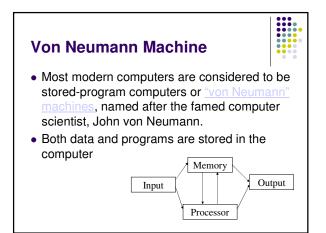
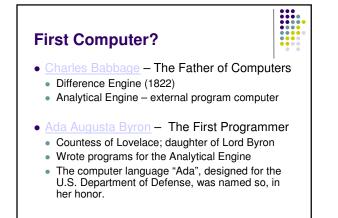
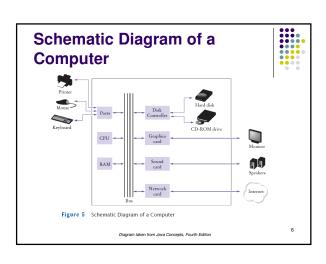

CMSC104

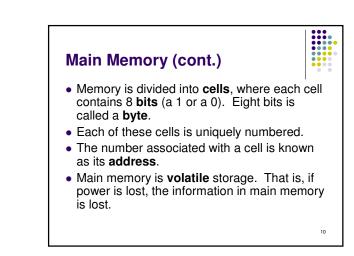

- Lecture 2
- Remember to report to the lab on Wednesday


Machine Architecture and Number Systems


Topics

- Major Computer Components
- Bits, Bytes, and Words
- The Decimal Number System
- The Binary Number System
- Converting from Binary to Decimal
- Converting from Decimal to Binary
- The Hexadecimal Number System

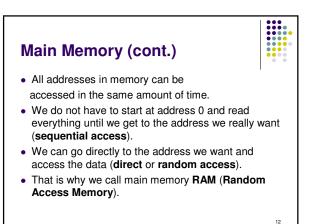
The CPU


- Central Processing Unit
- The "brain" of the computer
- Controls all other computer functions
- In PCs (personal computers) also called the microprocessor or simply processor.

The Bus

- Computer components are connected by a bus.
- A bus is a group of parallel wires that carry control signals and data between components.

Main Memory


- Main memory holds information such as computer programs, numeric data, or documents created by a **word processor**.
- Main memory is made up of capacitors.
- If a capacitor is charged, then its state is said to be ${\bf 1},$ or ${\bf ON}.$
- We could also say the bit is set.
- If a capacitor does not have a charge, then its state is said to be **0**, or **OFF**.
- We could also say that the bit is reset or cleared.

Main Memory (cont.)

- Other computer components can
 - get the information held at a particular address in memory, known as a **READ**,
 - or store information at a particular address in memory, known as a **WRITE**.
- Writing to a memory location alters its contents.
- Reading from a memory location does not alter its contents.

11

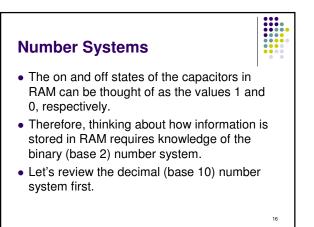
Secondary Storage Media

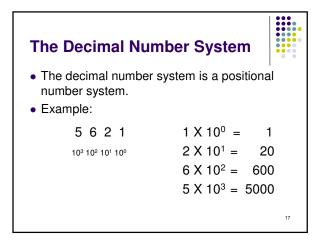
13

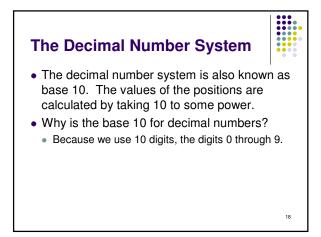
15

- Disks -- floppy, hard, removable (random access)
- Tapes (sequential access)
- CDs (random access)
- DVDs (random access)
- Secondary storage media store files that contain
 computer programs
 - data
 - other types of information
- This type of storage is called persistent (permanent) storage because it is non-volatile.

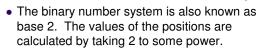
I/O (Input/Output) Devices

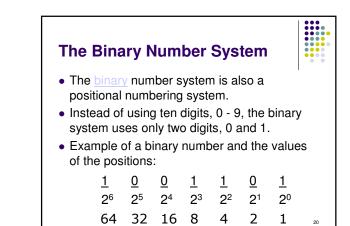

- Information input and output is handled by I/O (input/output) devices.
- More generally, these devices are known as peripheral devices.


