CMSC104

- Lecture 2
- Remember to report to the lab on Wednesday

Machine Architecture and Number Systems

Topics

- Major Computer Components
- Bits, Bytes, and Words
- The Decimal Number System
- The Binary Number System
- Converting from Binary to Decimal
- Converting from Decimal to Binary
- The Hexadecimal Number System

Major Computer Components

- Central Processing Unit (CPU)
- Bus
- Main Memory (RAM)
- Secondary Storage Media
- I / O Devices

Von Neumann Machine

- Most modern computers are considered to be stored-program computers or "von Neumann" machines, named after the famed computer scientist, John von Neumann.
- Both data and programs are stored in the computer

First Computer?

- Charles Babbage - The Father of Computers
- Difference Engine (1822)
- Analytical Engine - external program computer
- Ada Augusta Byron - The First Programmer
- Countess of Lovelace; daughter of Lord Byron
- Wrote programs for the Analytical Engine
- The computer language "Ada", designed for the U.S. Department of Defense, was named so, in her honor.

Schematic Diagram of a Computer

Figure 5 Schematic Diagram of a Computer

The CPU

- Central Processing Unit
- The "brain" of the computer
- Controls all other computer functions
- In PCs (personal computers) also called the microprocessor or simply processor.

The Bus

- Computer components are connected by a bus.
- A bus is a group of parallel wires that carry control signals and data between components.

Main Memory

- Main memory holds information such as computer programs, numeric data, or documents created by a word processor.
- Main memory is made up of capacitors.
- If a capacitor is charged, then its state is said to be 1, or ON.
- We could also say the bit is set.
- If a capacitor does not have a charge, then its state is said to be 0 , or OFF.
- We could also say that the bit is reset or cleared.

Main Memory (cont.)

- Memory is divided into cells, where each cell contains 8 bits (a 1 or a 0). Eight bits is called a byte.
- Each of these cells is uniquely numbered.
- The number associated with a cell is known as its address.
- Main memory is volatile storage. That is, if power is lost, the information in main memory is lost.

Main Memory (cont.)

- Other computer components can
- get the information held at a particular address in memory, known as a READ,
- or store information at a particular address in memory, known as a WRITE.
- Writing to a memory location alters its contents.
- Reading from a memory location does not alter its contents.

Main Memory (cont.)

- All addresses in memory can be accessed in the same amount of time.
- We do not have to start at address 0 and read everything until we get to the address we really want (sequential access).
- We can go directly to the address we want and access the data (direct or random access).
- That is why we call main memory RAM (Random Access Memory).

Secondary Storage Media

- Disks -- floppy, hard, removable (random access)
- Tapes (sequential access)
- CDs (random access)
- DVDs (random access)
- Secondary storage media store files that contain
- computer programs
- data
- other types of information
- This type of storage is called persistent (permanent) storage because it is non-volatile.

I/O (Input/Output) Devices

- Information input and output is handled by I/O (input/output) devices.
- More generally, these devices are known as peripheral devices.
- Examples:
- monitor
- keyboard
- mouse
- disk drive (floppy, hard, removable)
- CD or DVD drive
- printer
- scanner

Bits, Bytes, and Words

- A bit is a single binary digit (a 1 or 0).
- A byte is 8 bits
- A word is 32 bits or 4 bytes
- Long word $=8$ bytes $=64$ bits
- Quad word $=16$ bytes $=128$ bits
- Programming languages use these standard number of bits when organizing data storage and access.
-What do you call 4 bits?
(hint: it is a small byte)

Number Systems

- The on and off states of the capacitors in RAM can be thought of as the values 1 and 0 , respectively.
- Therefore, thinking about how information is stored in RAM requires knowledge of the binary (base 2) number system.
- Let's review the decimal (base 10) number system first.

The Decimal Number System

- The decimal number system is a positional number system.
- Example:

$$
\begin{array}{rlr}
5621 & 1 \times 10^{0}= & 1 \\
10^{3} 10^{2} 10^{1} 10^{\circ} & 2 \times 10^{1}= & 20 \\
& 6 \times 10^{2}=600 \\
& 5 \times 10^{3}=5000
\end{array}
$$

The Decimal Number System

- The decimal number system is also known as base 10. The values of the positions are calculated by taking 10 to some power.
- Why is the base 10 for decimal numbers?
- Because we use 10 digits, the digits 0 through 9 .

