 0 06 0 0 06 0 0 0 0 0 0 0 0 0 o0
o 0 0 060600606 0606 0606 06 0 0 0 0 00
® © © 6 0 06 06 06 06 0 0 06 06 0 0 0 0 0 0
o & 0 0 0 060 060 06 06 06 0 0 0 0 0 0
® © 06 0 06 06 06 06 00 0 0 0 0 0 00
® 0 0 0606060606006 0 0 06 0 0 0 0
® 00060060 060 0 0 0 0 0 0
o 0 0 06060606 06 06 0 0 0 0
e © 6 6 0 0 0 0 0
[J
i i i i i i i i i i i
-10 -8 -6 - = 0 2 6 8 10
X

Figure 3.1: Circular Array.

Chapter 4

Random Processes

4.1 Processes in One Variable

A wide-sense-stationary random process v(n) may be specified in terms of its power spectral
density S,(f). The power spectral density, in turn, is expressed as the superposition of
frequency-shifted copies of a basis function ®(M f):

Sulf) =S w®(Mf - A—k)

where sequence wy, has period M, and A is a frequency offset. (Sequence wy, is binary valued)

For a process z(n) driving a filter h(n), and output process u(n) = (zxh)(n), the output power
is the value of the output autocorrelation function at offset 0. The output autocorrelation

function is defined as
Ru(n) = El(h* z)(k) (2" * h')(n — k)]

Further manipulation results in
Ru(n) = ; Y OBk =02 (n -k —m)] (m)
~ 2@: i h(O)Elz(w)2'(n — w — € = m)] (m)
Letting w = (k — £), m
Ru(n) = gj > (R (n— € —m)h' (m)
- Z(: #R.)(n — m)h'(m)

m

= h*R,.xh

23

24 CHAPTER 4. RANDOM PROCESSES

and so the output power is

Opt random processes can be added, subtracted, scaled and convolved with impulse responses
and can have their average powers obtained. Here, pwr(s) and pwr(r) return 0.75 and 0.5
respectively. If both h and d are fixed,

p=pwr(r.*(h-d));

sets p to the numeric MSE in (4.1) with W(f) the PSD of r. There are no simulations
or numerical integrals; calculation to machine precision is possible because available basis
function exist internal to Opt as Fourier transform pairs, and the required integration is
actually an inverse Fourier transform.

Since possible power spectrum basis functions and their Fourier transforms are known a
priori, the autocorrelation function R,(7) is easy to compute.

4.1.1 Examples

The following creates a zero-mean, discrete-time Opt random process:

rp = Process (P, A, w) ;

The three arguments to Process specify the PSD of s, where ® is the basis function, A is the
frequency offset and w is the weight vector. Opt constructs the PSD in steps:

1. Weight vector w is extended periodically to create a doubly-infinite sequence wy, 2
Wit (k mod M),

2. the infinite weight sequence is applied to integer shifts of the supplied basis function
(f), creating a function), wy®(f — k) with period M,

3. this function is offset upward in frequency by A, yielding >, wi®(f — A — k), and
finally

4.2. PROCESSES IN SEVERAL VARIABLES 25

4. scaling the offset function down in frequency by M sets the period in normalized
frequency f to unity:

PSD =) wp®(Mf—A—k) (4.1)
k
Here are two example random processes, s and r:

s = Process ('Box’ ,0,[1101]);
r = Process ('Triangle’ ;0 ,[113/41/40001/43/41]);

) ™ AT

0 1 0 1

Figure 4.1: PSD of random processes.

The 'Box’ basis function has unit width, so offset and scaled copies of it touch without overlap
to create an ideal brick-wall spectrum. To instead create a spectrum linearly interpolated
between samples, use the symmetric-triangle basis function supported on [—1,1]. The PSD
of r in Fig. 4.1 approximates a 60% raised-cosine spectrum at an oversampling rate of two.
A longer weight vector would improve the approximation.

4.2 Processes in Several Variables

4.2.1 Average Output Power

The generalization of an Opt random process to several variables is straightforward. Let z(n)
be a wide-sense-stationary random process, where n = {n;...ny}. Let h(n) be the impulse
response of a linear shift-invariant (LSI) system. If z(n) is the input to this system, the
output random process u(n) is

um) = Y) h(k)z(n-k)

= Y h(k)z(n-k) (4.2)
= (h*2z)(n)

26 CHAPTER 4. RANDOM PROCESSES
where the symbol k under the sum indicates an N-tuple sum over all possible values of the
vector k.

The average output power, R, (0), is derived as follows, beginning with the definition
Ru(n;k) = Elu(n)u*(k)].
Substituting (4.2), we obtain

Ru(m;k) = E|> Y h(1)z(n—1)h*(m)z*(k — m)

1 m

= 3 hR (m)E [2(n — 12" (k — m)]

1 m

since the impulse response h(n) is deterministic and can be removed from the expectation.
Using the definition of an autocorrelation function we can substitute

Ru(n; k) = Z Z h(l)h*(m>Rz(n B l; K m)
- Zzh(l>h*(m)Rz(n—l—k+m)

since R.(n) = E[z(k)z*(k — n)] for stationary z. Since R, is shown to be a function of
n — k, it as also stationary, and can be rewritten

Ru(m) = >) h1)h*(m)R.(n -1+ m)
1 m
R.(n) * h(n) x h*(—n)
= (h*R,xh')(n)
with A’ indicating a conjugate transpose of the sequence h.

The average output power is then expressed in a conveniently-computable form:

Ru(0) => > h()h*(m)R.(m —1)

4.2.2 Periodicity and Symmetry Issues

In the one-dimensional case, a discrete-time LTI system h(n) with support on the integers has
a frequency response H (f) which is periodic with period 1. Similarly, in multiple dimensions,
if an impulse response h(n), n = {n,...,ny}, has support on the square lattice n = Z" | its
frequency response H(f), f € RY, will be periodic with its fundamental period the hypercube
with side length 1 centered at the origin.

4.2. PROCESSES IN SEVERAL VARIABLES 27

4.2.3 Basis Functions

Box

As before, this expression for average power is useful since we have several PSD-autocorrelation
transform pairs available. One such PSD basis function is the multi-dimensional general-
ization of the scaled ‘Box’ function Oy (f) = [], Ou,(fr), where each O, (fx) is a one-
dimensional box function, defined as

1 —w/2< f<w/2
O (f) = { 0 otherwise

Several Box functions can be used together to map out regions of the frequency response to
be used as passbands or stopbands.

Since the function Oy (f) is separable, its inverse Fourier transform is the product of one-
dimensional inverse Fourier transforms. So for a WSS random process with PSD S(f) =
Ow(f), we have

al sin(mwgTy)
kTk
R(T) = | | —_—
() TTE
k=1
For an offset in frequency off, the transform pair becomes

0 (f . Oﬁ‘) ej27r<7',0ﬁ'> H Sin<ﬂ-wk7—k>
v i Tk

where <, > indicates an inner (dot) product. For a PSD constructed from a superposition
of shifted, scaled boxes, the autocorrelation is

R(T) = ; cpei2m<moffe> H M (4.3)

T
L k

where ¢, is the multiplier coefficient of the /th instance of the basis function.

Triangle

The ‘Triangle’ basis function, Ay (f), is the multi-dimensional generalization of the one-

dimensional
I+ f/w —w<f<0

0 otherwise
which is the convolution of two one-dimensional Boxes. As such, a PSD made up of the
superposition of shifted, scaled Triangles is

R(r) = Zcéej27r<ﬂ0ffz> H (M)Q (4.4)

TT]
¢ A k

28 CHAPTER 4. RANDOM PROCESSES

Impulse

The ‘Impulse’ basis function, §(f), is the multi-dimensional generalization of the one-dimensional
O(f). It is useful to use a grid of Impulses to map out an irregularly-shaped band of the
desired filter’s frequency response. For a PSD composed of a single Impulse, the PSD /
autocorrelation pair is

S(f)y=46(f) «— R(1)=1
A PSD composed of the superposition of several shifted, scaled impulses therefore has the

autocorrelation function
R(r) = g cpel ¥ <Toff>

14

Circle

The ‘Circle’ basis function, available in a two-dimensional version, is defined as

Ow<f1,f2>:{ L v+ fisw

0 otherwise
This function has circular symmetry and can be written as a function of p = /f? + f2,

and therefore its inverse fourier transform can be found using the Fourier-Bessel transform
formula,

g(r) =2m /0 N pG(p)Jo(2mrp) dp

where J,(a) is a Bessel function of the first kind of order v. The inverse transform, as a

function of r = /77 + 73, is
R() = 2 [pOu (o) h(2mre) do
0
= 27r/ pJo(2mrp) dp
0

Letting u = 27rp, and thus du = 27r dp, we have

R(r) ! /027TW Jo(u) u du

27?2

Using the identity
/ u' Jo(u') du' = uJy(u),
0
we have
J1(2mrw)

R(r)=w .