14


- Examples:
 - monitor
 - keyboard
 - mouse
 - disk drive (floppy, hard, removable)
 - CD or DVD drive
 - printer
- scanner

Bits, Bytes, and Words

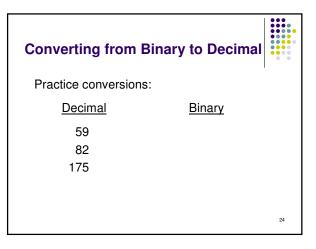

- A bit is a single binary digit (a 1 or 0).
- A byte is 8 bits
- A word is 32 bits or 4 bytes
- Long word = 8 bytes = 64 bits
- Quad word = 16 bytes = 128 bits
- Programming languages use these standard number of bits when organizing data storage and access.
- What do you call 4 bits? (hint: it is a small byte)



19

- Why is the base 2 for binary numbers?
- Because we use 2 digits, the digits 0 and 1.

Converting from B	inary to Decimal
<u>100110</u>	1 1 X $2^0 = 1$
2 ⁶ 2 ⁵ 2 ⁴ 2 ³ 2 ² 2 ¹ 2	2^0 0 X $2^1 = 0$
	$1 \times 2^2 = 4$
$2^0 = 1$ $2^4 = 16$	$1 X 2^3 = 8$
$2^1 = 2$ $2^5 = 32$	$0 \times 2^4 = 0$
$2^2 = 4$ $2^6 = 64$	$0 X 2^5 = 0$
$2^3 = 8$	1 X 2 ⁶ = <u>64</u>
	77 ₁₀₁

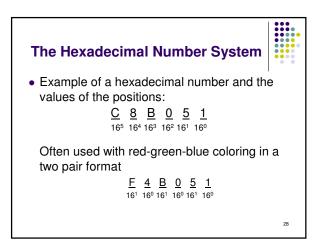

Converting from Bin	ary to Decimal	
Practice conversions:		
Binary	<u>Decimal</u>	
11101		
1010101		
100111		
		22

- Make a list of the binary place values up to the number being converted.
- Perform successive divisions by 2, placing the remainder of 0 or 1 in each of the positions from right to left.
- Continue until the quotient is zero.
- Example: 42₁₀

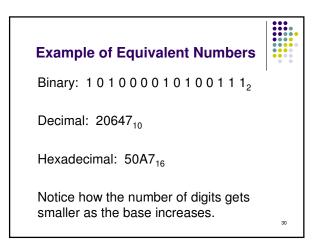
25	24	2 ³	2 ²	2 ¹	2 ⁰
32	16	8	4	2	1
<u>1</u>	<u>0</u>	<u>1</u>	<u>0</u>	<u>1</u>	<u>0</u>

23

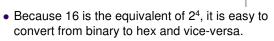
25


0 1 0 1 0 0 0 1 0 1 0 0 1 1 1 = ?

- Humans can't work well with binary numbers; there are too many digits to deal with.
- Memory addresses and other data can be quite large. Therefore, we sometimes use the **hexadecimal number system**.


The Hexadecimal Number System

- The <u>hexadecimal</u> number system is also known as base 16. The values of the positions are calculated by taking 16 to some power.
- Why is the base 16 for hexadecimal numbers ?
- Because we use 16 symbols, the digits 0 through 9 and the letters A through F
- Computer bus and computer graphics are just two of many that use hexadecimal.


Th	e Hex	adecima	Num	ber S	ystem	
Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecima	<u>.1</u>
0	0	0	1010	10	А	
1	1	1	1011	11	В	
10	2	2	1100	12	С	
11	3	3	1101	13	D	
100	4	4	1110	14	E	
101	5	5	1111	15	F	
110	6	6				
111	7	7				
1000	8	8				
1001	9	9				
						27

Hexadecimal: Colors				
Decimal	Hexade	cimal		
0	0			
1	1			
2	2	E4D051 E4	Examples:	
3	3	F4B051=F4	red green blue	
4	4		led green blue	
5	5	F4 (red)	= 15x16 + 4 = 240 + 4 = 244	
6	6	30 (green)	= 3x16 + 0 = 48 + 0 = 48	
7	7	5C (blue)	= 5x16 + 12 = 80 + 12 = 92	
8	8			
9	9	FFFF00	= FF FF 00	
10	А		red green blue	
11	В	FF (red)	= 15x16 + 15 = 240 + 15 = 255	
12	С	FF (green)	$= 15 \times 16 + 15 = 240 + 15 = 255$	
13	D	00 (blue)	= 0x16 + 0 = 0 + 0 = 0	
14	Е		which produces the color yellow!	
15	F			

Converting from Binary to Hex

31

- Binary: 1101 0010 1111 0000
- Hex: 0x D 2 F 0

Converting from Binary to Octal

- Octal is another number system that is base 8.
- Because 8 is the equivalent of 2³, it is easy to convert from binary to octal and vice-versa.
- Convert the following binary number to octal:
 01 101 001 011 110 000

32