
1

Loops

2

Topics

� The while Loop

� Program Versatility

� Sentinel Values and Priming Reads

� Checking User Input Using a while Loop

� Counter-Controlled (Definite) Repetition

� Event-Controlled (Indefinite) Repetition

� for Loops

� do-while Loops

� Choosing an Appropriate Loop

� Break and Continue Statements

3

Review: Repetition Structure

� A repetition structure allows the programmer to

specify that an action is to be repeated while some

condition remains true.

� There are three repetition structures in JavaScript,

the while loop, the for loop, and the do-while loop.

4

The while Repetition Structure

while (condition)

{

statement(s)

}

� The braces are not required if the loop body
contains only a single statement. However,
they are a good idea and are required by the
104 Coding Standards.

5

Example

while (children > 0)
{

children = children - 1 ;

cookies = cookies * 2 ;

}

6

Good Programming Practice

� Always place braces around the body of a

while loop.

� Advantages:

� Easier to read

� Will not forget to add the braces if you go back

and add a second statement to the loop body

� Less likely to make a semantic error

� Indent the body of a while loop 2 to 3 spaces

-- be consistent!

7

Another while Loop Example

� Problem: Write a program that calculates the

average exam grade for a class of 10

students.

� What are the program inputs?

� the exam grades

� What are the program outputs?

� the average exam grade

8

The Pseudocode

<total> = 0

<grade_counter> = 1

While (<grade_counter> <= 10)

Display "Enter a grade: "
Read <grade>

<total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1

End_while

<average> = <total> / 10

Display "Class average is: ", <average>

9

The Code

1. var counter, grade, total, average;

2. total = 0;

3. counter = 1;

4. while (counter <= 10)

5. {

6. grade = prompt ("Enter a grade : ");

7. grade = parseInt(grade);

8. total = total + grade;

9. counter = counter + 1;

10. }

11. average = total / 10;

12. alert ("Class average is " + average);

13.

10

Versatile?

� How versatile is this program?

� It only works with class sizes of 10.

� We would like it to work with any class size.

� A better way :

� Ask the user how many students are in the class.

Use that number in the condition of the while loop

and when computing the average.

11

New Pseudocode

<total> = 0

<grade_counter> = 1

Display "Enter the number of students: "
Read <num_students>
While (<grade_counter> <= <num_students>)

Display "Enter a grade: "

Read <grade>

<total> = <total> + <grade>

<grade_counter> = <grade_counter> + 1

End_while

<average> = <total> / <num_students>
Display "Class average is: ", <average>

12

New Code

1. var numStudents, counter, grade, total, average;

2. total = 0;

3. counter = 1;

4. numStudents = prompt("Enter number of students: ");

5. numStudents = parseInt(numStudents);

6. while (counter <= numStudents)

7. {

8. grade = prompt("Enter a grade : ");

9. grade = parseInt(grade);

10. total = total + grade;

11. counter = counter + 1;

12. }

13. average = total / numStudents;

14. alert ("Class average is: " + average);

13

Why Bother to Make It Easier?

� Why do we write programs?

� So the user can perform some task

� The more versatile the program, the more

difficult it is to write. BUT it is more useable.

� The more complex the task, the more difficult

it is to write. But that is often what a user

needs.

� Always consider the user first.

14

Using a Sentinel Value

� We could let the user keep entering grades
and when he’s done enter some special
value that signals us that he’s done.

� This special signal value is called a sentinel
value.

� We have to make sure that the value we
choose as the sentinel isn’t a legal value. For
example, we can’t use 0 as the sentinel in our
example as it is a legal value for an exam
score.

15

The Priming Read

� When we use a sentinel value to control a

while loop, we have to get the first value from

the user before we encounter the loop so that

it will be tested and the loop can be entered.

� This is known as a priming read.

� We have to give significant thought to the

initialization of variables, the sentinel value,

and getting into the loop.

16

New Pseudocode

<total> = 0

<grade_counter> = 1

Display "Enter a grade: "
Read <grade>
While (<grade> != -1)

<total> = <total> + <grade>
<grade_counter> = <grade_counter> + 1
Display "Enter another grade: "
Read <grade>

End_while

<average> = <total> / <grade_counter>
Display "Class average is: ", <average>

17

New Code

1. var counter, grade, total, average;

2. total = 0;

3. counter = 1;

4. grade = prompt("Enter a grade: ");

5. grade = parseInt(grade);

6. while (grade != -1)

7. {

8. total = total + grade;

9. counter = counter + 1;

10. grade = prompt("Enter another grade: ");

11. grade = parseInt(grade);

12. }

13. average = total / counter;

14. alert ("Class average is: " + average);

18

Final Clean* code

1. var counter; /* counts number of grades entered */

2. var grade; /* individual grade */

3. var total; /* total of all grades */

4. var average; /* average grade */

5.

6. /* Initializations */

7. total = 0;

8. counter = 1;
9.

10. /* Priming read to get initial grade from user */

11. grade = prompt("Enter a grade: ");

12. grade = parseInt(grade);

13.

*Follows course coding standards (continued)

19

Final Clean Code

17. /* Get grades until user enters -1. Compute

18. grade total and grade count */

19. while (grade != -1)

20. {

21. total = total + grade;

22. counter = counter + 1;

23. grade = prompt("Enter another grade: ");

24. grade = parseInt(grade);

25. }

26.