4.2. PROCESSES IN SEVERAL VARIABLES 29

and thus

J1(2mwA/TE + 72)
R(Tl,TQ) =W 5 3
VT + T3

For a PSD composed of the superposition of shifted Circles of various radii the autocorrelation
is
Sy (2|7 |we)

171l

R(F) _ Z C[weej27r<?,oﬂ'>
l

A useful limit is
J1 (27|17
Cnllflle) _
17]]—0 17|

4.2.4 Examples

A multi-dimensional random process is created using
rp = NDProcess (basis, param, fregs, coeff) ;

Here rp is created with a PSD consisting of a superposition of basis functions at shifts given
in freqs and with weights given in coeff. freqs is a matrix in which each row is a vector of
frequency offsets; therefore, freqs should contain as many rows as shifted basis functions, and
as many columns as the dimension of the random process. coeff is a vector of length equal
to the number of rows of fregs.

If the PSD is to be made up entirely of a single type of basis function, basis should be the
name of the basis function; for example, 'Box’. If the PSD is to be composed of several types
of basis functions, basis must be a column vector cell array of length equal to the number
of rows of freqs; that is, one entry for each shifted basis function. For example: { 'Box’ ;
'Impulse’ ; 'Impulse’ } .

param contains the parameters for each shifted copy of a basis function. For a single-type
PSD, param should be a matrix, each row of which containing the parameters for another
copy of the basis function. For a multiple-type PSD, since different basis function types
require different parameters to be specified, param must be a cell array column vector, in
which each entry contains the parameters for another shifted basis function.

The basis function types 'Box’ and 'Triangle’ in N dimensions require one width parameter for
each dimension. The 'Impulse’ type requires no parameters, and the empty matrix [| should
be used in place of any parameter. The 'Circle’ basis function requires a radius parameter.

Here are two example random processes:

30 CHAPTER 4. RANDOM PROCESSES

s = NDProcess ({'Box’; 'Circle’; 'Impulse’} , {[11]; .2;[]},[00; 00; 00], [1; -1; 1]);
r = NDProcess ('Box’ , [.1.1.1;.1.1.1],[0.25.25;0.25-.25] ,[11]) ;

Random process s is two-dimensional. It consists of three basis functions, a Box, a Circle and
an Impulse. The Box spans the entire fundamental period; it has width 1 in each dimension
and is centered at the origin. The Circle is of radius .2 and centered at the origin. Because
the Circle’s coefficient is -1 the effect is of a rectangle with a circle cut out of it. An impulse
is added back in at the origin. Note that the param entries must be split into a cell array
vector because the PSD consists of different basis function types.

Process r is three-dimensional, and is composed only of Box-type basis functions. Since it is
a single-type PSD, the param entry is a matrix. The freqs matrix implies a 3-D process by
its width, and that there are two copies of a Box by its height.

Chapter 5

Design Examples

5.1 A Simple Notch Filter

5.1.1 Gridded Formulation

An example using L., error measure is a simple linear-phase FIR notch filter. To ensure linear
phase, the impulse response is constrained to be symmetrical about the origin. Therefore,
a length- N optSequence is allocated and shifted to the right, along with a center tap at the
origin.

rt
ct

optSequence(N, ov) | 1;
optSequence (1, ov);

The filter impulse response is then constructed by
h=1rt’ + ct + rt;
The stopband and its Fourier transform are specified by

df = 1/(50%N);
fsb = [0.21:df:0.29];
Hsb = real(fourier(h, fsb));

where df is the discretization step Af described above. Since H(f) is real by construction,
real is used to eliminate computational noise in the imaginary components. The passbands
and their Fourier transforms are specified similarly by

31

32 CHAPTER 5. DESIGN EXAMPLES

fpb
Hpb

[0:df:0.15 0.35:df:0.5];
real (fourier(h, fpb));

The constraints are then assembled into a cell array, constraining the stopband by an auxil-
iary optimization variable delta and the passbands by a constant.

delta = optVar(ov);
lev = 0.1/20;
constr = {-delta<Hsb, Hsb<delta,
Hpb<10~lev, 10"-lev<Hpb};
Finally minimize is called by

soln = minimize(delta, constr, ov, ’sedumi’);

The impulse and frequency responses of the optimized filter, with N = 15, are shown in
Fig. 5.1.

I I I I I
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

-60 1 1 1 I
0

normalized frequency
0.8 E
0.6 E
0.4+ E
0.2F T T R
0 ===.=.=.=,=i= o eie’eﬁe.e°===
-0.2 | L I L I I L |
-15 -10 -5 0 5 10 15

Figure 5.1: Notch Filter Impulse and Frequency Responses.

The optimal stopband supression can be found by examining the optimal value of delta:
db(double(optimal (delta, soln)))

which gives -31.6 dB, which is verified by a glance at Fig. 5.1.

5.1. A SIMPLE NOTCH FILTER 33
5.1.2 Random Process Formulation

The notch filter response can also be expressed using a random process formulation. This
entails specifying a new objective and set of constraints, while keeping the same impulse
response specification as above.

The following creates two random processes; pp for the passband and ps for the stopband.
Recall that a Process is created using the call Process(basis, offset, Coeff).

pp = Process(’Triangle’,0.5,[1 110000111 zeros(1,10)]);
ps = Process(’Box’,0.5,[0 0001100 0 0 zeros(1,10)]);

The coeflicient vectors are of length 20, so a basis function corresponding to entry k of the
coefficient vector is centered at frequency k/20. The offset of 0.5 means that the entire PSD
is shifted by 0.5 x 1/20. The PSDs are shown in Fig. 5.2.

pp ps

Figure 5.2: Random Process PSDs.

For both the stopband and passband, we wish to express a quantity that is to be bounded.
In the case of the stopband, this is simply the average output power. For the passband, we
instead use the power of the difference between the filtered process pp .* h and the unfiltered
process pp. The powers are computed using the following:

Ppwr = pwr(pp.*h-pp)/pwr(pp);
Spwr = pwr(ps.*h)/pwr(ps);

These powers, being quadratic quantities, may only be bounded from above by a constant
or another quadratic, to ensure that the optimization problem is convex. We bound the
passband power by an auxiliary optimization variable, and we bound the stopband power
by a constant:

34 CHAPTER 5. DESIGN EXAMPLES

delta = optVar(ov);
constr = {Ppwr < delta.”2, Spwr < 107(-4) };

minimize is then called by
soln = minimize(delta, constr, ov, ’sedumi’);

The impulse and frequency responses of the optimized filter are shown in Fig. 5.3.

20

0

0.8 i
0.6 b

0.4 B

0.2 T
0 I NPPY L 2PN

-0.2 1 1 1 1 1 1 1 |

Figure 5.3: Notch Filter Impulse and Frequency Responses.

5.2 Annular Filter

Here we design a two-dimensional filter with an annular frequency response. Since the desired
frequency response is circlarly symmetric, we can use the impulse response of the example
in section 3.4.1 on page 20.

Using the same random process strategy as for the first example, we define passband and
stopband processes:

NDProcess(’Circle’, [.255;.245], [0 O0; O O], [1; -11);
NDProcess({’Box’; ’Circle’; ’Circle’}, {[1 1]; .32; .18},
[0 0; 00; 001, [1; -1; 11);

pp
ps

5.2. ANNULAR FILTER 35

The desired passband is a thin annulus between radii .245 and .255. This is accomplished
by subtracting a circle of the smaller radius from a circle of the larger radius, and hence the
coefficient vector is [1; -1]. Both circles are centered at the origin.

The stopband is more complicated; starting with a box to indicate the entire fundamental
period of the frequency response, we subtract a circle slightly larger than the outer ring of
the annulus, and add back to the stopband a circle slightly smaller than the inner ring of
the annulus.

Since this process is composed of different types of basis functions, the function call to
NDProcess is a bit more complicated. The basis function types must now be specified for
each instance of a basis function in a cell array column vector. A cell array is created using
the and the entries are separated by semicolons.

Similarly, the parameters for each basis function instance must be given in separate entries
of a cell array column vector. *Box’ requires a width vector [1 1] which indicates a width of
1 in the x-direction and a width of 1 in the y-direction. >Circle’ requires only a scalar for
the radius.

The frequency shift matrix and coefficient vector are given as usual.

The various powers are computed as before. The power of the stopband process through the
filter is to be constrained to be small. The passband is treated differently; in that case, we
minimize the difference in power between the unfiltered and filtered passband process.

Ppwr = pwr(pp.*aa-pp);
Spwr = pwr(ps.*aa)/pwr(ps);

We bound the passband power by an auxiliary optimization variable, and we bound the
stopband power by a constant:

delta = optVar(ov);
constr = {Ppwr < delta."2, Spwr < le-3 };

minimize is then called by
soln = minimize(delta, constr, ov, ’sedumi’);

The frequency response of the optimized filter is shown in Fig. 5.4.

36

CHAPTER 5. DESIGN EXAMPLES

Wl A‘»““‘ h

&)

’\’\’;’l;/ 2!

W ?/\\llll‘/ 0“'
o q’\\, lllm" ' \

i

Figure 5.4: Annular Filter Frequency Response.

Chapter 6

OPT Reference

6.1 MATLAB Library

This section of the user’s guide contains detailed descriptions of all the MATLAB-callable
functions. On-line help is also available — if you execute help on one of the function names,
MATLAB displays an abbreviated version of the reference entry.

37

38 CHAPTER 6. OPT REFERENCE

6.1.1 Engine Functions

6.1. MATLAB LIBRARY

eqreduce

Purpose

Equality constraint reducer.
Syntax

[H, x0] = eqreduce(constr)
Description

Returns the nullspace H of equality constraints and vector x0 such that
x=H."'y + x0
in terms of reduced-dimension vector y.

39

40 CHAPTER 6. OPT REFERENCE

fixcase

Purpose

Case bug workaround.
Syntax

y = fixcase(x)
Description

Workaround for bug in PC/Windows version that requires lowercase references
to class members. Currently has no effect on other platforms.

6.1. MATLAB LIBRARY

InitOpt

Purpose

41

Initialization script for OPT optimization toolbox.

Syntax

InitOpt

Description

InitOpt must be called by all design programs using the toolbox. InitOpt sets
up the global data structure OPT_DATA which contains the following data:

OPT_DATA.
OPT_DATA.
OPT_DATA.
OPT_DATA.
OPT_DATA.

OPT_DATA

See Also

pools
procs
procs().
procs().
procs() .

.procs().
OPT_DATA.
OPT_DATA.

ctprocs
casebug

newOptSpace

vector of optimization pool sizes
array of base random processes

basis : basis function

offset : basis offset

Coeff : basis frequency coefficients
coeff : basis time coefficients

same as procs, but for c.t.
1 to workaround windows mixed-case classnamebug

Allocate new pool of optimization variables.

42 CHAPTER 6. OPT REFERENCE

mfactor

Purpose

Matrix factorization.

Syntax

S = mfactor(Q, eigtol)

Description

Factors a symmetric, positive definite matrix into S’ *S.

6.1. MATLAB LIBRARY

minimize

Purpose

Interface to optimization engines.
Syntax

[soln] = minimize(obj, constr, ov, method)
Description

minimize uses an installed optimization engine to solve the problem.
obj is an optVectorwhich specifies the objective function.

constr specifies the constraints. It is a cell array of LinConstr and SOCConstr
type constraints.

ov specifies the pool (optSpace) of variables to optimize.

method specifies the optimization pacakage to be used, placed in single quotes.
Currently, eig, geneig, loqo, logosocp, logosoclp, boydsocp, sdppack and
sedumi are supported.

43

44 CHAPTER 6. OPT REFERENCE

newOptSpace

Purpose

Allocate variable pool.
Syntax

pool = newOptSpace
Description

pool = newOptSpace allocates a new pool (optSpace) of optimization variables
and returns a pointer to it in pool.

See Also

InitOpt Initialization script for OPT optimization toolbox.
optSpace Class of pools of optimization variables.

6.1. MATLAB LIBRARY

optVar

Purpose

Create a single optimized variable.
Syntax

opt = optVar(ov)
Description

Creates a single optimized variable in optSpace ov. This is an alias for opt =
optVector(1,ov).

See Also

optVector Optimization variable vector constructor.

45

46 CHAPTER 6. OPT REFERENCE

qm

Purpose

Minimal Sum-of-Products form.
Syntax

fcn = gm(minterms, numvars)
Description

Reduces the Boolean function expressed by minterms into the minimal sum-
of-products form using the Quine-McCluskey method. fcn is a cell array of
essential prime implicant terms. Terms are expressed as arrays of indices — so 1
indicates the least significant variable, and so on. A negative index indicates a
complemented variable.

Examples

Aresultof {[1 -4]; [-3]; [2 5]} indicatesthe minimized functionis F'(a,b,c,d,e) =
ad + ¢ + be for a being the LSV, and so on.

6.1. MATLAB LIBRARY

wherein

Purpose
Search function.
Syntax
m = wherein(x, y)
Description
If x and y are sets of unique numbers, wherein(x, y) returns a vector of the

locations in x of the entries of y.

wherein returns NaN if an entry of y is not found in x.

48 CHAPTER 6. OPT REFERENCE

6.1.2 Continuous-Time Processes

6.1. MATLAB LIBRARY

CTProcess

49

Purpose

Continuous-time process constructor.
Syntax

[rp] = CTProcess(basis, scale, freqs, Coeff)
Description

CTProcess initializes rp as a wide-sense-stationary zero-mean process whose
spectrum is defined by shifted and weighted basis functions. The quadruple
(basis,scale,freqgs,Coeff) is placed in a global table and is referred to through
its index, allowing multiple processes to refer to the same base process.

basis can be ’Box’ or ’Triangle’.
scale sets the scaling of the basis function.

fregs is a vector of frequencies at which a basis function is added. fregs is
sorted and checked for duplicate entries as well as non-real entries.

Coeff is a vector of coefficients which weight the basis functions. Coeff must be
of the same length as fregs.

90 CHAPTER 6. OPT REFERENCE

CTProcess/char, display

Purpose

Output functions for class CTProcess.

Syntax

c = char(rp)
display(rp)

Descripition

char converts class CTProcess to character for output. display is command
window display of class CTProcess.

6.1. MATLAB LIBRARY

CTProcess/get pool

o1

Purpose

Pool extraction function.

Syntax

pool = get_pool(rp)

Description

get_pool returns the pool of the system component of the process rp.

52 CHAPTER 6. OPT REFERENCE

CTProcess/minus

Purpose

Process subtraction.

Syntax

[rpmin] = minus(rpa, rpb)

Description

minus gives the difference of the two random processes. Any base processes
shared by rpa and rpb have their systems combined.

[rpmin] = minus(rpa, rpb) is called for the syntax ‘rpa - rpb’.

6.1. MATLAB LIBRARY

CTProcess/plot

93

Purpose

Graphical display of random process.
Syntax

hand = plot(rp, f, options)
Description

plot (rp) graphs the power spectrum of the processes making up rp over the set
frequencies for which the power spectrum has support.

plot(rp, f) graphs the power spectrum of the processes making up rp at the
frequencies given in the vector f.

hand = plot(...) returns the plot handle.
options can include:
e ’0’ or ’overlay’: in addition to plotting the power spectrum, overlays a
plot of the individual base processes.
e ’nooverlay’: plots only the overall power spectrum. This is the default.

e ’p’ or ’print’: uses options suitable for printer output. This option will
override some user-set plotting defaults.

e ’noprint’: uses default plotting options. This is the default.

o4 CHAPTER 6. OPT REFERENCE

CTProcess/plus

Purpose

Process addition.

Syntax

[rpsum] = plus(rpa, rpb)

Description

plus gives the sum of the two random processes. Any base processes shared by
rpa and rpb have their systems combined.

[rpsum] = plus(rpa, rpb) is called for the syntax ‘rpa + rpb’.

6.1. MATLAB LIBRARY

95

CTProcess/pwr

Purpose

Power in random process.
Syntax

[P] = pwr(rp)
Description

pwr returns the power in process rp as an optimizable quadratic quantity of type
optQuad.

o6 CHAPTER 6. OPT REFERENCE

CTProcess/times

Purpose

Process convolution.
Syntax

[rpconv] = times(a, b)
Description

Result is convolution of a process with an affine sequence (system). One input is
a random process, and the other must be a sequence.

[rpconv] = times(a, b) is called for the syntax ‘a .* b’

6.1. MATLAB LIBRARY

CTProcess/uminus

Purpose

Process negation.

Syntax

[rpmin] = uminus(rp)

Description

Negates the system associated with process rp.

[rpmin] = uminus(rp) is called for the syntax ‘-rp’.

o8 CHAPTER 6. OPT REFERENCE

6.1.3 Lattices

6.1. MATLAB LIBRARY

Lattice

99

Purpose

Lattice object constructor.

Syntax
[lat] = Lattice()
[lat] = Lattice(M)
Description
[lat] = Lattice() creates an empty Lattice object.
[lat] = Lattice(M) creates a Lattice object with basis matrix M.

60 CHAPTER 6. OPT REFERENCE

Lattice/char, display

Purpose

Output functions for class Lattice.

Syntax

¢ = char(lat)
display(lat)

Description

char converts class Lattice to character for output. display is command window
display of class Lattice.

6.1. MATLAB LIBRARY

Lattice/get M

61

Purpose

Lattice basis matrix extraction.

Syntax

M = get M(lat)

Description

Returns the basis matrix of the lattice lat.

62

Lattice/get off

CHAPTER 6. OPT REFERENCE

Purpose

Lattice offset extraction.

Syntax

off = get_off(lat)

Description

Returns the offset vector of the lattice lat.

6.1. MATLAB LIBRARY

Lattice/get scale

63

Purpose

Lattice scale extraction.

Syntax

scale = get_scale(lat)

Description

Returns the scale factor of the lattice lat.

64 CHAPTER 6. OPT REFERENCE

Lattice/inbox

Purpose

Points within bounding box.
Syntax

locs = inbox(lat, box)
Description

Returns the cartesian coordinates of the points on the lattice 1at located within
the bounding box box. box is expressed as a vector: [xminzmazxyminymaz . ..]
where the intervals are distances along the lattice basis vectors.

6.1. MATLAB LIBRARY

Lattice/mtimes

Purpose

Lattice scaling.

Syntax

slat = mtimes(lat, scale)

Description

Scales the lattice by a factor of scale.

slat = mtimes(lat, scale) is called for the syntax lat * scale.