27. /* Compute and display the average grade */

28. average = total / counter;

29. alert("Class average is: " + average + ".");

20

Using a while Loop to Check User
Input

1. var number;

2.

3. number = prompt("Enter a positive number: ");

4. number = parseFloat(number);

5.

6. while (number <= 0)

7. {

8. alert("That’s incorrect. Try again.\n");

9. number = prompt("Enter a positive number: ");

10. number = parseFloat(number);

11. }

12.

13. alert ("You entered: " + number);

21

Counter-Controlled Repetition
(Definite Repetition)

� If it is known in advance exactly how many

times a loop will execute, it is known as a

counter-controlled loop.

var i = 1;

while(i <= 10)

{

alert ("i is " + i);

i = i + 1;

}

22

Event-Controlled Repetition
(Indefinite Repetition)

� If it is NOT known in advance exactly how
many times a loop will execute, it is known as
an event-controlled loop.

sum = 0;

value = prompt("Enter a value: ");

value = parseFloat(value);

while (value != -1)

{

sum = sum + value;

value = prompt("Enter a value: ");

value = parseFloat(value);

}

23

Event-Controlled Repetition

� An event-controlled loop will terminate when

some event occurs.

� The event may be the occurrence of a

sentinel value, as in the previous example.

� There are other types of events that may

occur, such as reaching the end of a data file.

24

The 3 Parts of a Loop

var i = 1;

//count from 1 to 100

while (i < 101)

{

alert("i is " + i);

i = i + 1;

}

initialization of loop
control variable

test of loop
termination condition

modification of loop
control variable

25

The for Loop Repetition
Structure

� The for loop handles details of the counter-controlled
loop "automatically".

� The initialization of the the loop control variable, the
termination condition test, and control variable
modification are handled in the for loop structure.

for (i = 1; i < 101; i = i + 1)

{

initialization modification

} test

26

When Does a for Loop Initialize,
Test and Modify?

� Just as with a while loop, a for loop

� initializes the loop control variable before

beginning the first loop iteration,

� modifies the loop control variable at the very end

of each iteration of the loop, and

� performs the loop termination test before each

iteration of the loop.

� The for loop is easier to write and read for

counter-controlled loops.

27

A for Loop That Counts From 0
to 9

for(i = 0; i < 10; i = i + 1)

{

alert("i is " + i);

}

28

We Can Count Backwards, Too

for(i = 9; i >= 0; i = i - 1)

{

alert("i is " + i);

}

29

We Can Count By 2’s ... or 7’s
… or Whatever

for(i = 0; i < 10; i = i + 2)

{

alert("i is " + i);

}

30

The do-while Repetition
Structure

do

{

statement(s)

} while (condition) ;

� The body of a do-while is ALWAYS executed

at least once. Is this true of a while loop?

What about a for loop?

31

Example

do

{

num = prompt("Enter a positive number: ");

num = parseInt(num);

if (num <= 0)

{

alert("That is not positive. Try again.");

}

}while (num <= 0);

32

An Equivalent while Loop

num = prompt("Enter a positive number: ");

num = parseInt(num);

while (num <= 0)

{

alert("That is not positive. Try again.");

num = prompt("Enter a positive number: ");

num = parseInt(num);

}

� Notice that using a while loop in this case requires a priming
read.

33

An Equivalent for Loop

num = prompt("Enter a positive number: ");

num = parseInt(num);

for (; num <= 0;)

{
alert("That is not positive. Try again.");

num = prompt("Enter a positive number: ");

num = parseInt(num);

}

• A for loop is a very awkward choice here because
the loop is event-controlled.

34

So, Which Type of Loop Should I
Use?

� Use a for loop for counter-controlled

repetition.

� Use a while or do-while loop for event-

controlled repetition.

� Use a do-while loop when the loop must execute

at least one time.

� Use a while loop when it is possible that the loop

may never execute.

35

Nested Loops

� Loops may be nested (embedded) inside of

each other.

� Actually, any control structure (sequence,

selection, or repetition) may be nested inside

of any other control structure.

� It is common to see nested for loops.

36

Nested for Loops
1. for (i = 1; i < 5; i = i + 1)

2. {

3. for(j = 1; j < 3; j = j + 1)

4. {

5. if (j % 2 == 0)

6. {

7. document.write("O");

8. }

9. else

10. {

11. document.write("X");

12. }

13. }

14. document.write("
");

15. }

How many times is the "if"

statement executed?

What is the output ?

37

The break Statement

� The break statement can be used in
while, do-while, and for loops to cause
premature exit of the loop.

� THIS IS NOT A RECOMMENDED
CODING TECHNIQUE.

38

Example break in a for Loop

var i;

for(i = 1; i < 10; i = i + 1)

{

if(i == 5)

{

break;

}

document.write(i + " ");

}

document.write("Broke out of loop at i = " + i);

OUTPUT:

1 2 3 4

Broke out of loop at i = 5.

39

The continue Statement

� The continue statement can be used in
while, do-while, and for loops.

� It causes the remaining statements in
the body of the loop to be skipped for
the current iteration of the loop.

� THIS IS NOT A RECOMMENDED
CODING TECHNIQUE.

40

Example continue in a for
Loop

var i;

for(i = 1; i < 10; i = i + 1)

{

if(i == 5)

{

continue;

}

document.write(i + " ");

}

document.write("Done.");

OUTPUT:

1 2 3 4 6 7 8 9

Done.