66 CHAPTER 6. OPT REFERENCE

Lattice/plus

Purpose

Lattice shifting.

Syntax

olat = plus(lat, off)

Description

Shifts the lattice by an offset; that is, any points on the base lattice will be shifted
by the offset vector. The length of off must be the same as the dimension of
lat.

olat = plus(lat, off) is called for the syntax lat + off.

6.1. MATLAB LIBRARY

6.1.4 Linear Constraints

67

68 CHAPTER 6. OPT REFERENCE

LinConstr

Purpose

Linear constraint constructor.

Syntax

[lconstr] = LinConstr(rel, vect)

Description

LinConstr initializes lconstr as a linear constraint. A linear constraint is of
the form

vect < 0 or vect == 0

where vect is of type optVector.

The constraint is stored in the form

Axx < b or Axx ==

where A and b are the linear and constant terms of vect.

For the relation ‘<’, imaginary parts of the constraint are ignored. Complex parts
of an ‘==" constraint are converted to two real constraints.

6.1. MATLAB LIBRARY

69

LinConstr/char, display

Purpose
Output functions for class LinConstr.
Syntax

¢ = char(constr)
display(constr)

Descripition

char converts class LinConstr to character for output. display is command
window display of class LinConstr.

70 CHAPTER 6. OPT REFERENCE

LinConstr/get A, get b, get rel

Purpose

A, b and rel extraction functions.

Syntax

=
I

get_A(lconstr)
get_b(lconstr)
rel = get rel(lconstr)

lop
Il

Description

=
I

get_A(lconstr) returns A matrix of linear constraint lconstr.

lon
I

get_b(lconstr) returns b vector of linear constraint lconstr.

rel = get_rel(lconstr) returns relation of linear constraint as character ar-
ray. Can be ‘==" or ‘<.

6.1. MATLAB LIBRARY

LinConstr/length

Purpose

Number of linear constraints.

Syntax

[len] = length(constr)

Description

Returns the number of linear constraints in constr.

71

72 CHAPTER 6. OPT REFERENCE

6.1.5 Multi-Dimensional Processes

6.1. MATLAB LIBRARY

NDProcess

73

Purpose

Continuous-time process constructor.
Syntax

[rp] = NDProcess(basis, param, freqs, Coeff)
Description

NDProcess initializes rp as a wide-sense-stationary zero-mean process whose
spectrum is defined by shifted and weighted basis functions. The quadruple
(basis,param,freqs,Coeff) is placed in a global table and is referred to through
its index, allowing multiple processes to refer to the same base process.

e basis : basis function for the process’s PSD. Currently allowed are *Box’,
’Triangle’, ’Impulse’ and ’Circle’, if the PSD is to be composed of a
single type of basis function. For a PSD composed of several types, basis
must be a cell column vector with each individual basis function named.
For example, 'Box’; ’Circle’; 'Circle’ specifies a PSD composed of a 'Box’
and two 'Circles’.

e param : parameters for basis functions. For PSD composed of a single type
of basis function, param should be a matrix, each row of which contains the
parameters for another basis function. For several types, param should be
a cell column vector with each entry the parameters for an individual basis
function.

— ’Box’, ’Triangle’ : width parameters are required, one positive, real
width for each dimension. For example, if this is a one-type PSD, param
should be a matrix, each row of which contains the widths for another
basis function. For a several-type PSD, each ’Box’ or ’Triangle’ entry
should be a row vector.

— ’Circle’ : currently, only 2-D is supported. A positive, real radius
parameter is required.

— ’Impulse’ : no parameters required. For one-type PSD, use the empty
matrix [|. For several-type PSD, each ’Impulse’ entry should be the
empty matrix [].

74

CHAPTER 6. OPT REFERENCE

e fregs : matrix of frequency shifts. Each row gives the shifts for another ba-
sis function. The PSD is the sum of basis functions at each of the frequency
shifts in freqs. The width of the freqs matrix determines the dimension
of the process.

e Coeff : vector of coefficients of basis functions. Must have length equal to
the number of rows of width and fregs.

6.1. MATLAB LIBRARY

NDProcess/char, display

75

Purpose

Output functions for class NDProcess.

Syntax

c = char(rp)
display(rp)

Descripition

char converts class NDProcess to character for output. display is command
window display of class NDProcess.

76 CHAPTER 6. OPT REFERENCE

NDProcess/get pool

Purpose

Pool extraction function.

Syntax

pool = get_pool(rp)

Description

get_pool returns the pool of the system component of the process rp.

6.1. MATLAB LIBRARY

7

NDProcess/minus

Purpose

Process subtraction.
Syntax

[rpmin] = minus(rpa, rpb)
Description

minus gives the difference of the two random processes.
shared by rpa and rpb have their systems combined.

Any base processes

[rpmin] = minus(rpa, rpb) is called for the syntax ‘rpa - rpb’.

78 CHAPTER 6. OPT REFERENCE

NDProcess/plot

Purpose

Graphical display of random process.
Syntax

hand = plot(rp, f, options)
Description

plot (rp) graphs the power spectrum of the processes making up rp over the set
frequencies for which the power spectrum has support.

plot(rp, f) graphs the power spectrum of the processes making up rp at the
frequencies given in the vector f.

hand = plot(...) returns the plot handle.
options can include:
e ’0’ or ’overlay’: in addition to plotting the power spectrum, overlays a
plot of the individual base processes.
e ’nooverlay’: plots only the overall power spectrum. This is the default.

e ’p’ or ’print’: uses options suitable for printer output. This option will
override some user-set plotting defaults.

e ’noprint’: uses default plotting options. This is the default.

6.1. MATLAB LIBRARY

79

NDProcess/plus

Purpose
Process addition.
Syntax
[rpsum] = plus(rpa, rpb)
Description
plus gives the sum of the two random processes. Any base processes shared by

rpa and rpb have their systems combined.

[rpsum] = plus(rpa, rpb) is called for the syntax ‘rpa + rpb’.

30 CHAPTER 6. OPT REFERENCE

NDProcess/pwr

Purpose

Power in random process.

Syntax

[P] = pwr(rp)

Description

pwr returns the power in process rp as an optimizable quadratic quantity of type
optQuad.

6.1. MATLAB LIBRARY

NDProcess/times

Purpose
Process convolution.
Syntax
[rpconv] = times(a, b)
Description
Result is convolution of a process with an affine sequence (system). One input is

a random process, and the other must be a sequence.

[rpconv] = times(a, b) is called for the syntax ‘a .* b’

82 CHAPTER 6. OPT REFERENCE

NDProcess/uminus

Purpose

Process negation.

Syntax

[rpmin] = uminus(rp)

Description

Negates the system associated with process rp.

[rpmin] = uminus(rp) is called for the syntax ‘-rp’.

6.1. MATLAB LIBRARY

6.1.6 Optimizable Arrays

33

84 CHAPTER 6. OPT REFERENCE

optArray

Purpose

Optimized affine multi-dimensional sequence constructor.

Syntax

[seq] = optArray(locs,pool)

[seq] = optArray(locs, vect)

[seq]l = optArray(locs, vect, ’a’)

[seq] = optArray(locs, x)

[seq] = optArray(locs, x, ’c’)

[seq] = optArray(lattice, region, pool)
[seq] = optArray()

Description

[seq] = optArray(locs,pool) creates an optimized affine sequence at loca-
tions given in locs using pool of optimization variables pool.

[seq] = optArray(locs, vect)
[seq]l = optArray(locs, vect, ’a’) creates an optimized affine sequence from
optVector vect at locations given in locs.

optArray(locs, x)
optArray(locs, x, ’c’) creates a constant sequence from vector or

[seql
[seql
sequence x at time indices given in locs.

[seq] = optArray(lattice, region, pool) creates an optimized affine se-
quence at locations on a Lattice within a Region.

[seq]l = optArray() creates an empty sequence.

6.1. MATLAB LIBRARY

85

optArray/char, display
Purpose
Output functions for class optArray.

Syntax

c = char(seq)
display(seq)

Descripition
char converts class optArray to character for output. display is command

window display of class optArray.

Displays the kernel, offset into variable pool, pool number and support locations.

86 CHAPTER 6. OPT REFERENCE

optArray/ctranspose

Purpose

Conjugate flip.

Syntax

[tseq] = ctranspose(seq)

Description

Flips seq about the origin and conjugates it.

[tseq] = ctranspose(seq) is called for the syntax seq’.

6.1. MATLAB LIBRARY

87

optArray /flip

Purpose

Sequence flip.
Syntax

tseq = flip(seq, dim)
Description

Flips the sequence in dimension dim.
Examples

To flip about the y-axis in 2-D, use flip(seq,1).

To flip about the xy-plane in 3-D, use flip(seq,3).

38 CHAPTER 6. OPT REFERENCE

optArray /fourier

Purpose

Sequence Fourier transform.
Syntax

G = fourier(g, f)
Description

Returns Fourier transform of optArray g at f as an optArray, f is a matrix in
which each row indicates a point to evaluate the freqeuncy response.

6.1. MATLAB LIBRARY

39

optArray/get dim, get locs

Purpose
Dimension and locations extraction functions.
Syntax

dim = get_dim(seq)
locs = get_locs(seq)

Description
dim = get_dim(seq) returns the dimension of seq.

locs = get_locs(seq) returns the locations of support of seq as a matrix, in
which each row contains the coordinates of a single point.

90 CHAPTER 6. OPT REFERENCE

optArray/isempty

Purpose

True for empty optArray.
Syntax

[em] = isempty(seq)
Description

Returns 1 if seq is an empty optArray, and 0 otherwise.

6.1. MATLAB LIBRARY

optArray/minus

91

Purpose

Sequence subtraction.

Syntax

[mseq] = minus(a, b)

Description

Subtracts optArray b from optArray a.

[mseq] = minus(a, b) is called for the syntax a - b.

92 CHAPTER 6. OPT REFERENCE

optArray/mtimes

Purpose

Sequence element-wise multiplication.
Syntax

[mseq] = mtimes(a, b)
Description

Muliplies a by b. It is legal to multiply a constant sequence by a constant sequence
of the same dimension; and an optimized sequence by a constant sequence of the
same dimension or a scalar.

[mseq] = mtimes(a, b) is called for the syntax a * b.

6.1. MATLAB LIBRARY

optArray/optimal

93

Purpose

Return optimal sequence.

Syntax

optseq = optimal(opt, soln)

Description

Returns optimal constant sequence as given by soln.

94 CHAPTER 6. OPT REFERENCE

optSequence/or

Purpose

Sequence linear shift.

Syntax

[sseq] = or(seq, offset)

Description

Shifts the sequence by offset. offset must be a vector of the same dimension
as seq.

[sseq] = or(seq, offset) is called for the syntax seq | offset.

6.1. MATLAB LIBRARY

optArray/plot

95

Purpose
Graphical representation of optArray.
Syntax

plot(seq)
plot(seq, ...)

Description

Plots optArray seq, which can be 1-, 2- or 3-dimensional.
plot(seq, ...) plots seq with comma-separated list of plotting options. op-

tions can be one or more of:

e ’color, ’nocolor’: whether to use color coding in plots; green if constant,
blue if dependent on the optimization variables, and red if affine. Also,
whether to plot a star for complex values and circle for real value, or only
circles.

Default: ’nocolor’

e ’label’, ’nolabel’: whether to print labels of array elements.
Default: ’nolabel’

e ’print’, ’noprint’: whether to use formatting suitable for printout.
Default: ’noprint’

e ’stagger’, ’nostagger’: whether to stagger labels in 1-D plots readability
e ’FontSize’: font size of labels. To be followed the font size value.
e ’LineWidth’: Width of line used in stem plot. Followed by line width value.

e ’MarkerSize’: Size of marker in stem plots.

96 CHAPTER 6. OPT REFERENCE

optArray/plus

Purpose

Sequence addition.
Syntax

[pseq] = plus(a, b)
Description

Adds optArrays a and b.
[pseq] = plus(a, b) is called for the syntax a + b.

6.1. MATLAB LIBRARY

97

optArray/rot

Purpose

Sequence rotation.
Syntax

[tseq] = rot(seq, ang, dims)
Description

Rotates the sequence by ang radians in dimensions dims. dims is a length-2
vector indicating the subspace in which the rotation is performed. For example,
rot(seq, pi/4, [1 3]) will rotate seq 45 degrees in the xz-subspace.

98 CHAPTER 6. OPT REFERENCE

optArray/set locs

Purpose

Sequence locations insertion function.
Syntax

[tseq] = set_locs(seq, locs)
Description

Returns the sequence seq with support locations replaced by locs. locs must
be a matrix with each row giving the coordinates of an individual point.

6.1.

optArray /subsref

MATLAB LIBRARY

99

Purpose

Sequence subscripted reference.

Syntax

subs = seq(locs)

subs = seq([xmin xmax ymin ymax ...])
subs = seq(n, ’i’)

subs = seq(reg)

Description

seq(locs) returns a subsequence at locations given in locs.

subs = seq([xmin xmax ymin ymax ...]) returns a subsequence located in
a hypercube which is described using the intervals [xmin, rmax| and so forth.

subs = seq(n, ’i’) returns a subsequence using 'Matlab’ indices. For ex-
ample, seq(1:4, ’i’) returns a sequence containing the first through fourth
elements of seq.

subs = seq(reg) returns a subsequence with only those elements within a region
indicated by the Region object reg.

100 CHAPTER 6. OPT REFERENCE

optArray/times

Purpose
Sequence convolution.
Syntax
[cseq] = times(a, b)
Description
Convolves optArrays a and b, one of which must not depend on the optimization

variables (constant sequence).

[cseq] = times(a, b) is called for the syntax a .* b.

6.1. MATLAB LIBRARY 101

optArray/transpose

Purpose

Sequence flip.
Syntax

[tseq] = transpose(seq)
Description

Flips seq about the origin.

[tseq] = transpose(seq) is called for the syntax seq.’.

102 CHAPTER 6. OPT REFERENCE

6.1.7 Quadratic Optimizables

6.1. MATLAB LIBRARY 103

optQuad

Purpose

Constructor for quadratic form optimization expressions.

Syntax

[quad] = optQuad(Q, xoffr, xoffc, pool)

[quad] = optQuad
Description
[quad] = optQuad(Q, xoffr, xoffc, pool) returns a fully specified quadratic

with kernel matrix Q at offset (xoffr,xoffc) from optimization variable space
pool.

[quad] = optQuad returns an empty quadratic.

104 CHAPTER 6. OPT REFERENCE

optQuad/char, display
Purpose
Output functions for class optQuad.

Syntax

¢ = char(quad)
display(quad)

Descripition
char converts class optQuad to character for output. display is command win-

dow display of class optQuad.

Displays the kernel, offsets into variable pool, and pool number.

6.1. MATLAB LIBRARY

optQuad/eq

Purpose

Quadratic equality constraint.

Syntax

[eqconstr] = eq(a,b)

Description

Forms constraint of type a == b, where a is an optQuad and b is an optQuad or
a scalar. The constraint is a second-order-cone constraint, of type SOCConstr.

[eqconstr] = eq(a, b) is called for the syntax ‘a == b’.

105

106 CHAPTER 6. OPT REFERENCE

optQuad/get kernel

Purpose

Kernel matrix extraction function.

Syntax

Q = get kernel(quad, format)

Description

Extracts kernel matrix Q from quad. Quadratic is of the form
[1;x].°*[k c.’/2;c/2 H]*[1;x] = x.’*H*x + c.’*x + k

format can be: ’sparse’, >full’, ’purequad’, ’affine’, ’linear’ or ’const’.

’sparse’ returns nonzero portion as a sparse matrix
>full’ returns the whole kernel as a sparse matrix
’purequad’ returns H, the purely quadratic kernel
>affine’ returns [k;c],the affine part of the quadratic
’linear’ returns c, the linear part of the quadratic

’const’ returns k, the constant part

6.1. MATLAB LIBRARY 107

optQuad/get pool

Purpose

Pool extraction function.

Syntax

pool = get_pool(quad)

Description

Returns pool number of quad.

108 CHAPTER 6. OPT REFERENCE

optQuad/get xoffc

Purpose

xoffc extraction function.

Syntax

xoffc = get _xoffc(quad)

Description

Returns xoffc, offset of columns of kernel into the pool of optimizables.

6.1. MATLAB LIBRARY

optQuad/get xoffr

Purpose

xoffr extraction function.
Syntax

xoffr = get _xoffr(quad)

Description

Returns xoffr, offset of rows of kernel matrix into the pool of optimizables.

109

110 CHAPTER 6. OPT REFERENCE

optQuad /ispure

Purpose

Test if variable is purely quadratic.
Syntax

[pure] = ispure(quad)
Description

Returns true (1) if quad contains no constant or linear terms; that is, if quad is
purely quadratic. Otherwise returns false (0).

6.1. MATLAB LIBRARY 111

optQuad/It

Purpose
Quadratic inequality constraint.
Syntax
[constr] = 1t(a, b)
Description
Forms constraint of type a < b, where a is an optQuad and b is an optQuad or

a scalar. The constraint is a second-order-cone constraint, of type SOCConstr.

[constr] = 1t(a, b) is called for the syntax ‘a < b’.

112 CHAPTER 6. OPT REFERENCE

optQuad/mrdivide

Purpose

Scalar division.

Syntax

[c] = mrdivide(a, b)

Description

Divides optQuad a’s kernel matrix by scalar b.

[c] = mrdivide(a, b) is called for the syntax ‘a / b’.

6.1. MATLAB LIBRARY

optQuad /mtimes

Purpose

Scalar multiplication.

Syntax

[c] = mtimes(a, b)

Description

Multiplies optQuad a’s kernel matrix by scalar b.

[c] = mtimes(a, b) is called for the syntax ‘a * b’.

113

114 CHAPTER 6. OPT REFERENCE

optQuad/optimal

Purpose

Optimal quadratic.

Syntax

optq = optimal(quad, soln)

Description

Given a solution soln returned by the minimize function, return optimal se-
quence.

6.1. MATLAB LIBRARY 115

optQuad/plus

Purpose

Quadratic addition.

Syntax

[c] = plus(a, b)

Description

Adds optQuads a and b.
[c] = plus(a, b) is called for the syntax ‘a + b’

116 CHAPTER 6. OPT REFERENCE

optQuad/set kernel

Purpose

Kernel insertion function.

Syntax

quadout = set _kernel(quad, kernel)

Description

Replaces quad’s kernel matrix with kernel.

6.1. MATLAB LIBRARY

optQuad /set xoffc

Purpose
xoffc insertion function.
Syntax
quadout = set xoffc(quad, xoffc)

Description

Replaces quad’s colunm offset with xoffc. Does not perform error checking.

117

118 CHAPTER 6. OPT REFERENCE

optQuad /set xoffr

Purpose

xoffr insertion function.
Syntax

quadout = set xoffr(quad, xoffr)
Description

Replaces quad’s row offset with xoffr. Does not perform error checking.

6.1. MATLAB LIBRARY 119

6.1.8 Quadratic Optimizable Vectors

120 CHAPTER 6. OPT REFERENCE

optQuadVector

Purpose

Optimized quadratic vector constructor.
Syntax

[qvect] = optQuadVector(aff, absflag, sqflag)
Description

Creates an optimized affine quadratic vector from optVector aff. absflag and
sqflag are set to the values given.

6.1. MATLAB LIBRARY 121

optQuadVector/char, display

Purpose
Output functions for class optQuadVector.
Syntax

¢ = char(quadvec)
display(quadvec)

Descripition
char converts class optQuadVector to character for output. display is com-

mand window display of class optQuadVector.

Displays the kernel, offset into variable pool, pool number, and flags.

122 CHAPTER 6. OPT REFERENCE

optQuadVector/get absflag

Purpose

absflag extraction function.

Syntax

absflag = get_absflag(quadvec)

Description

Returns value of absflag for quadvec. This indicates whether quadvec was
formed as the result of an abs operation.

6.1. MATLAB LIBRARY 123

optQuadVector/get optVector

Purpose

optVector extraction function.

Syntax

vect = get_optVector(qvect)

Description

Returns only the optVectorportion of qvect.

124 CHAPTER 6. OPT REFERENCE

optQuadVector/get sqflag

Purpose

sqflag extraction function.

Syntax

sqflag = get_sqflag(quadvec)

Description

Returns value of sqflag for quadvec. This indicates whether quadvec was
formed as the result of a squaring operation.

6.1. MATLAB LIBRARY 125

optQuadVector /1t

Purpose

Quadratic inequality constraint.
Syntax

[constr] = 1t(a, b)
Description

Forms constraint of type a < b, where a is an optQuadVector and b is an
optQuadVector, an optVector, or a scalar. The constraint is a second-order-
cone constraint, of type SOCConstr.

[constr] = 1t(a, b) is called for the syntax ‘a < b’.

126 CHAPTER 6. OPT REFERENCE

optQuadVector/power

Purpose
Elementwise power.
Syntax
[qvect] = power(a, b)
Description
Raises a to the power b. a can only be raised to the second power, and a cannot

already have been squared.

[constr] = power(a, b) is called for the syntax ‘a .~ b’

6.1. MATLAB LIBRARY 127

optQuadVector/set absflag

Purpose

absflag insertion function.

Syntax

quadout = set_absflag(quadin, absflag)

Description

Replaces absflag with new value.

128 CHAPTER 6. OPT REFERENCE

optQuadVector /set sqflag

Purpose

sqflag insertion function.

Syntax

quadout = set_sqflag(quadin, sqflag)

Description

Replaces sqflag with new value.

6.1. MATLAB LIBRARY 129

optQuadVector/sum

Purpose

Sum of terms in quadratic vector.

Syntax

[quadsum] = sum(qvect)

Description

Returns quadsum of class optQuad, the sum of the terms in qvect.

130 CHAPTER 6. OPT REFERENCE

6.1.9 Optimizable Affine Sequences

6.1. MATLAB LIBRARY 131

optSequence

Purpose

Optimized affine sequence constructor.

Syntax
[seq] = optSequence(n, pool)
[seq] = optSequence(vect)
[seq] = optSequence(x)
[seq] = optSequence
Description
[seq] = optSequence(n, pool) createsan optimized affine sequence of length
n.
[seq] = optSequence(vect) createsan optimized affine sequence from optVector
vec.
[seq] = optSequence(x) creates a constant sequence from vector x.

[seql optSequence creates an empty sequence.

132 CHAPTER 6. OPT REFERENCE

optSequence/char, display
Purpose
Output functions for class optSequence.

Syntax

c = char(seq)
display(seq)

Descripition
char converts class optSequence to character for output. display is command

window display of class optSequence.

Displays the kernel, offset into variable pool, pool number and time offset.

6.1. MATLAB LIBRARY 133

optSequence/ctranspose

Purpose

Conjugate flip.

Syntax

[tseq] = ctranspose(seq)

Description

Flips seq about the origin and conjugates it.

[tseq] = ctranspose(seq) is called for the syntax seq’.

134 CHAPTER 6. OPT REFERENCE

optSequence/fourier

Purpose

Sequence Fourier transform.

Syntax

G = fourier(seq, nu)

Description

Returns Fourier transform of seq at frequencies nu as an optVector.

6.1. MATLAB LIBRARY 135

optSequence/get noff

Purpose

noff extraction function.

Syntax

noff = get noff(seq)

Description

Returns time offset of seq. The true position of the first sequence element is
noff + 1.

136 CHAPTER 6. OPT REFERENCE

optSequence/ldivide

Purpose

Sequence decimation.
Syntax

[dseq] = 1ldivide(seq, M)
Description

Returns seq decimated by M. M must be a scalar integer.

[dseq] = ldivide(seq, M) is called for the syntax seq .\ M .

6.1. MATLAB LIBRARY 137

optSequence/le

Purpose

Sequence linear shift.

Syntax

[sseq] = le(seq, nshift)

Description

Shifts seq left by nshift. nshift must be a scalar integer.
[sseq] = le(seq, nshift) is called for the syntax seq <= nshift.

138 CHAPTER 6. OPT REFERENCE

optSequence/minus

Purpose

Sequence subtraction.

Syntax

[mseq] = minus(a, b)

Description

Subtracts optSequence b from optSequence a.

[mseq] = minus(a, b) is called for the syntax a - b.

6.1. MATLAB LIBRARY 139

optSequence/mtimes

Purpose
Sequence element-wise multiplication.
Syntax
[mseq] = mtimes(a, b)
Description
Muliplies a by b. It is legal to multiply a constant sequence by a constant

sequence; and an optimized sequence by a scalar or a constant sequence.

[mseq] = mtimes(a, b) is called for the syntax a * b.

140 CHAPTER 6. OPT REFERENCE

optSequence/optimal

Purpose

Return optimal sequence.

Syntax

optseq = optimal(opt, soln)

Description

Returns optimal constant sequence as given by soln.

6.1. MATLAB LIBRARY

optSequence/or

Purpose

Sequence linear shift.
Syntax

[sseq] = or(seq, nshift)

Description

Shifts the sequence right by (delays by) nshift. nshift must be a scalar integer.
[sseq] = or(a, b) is called for the syntax a | b.

141

142 CHAPTER 6. OPT REFERENCE

optSequence/plus

Purpose

Sequence addition.
Syntax

[pseq] = plus(a, b)
Description

Adds optSequences a and b.
[pseq] = plus(a, b) is called for the syntax a + b.

6.1. MATLAB LIBRARY 143

optSequence/rdivide

Purpose

Sequence interpolation.
Syntax

[dseq] = rdivide(seq, M)
Description

Interpolates seq by M. M must be a scalar integer.

[dseq] = rdivide(seq, M) is called for the syntax seq ./ M.

144 CHAPTER 6. OPT REFERENCE

optSequence/subsref

Purpose

Sequence subscripted reference.

Syntax

subs = seq(n) subs = seq(nl, n2)

Description

seq(n) returns an optimized scalar at time index n.

seq(nl, n2) returns a subsequence from time index n1 to n2.

6.1. MATLAB LIBRARY 145

optSequence/times

Purpose
Sequence convolution.
Syntax
[cseq] = times(a, b)
Description
Convolves optSequences a and b, one of which must not depend on the opti-

mization variables (constant sequence).

[cseq] = times(a, b) is called for the syntax a .* b.

146 CHAPTER 6. OPT REFERENCE

optSequence/transpose

Purpose

Sequence flip.
Syntax

[tseq] = transpose(seq)
Description

Flips seq about the origin.

[tseq] = transpose(seq) is called for the syntax seq.’.

6.1. MATLAB LIBRARY 147

6.1.10 Optimization Spaces

148 CHAPTER 6. OPT REFERENCE

optSpace
Purpose
Class of optimization variables pools (optSpaces).

Syntax

[ov] = optSpace(spacename)
[ov] = optSpace

Description
[ov] = optSpace(spacename) creates an optSpace with name spacename.
spacename should be a string.
[ov] = optSpace creates an optSpace with default name assigned.

See Also

newOptSpace allocates a new space (pool) of optimization variables

6.1. MATLAB LIBRARY 149

6.1.11 Optimizable Vectors

150 CHAPTER 6. OPT REFERENCE

optVector

Purpose

Optimized vector constructor.

Syntax
[opt] = optVector(n, pool) [opt] = optVector(svec) [opt] = optVector(otheropt)
[opt] = optVector(h, pool, xoff) [opt] = optVector

Description

[opt] = optVector(n, pool) creates a vector of n new optimization variables
in optSpace pool.

[opt] = optVector(svec) createsa constant (non-optimized) vector from svec.
[opt] = optVector(otheropt) creates a copy of otheropt.
[opt] = optVector(h, pool, xoff) assembles an optVector from its parts

in one step. Assumes that the variables are already allocated. h is the kernel
matrix, pool is the number of the desired optSpace, and xoff is the index into
space pool of the first variable in the optVector.

[opt] = optVector creates an empty constant vector.

6.1. MATLAB LIBRARY 151

optVector/abs

Purpose

Elementwise absolute value.
Syntax

aquad = abs(opt)
Description

Returns an optQuadVector which is the elementwise absolute value of opt.

152 CHAPTER 6. OPT REFERENCE

optVector/char, display

Purpose
Output functions for class optVector.
Syntax

¢ = char(opt)
display(opt)

Descripition
char converts class optVector to character for output. display is command

window display of class optVector.

Displays the kernel, offset into variable pool and pool number.

6.1. MATLAB LIBRARY 153

optVector/energy

Purpose

Energy (sum of squares).
Syntax

[q] = energy(opt)
Description

Returns quadratic form (optQuad) representing energy, or a scalar if opt does
not depend on optimization variables.

154 CHAPTER 6. OPT REFERENCE

optVector/eq

Purpose
Linear equality constraint.
Syntax
[eqconstr] = eq(vectl, vect2)
Description
Creates a linear equality constraint of type LinConstr. At least one of vectl

and vect2 is an optVector.

[eqconstr] = eq(vectl, vect2) is called for the syntax vectl == vect2.

6.1. MATLAB LIBRARY 155

optVector/get h, get pool, get xoff __

Purpose
Kernel matrix, pool and offset extraction functions.
Syntax

h = get h(opt, format)
pool = get pool(opt)
xoff = get _xoff (opt)

Description

h = get h(opt, format) returns kernel matrix of opt.

format can be ’sparse’, ’full’, ’linear’ or ’const’.

’sparse’ returns the nonzero portion as a sparse matrix.

>full’ returns the entire kernel matrix as a sparse matrix.

’linear’ and ’const’ return just the pure linear and the constant portions,
respectively, of the kernel matrix.

pool = get pool(opt) returns the number of the pool (optSpace) used by opt.

xoff = get xoff(opt) returns xoff, offset of opt’s first variable into its vari-
able pool.

156 CHAPTER 6. OPT REFERENCE

optVector/imag

Purpose

Complex imaginary part.
Syntax

[iopt] = imag(opt)
Description

Returns an optVector which is the imaginary part of opt.

6.1. MATLAB LIBRARY

optVector /isconst

Purpose

True for constant.
Syntax

[cn] = isconst(opt)

Description

Returns 1 if opt is constant (does not depend on optimization variables) and 0

otherwise.

157

158 CHAPTER 6. OPT REFERENCE

optVector /islinear

Purpose

True if no constant terms.
Syntax

[1in] = islinear(opt)
Description

Returns 1 if opt is linear in the optimization variables (no constant terms) and
0 otherwise.

6.1. MATLAB LIBRARY

optVector /isscalar

Purpose

True for scalar.
Syntax

[sc] = isscalar(opt)

Description

Returns 1 if opt is a length-1 optVector (scalar), and 0 otherwise.

159

160 CHAPTER 6. OPT REFERENCE

optVector/length

Purpose

Length of vector.

Syntax

[len] = length(opt)

Description

Returns the length of opt.

6.1. MATLAB LIBRARY 161

optVector/lt

Purpose
Linear inequality constraint.
Syntax
[lconstr] = 1lt(vectl, vect2)
Description
Creates a linear inequality constraint of type LinConstr. At least one of vectl

and vect2 must be an optVector.

[1constr] = eq(vectl, vect2) is called for the syntax vectl < vect2.

162 CHAPTER 6. OPT REFERENCE

optVector /minus

Purpose
Affine subtraction.
Syntax
[maff] = minus(a, b)
Description
Returns an optVector which is the difference of a and b. Both a and b must be

of type optVector.

[maff] = minus(a, b) is called for the syntax a - b.

6.1. MATLAB LIBRARY

optVector /mrdivide

Purpose
Scalar division.
Syntax
[dopt] = mrdivide(a, b)

Description

Divides a by b. a must be an optVector, and b must be a scalar.

[dopt] = mrdivide(a, b) is called for the syntax a / b.

163

164 CHAPTER 6. OPT REFERENCE

optVector /mtimes

Purpose
Matrix-vector multiplication.
Syntax
[mopt] = mtimes(a, b)
Description
Multiplies a by b. Only one of a and b can depend on the optimization variables.

a and b must be of the same length.

[mopt] = mtimes(a, b) is called for the syntax a * b.

6.1. MATLAB LIBRARY

optVector /numvars

Purpose

Number of optimization variables.
Syntax

nn = numvars (opt)

Description

Returns the number of optimization variables upon which opt depends (that is,
the number of rows of opt’s kernel matrix).

165

166 CHAPTER 6. OPT REFERENCE

optVector/optimal

Purpose
Optimal constant sequence.
Syntax
optvec = optimal(opt, soln)
Description
Returns optimal constant sequence based on soln furnished by minimize.
See Also

minimize Interface to optimization engines.

6.1. MATLAB LIBRARY 167

optVector /plus

Purpose
Affine addition.
Syntax
[paff] = plus(a, b)
Description
Returns an optVector which is the sum of a and b. Both a and b must be of

type optVector.
[paff] = plus(a, b) is called for the syntax a + b.

168 CHAPTER 6. OPT REFERENCE

optVector/power

Purpose

Elementwise power.
Syntax

[aquad] = power(a, b)
Description

Returns a raised to the power b as an optQuad . b must be 2.

[aquad] = power(a, b) is called for the syntax a .~ b.

6.1. MATLAB LIBRARY

optVector /real

169

Purpose

Complex real part.

Syntax

[ropt] = real(opt)

Description

Returns an optVector which is the real part of opt.

170 CHAPTER 6. OPT REFERENCE
optVector/set h, set pool, set xoff __
Purpose

Kernel matrix, pool and offset insertion functions.

Syntax

optout = set_h(opt, h)
optout = set_pool(opt, pool)

optout = set _xoff (opt, xoff)
Description
optout = set_h(opt, h) replaces kernel matrix of opt with h.
optout = set_pool(opt, pool) replaces variable pool number of opt with
pool.
optout = set xoff (opt, xoff) replacesindex of opt’s first variable into vari-

able pool with xoff. Does not check range of xoff or allocate additional vari-
ables.

6.1. MATLAB LIBRARY 171

optVector /subsref

Purpose

Vector subscripted reference.
Syntax

subvec = vec(s)
Description

Returns subvector with indices s.

172

CHAPTER 6. OPT REFERENCE

optVector/sum

Purpose
Affine sum.
Syntax
[saff] = sum(aff)

Description

Returns sum of aff as type optVector.

6.1. MATLAB LIBRARY 173

optVector /times

Purpose
Element-wise multiplication.
Syntax
[mopt] = times(a, b)
Description
Returns element-wise product of a and b as an optVector. Only one of a and b

can depend on the optimization variables.

[mopt] = times(a, b) is called for the syntax a .* b.

174 CHAPTER 6. OPT REFERENCE

optVector /uminus

Purpose

Unary minus.
Syntax

[mopt] = uminus(opt)
Description

Negates the elements of opt.
[mopt] = uminus(opt) is called for the syntax -opt.

6.1. MATLAB LIBRARY 175

6.1.12 Discrete-Time Processes

176 CHAPTER 6. OPT REFERENCE

Process

Purpose

Discrete-time process constructor.

Syntax

[rp] = Process(basis, offset, Coeff)

Description

Process initializes rp as a wide-sense-stationary zero-mean process whose spec-

trum is defined by shifted and weighted basis functions. The triple (basis,offset,Coeff)
is placed in a global table and is referred to through its index, allowing multiple
processes to refer to the same base process.

basis can be ’Box’ or ’Triangle’.
offset determines the starting point in frequency for the process specification.

Coeff is a vector of coefficients which weight the basis functions. Coeff must be
of the same length as fregs.

6.1. MATLAB LIBRARY 177

Process/char, display

Purpose

Output functions for class Process.

Syntax

c = char(rp)
display(rp)

Descripition

char converts class Process to character for output. display is command window
display of class Process.

178 CHAPTER 6. OPT REFERENCE

Process/get pool

Purpose

Pool extraction function.
Syntax

pool = get_pool(rp)
Description

get_pool returns the pool of the system component of the process rp.

6.1. MATLAB LIBRARY 179

Process/minus

Purpose
Process subtraction.
Syntax
[rpmin] = minus(rpa, rpb)
Description
minus gives the difference of the two random processes. Any base processes

shared by rpa and rpb have their systems combined.

[rpmin] = minus(rpa, rpb) is called for the syntax ‘rpa - rpb’.

180 CHAPTER 6. OPT REFERENCE

Process/plot

Purpose

Graphical display of random process.
Syntax

hand = plot(rp, f, options)
Description

plot (rp) graphs the power spectrum of the processes making up rp over the set
frequencies for which the power spectrum has support.

plot(rp, f) graphs the power spectrum of the processes making up rp at the
frequencies given in the vector f.

hand = plot(...) returns the plot handle.
options can include:
e ’0’ or ’overlay’: in addition to plotting the power spectrum, overlays a
plot of the individual base processes.
e ’nooverlay’: plots only the overall power spectrum. This is the default.

e ’p’ or ’print’: uses options suitable for printer output. This option will
override some user-set plotting defaults.

e ’noprint’: uses default plotting options. This is the default.

6.1. MATLAB LIBRARY 181

Process/plus

Purpose
Process addition.
Syntax
[rpsum] = plus(rpa, rpb)
Description
plus gives the sum of the two random processes. Any base processes shared by

rpa and rpb have their systems combined.

[rpsum] = plus(rpa, rpb) is called for the syntax ‘rpa + rpb’.

182 CHAPTER 6. OPT REFERENCE

Process/pwr

Purpose

Power in random process.
Syntax

[P] = pwr(rp)
Description

pwr returns the power in process rp as an optimizable quadratic quantity of type
optQuad.

6.1. MATLAB LIBRARY

Process/times

Purpose

Process convolution.
Syntax

[rpconv] = times(a, b)

Description

Result is convolution of a process with an affine sequence (system). One input is
a random process, and the other must be a sequence.

[rpconv] = times(a, b) is called for the syntax ‘a

183

.x bl

184 CHAPTER 6. OPT REFERENCE

Process/uminus

Purpose

Process negation.
Syntax

[rpmin] = uminus(rp)
Description

Negates the system associated with process rp.

[rpmin] = uminus(rp) is called for the syntax ‘-rp’.

6.1. MATLAB LIBRARY 185

6.1.13 Regions

186 CHAPTER 6. OPT REFERENCE

Region

Purpose

Constructor for Region objects.

Syntax
[reg]l = Region()
[reg] = Region(index)
[reg]l = Region(type, param)
[reg]l = Region(’composite’, param, opl, op2, oper)
Description
[reg]l = Region() creates an empty Region object.
[reg]l = Region(ind) returns the previously-allocated Region object of index
ind.
[reg] = Region(type, param) creates a Region object of the given type, with

parameters given in the structure param.

[reg]l = Region(’composite’, param, opl, op2, oper) creates a compos-
ite Region in param.dim-dimensional space, formed as a result of the operation
oper of the two Regions opl and op2.

type can be one of

e ’halfspace’ is a halfspace, containing all points x such that a’x >= b.
param must contain the fields dim, a and b, where a is a vector of length
dim, and b is a scalar.

e ’sphere’ is a hypersphere, containing all points x such that |x| <= r. param
must contain the fields dim, center and radius, where center is a vector of
length dim which indicates the center point of the hypersphere, and radius
is a positive, real scalar.

e ’convpoly’ is a bounded convex polytope. Its constructor requires param to
contain the fields dim and points, where points is a list of points describing
the polytope. The convex hull of the points is then determined, and fields
A and b are added to param, which describe the intersecting halfspaces
a’x >= b which determine the polytope.

6.1. MATLAB LIBRARY

187

Region/bb
Purpose

Bounding box for Region.
Syntax

box = bb(reg, lat)
Description

Returns a bounding box for the Region reg in terms of the Lattice lat; that
is, in terms of intervals along the lattice basis vectors which define a parallepiped
that circumscribes the Region.

If the Region is unbounded, the function returns inf.

If 1at is an offset Lattice, the intervals given are for a parallelepiped that
circumscribes the Region shifted by the inverse of the lattice’s offset.

188 CHAPTER 6. OPT REFERENCE

Region/get dim, get type

Purpose

Region dimension and type extraction.

Syntax

dim = get_dim(reg)
type = get type(reg)

Description

dim = get_dim(reg) returns the dimension of the Region reg.

type = get_type(reg) returns the type of the Region reg.

6.1. MATLAB LIBRARY

Region/intersect, mtimes

Purpose

Intersection of Regions.

Syntax

reg = intersect(a, b)
reg = mtimes(a, b)

Description

Returns the composite Region which is the intersection of Regions a and b.

reg = intersect(a, b)

189

is called for the syntax a * b.

190

Region/isin

CHAPTER 6. OPT REFERENCE

Purpose

Determine if points are in a Region.

Syntax

result = isin(reg, points)
[result, I] = isin(reg, points

Description

Returns the points from the list of points which are in reg. points is a matrix,
in which each row contains the coordinates for an individual point. result is a

matrix of the same structure.

[result, I] = isin(reg, points) also returns an index vector I, such that

result = points(I,:)

6.1. MATLAB LIBRARY

Region/msop

191

Purpose

Minimal sum-of-products representation.

Syntax

fcn = msop(reg)
[fcn, prims] = msop(reg)

Description

Returns a simplified sum-of-products representation of a composite Region. fcn
is a cell array, of which each cell represents a product term. Each cell contains a
vector of numbers which correspond to primitive Regions in the product term.

[fcn, prims] = msop(reg) alsoreturns a list of the indices of primitive Regions

in the composite Region.

192 CHAPTER 6. OPT REFERENCE

Region/not

Purpose

Complement of region.
Syntax

reg = not(a)
Description

Returns a Region object which is the complement of a.

reg = not(a) is called for the syntax ~a.

6.1. MATLAB LIBRARY 193

Region/or

Purpose

Region shift.

Syntax

rreg = or(reg, off)

Description

Shifts reg by the offset vector off.
rreg = or(reg, off) is called for the syntax reg | off.

194 CHAPTER 6. OPT REFERENCE

Region /points
Purpose

Lattice points in region.
Syntax

[locs] = points(reg, lat)
Description

Returns the points in reg on the Lattice lat. locs is a matrix with each row
containing the the cartesian coordinates of a point.

6.1. MATLAB LIBRARY 195

Region/probett

Purpose

Evaluate Boolean function.
Syntax

bit = probett(reg, prims, row)
Description

Evaluates the Boolean function over primitive regions specified by the Region
reg and evaluated on the primitive variables given prims, a vector of indices.
row is an integer which when converted to BCD specifies the binary value for
each of the primitive values. The variables are assumed to be ordered from least
significant to most significant. The result bit is a logical value which can be 0
or 1.

Examples

probett (15, [1 2 3], 0) evaluates

fi5(P1=0,P, =0,P; =0).

probett (15, [1 2 3], 6) evaluates
f15(P1 - 1,P2 - 1,P5 :O)

where fi5 is the Boolean function specified by the Region of index 15.

196 CHAPTER 6. OPT REFERENCE

Region/rot
Purpose

Rotate region.
Syntax

rreg = rot(reg, ang, dims)
Description

Rotates the region by ang radians in dimensions dims. dims is a length-2 vec-
tor indicating the subspace in which the rotation is performed. For example,
rot(reg, pi/4, [1 3]) will rotate reg 45 degrees in the xz-subspace.

6.1. MATLAB LIBRARY 197

Region /setdiff

Purpose

Set difference of regions.
Syntax

reg = setdiff(a, b)
Description

Returns Region whose members are in a but not b. [reg] = setdiff(a, b)
has the same effect as [reg] = intersect(a, b).

198 CHAPTER 6. OPT REFERENCE

Region /union, plus

Purpose

Union of Regions.

Syntax

reg = union(a, b)
reg = plus(a, b)

Description

Returns the composite Region which is the union of Regions a and b.

reg = union(a, b) is called for the syntax a + b.

6.1. MATLAB LIBRARY 199

6.1.14 Second-order Cone Constraints

200 CHAPTER 6. OPT REFERENCE

SOCConstr

Purpose

Second-order cone constraint constructor.

Syntax

[soc] = SOCConstr(relop, objl, obj2)

Description

S0CConstr creates soc as a second-order cone optimization constraint. relop is
the relational operator of the constraint, and can be <’ or ’==’ for inequality
and equality constraints, respectively. obj1 is the left side of the constraint, and
can be an optQuad or an optQuadVector. obj2 is the right side of the constraint,
and can be an optQuad, an optQuadVector, or an optVector.

6.1. MATLAB LIBRARY 201

SOCConstr/get A, get b, get c, get d,
get Mrank

Purpose

A b, ¢, d and Mrank extraction functions.

Syntax

A = get A(soc)

A = get A(soc, type)
A = get_A(soc, n)

b = get_b(soc)

b = get b(soc, type)
b = get_b(soc, n)

c = get_c(soc)

c = get_c(soc, type)
c = get_c(soc, n)

d = get_d(soc)

d = get_d(soc,n)

Mrank = get Mrank(soc)

Description

get A, get b and get_c return A, b and c, respectively. If they are called with
only soc or (soc, ’cell’), they are returned as cell arrays. If called (soc,
’matrix’) they are returned concatenated as a matrix. If called (soc, n), only
the nth element is returned.

get_d returns d. When called get_d(soc, n) only the nth element of d is re-
turned.

get_Mrank returns Mrank.

202 CHAPTER 6. OPT REFERENCE

6.1.15 Solutions