The Binary Number System

- The binary number system is also known as base 2. The values of the positions are calculated by taking 2 to some power.
- Why is the base 2 for binary numbers?
- Because we use 2 digits, the digits 0 and 1 .

The Binary Number System

- The binary number system is also a positional numbering system.
- Instead of using ten digits, 0-9, the binary system uses only two digits, 0 and 1.
- Example of a binary number and the values of the positions:

$$
\begin{array}{lllllll}
\frac{1}{2} & \underline{0} & \underline{0} & \frac{1}{2} & \frac{1}{2} & \underline{0} & \frac{1}{2^{6}} \\
2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} & 2^{0} \\
64 & 32 & 16 & 8 & 4 & 2 & 1
\end{array}
$$

Converting from Binary to Decimal

$$
\begin{aligned}
& 1 \underline{0} \quad \underline{1} 1101 \\
& 2^{6} 2^{5} 2^{4} 2^{3} 2^{2} 2^{1} 2^{0} \\
& \begin{array}{ll}
1 \times 2^{0}= & 1 \\
0 \times 2^{1}= & 0 \\
1 \times 2^{2}= & 4 \\
1 \times 2^{3}= & 8 \\
0 \times 2^{4}= & 0 \\
0 \times 2^{5}= & 0 \\
1 \times 2^{6}= & \frac{64}{77_{10}}
\end{array} \\
& \begin{array}{ll}
1 \times 2^{0}= & 1 \\
0 \times 2^{1}= & 0 \\
1 \times 2^{2}= & 4 \\
1 \times 2^{3}= & 8 \\
0 \times 2^{4}= & 0 \\
0 \times 2^{5}= & 0 \\
1 \times 2^{6}= & \frac{64}{77_{10}}
\end{array} \\
& 2^{0}=1 \quad 2^{4}=16 \\
& 2^{1}=2 \quad 2^{5}=32 \\
& 2^{2}=4 \quad 2^{6}=64 \\
& 2^{3}=8
\end{aligned}
$$

Converting from Binary to Decimal

Practice conversions:

Binary

11101
1010101
100111

Decimal

Converting from Decimal to Binary

- Make a list of the binary place values up to the number being converted.
- Perform successive divisions by 2 , placing the remainder of 0 or 1 in each of the positions from right to left.
- Continue until the quotient is zero.
- Example: 42_{10}

$$
\begin{array}{rrrrrr}
2^{5} & 2^{4} & 2^{3} & 2^{2} & 2^{1} \\
32 & 16 & 8 & 4 & 2 & 1 \\
32 & 16 & 0 \\
\underline{1} & \underline{0} & \underline{1} & \underline{0} & \underline{1} & \underline{0}
\end{array}
$$

Converting from Binary to Decimal

Practice conversions:
Decimal
Binary

> 59
> 82
> 175

Working with Large Numbers

$$
0101000010100111=\text { ? }
$$

- Humans can't work well with binary numbers; there are too many digits to deal with.
- Memory addresses and other data can be quite large. Therefore, we sometimes use the hexadecimal number system.

The Hexadecimal Number System

- The hexadecimal number system is also known as base 16. The values of the positions are calculated by taking 16 to some power.
- Why is the base 16 for hexadecimal numbers ?
- Because we use 16 symbols, the digits 0 through 9 and the letters A through F
- Computer bus and computer graphics are just two of many that use hexadecimal.

The Hexadecimal Number System

Binary	Decimal	Hexadecimal	Binary	Decimal	Hexadecimal
0	0	0	1010	10	A
1	1	1	1011	11	B
10	2	2	1100	12	C
11	3	3	1101	13	D
100	4	4	1110	14	E
101	5	5	1111	15	F
110	6	6			
111	7	7			
1000	8	8			
1001	9	9			

The Hexadecimal Number System

- Example of a hexadecimal number and the values of the positions:

$$
\frac{\mathrm{C}}{16^{5}} \quad \frac{8}{16^{4}} \quad \frac{\mathrm{~B}}{16^{3}} \quad \underline{0} \quad \frac{5}{16^{2}} \frac{5}{16^{1}} \frac{1}{16^{0}}
$$

Often used with red-green-blue coloring in a two pair format

$$
\underline{F} \quad \underline{4} \quad \underline{B} \quad \underline{0} \quad \underline{0} \quad \underline{5} \quad \frac{1}{16^{1}} \quad \frac{16^{0}}{16^{1}} \frac{16^{0}}{}
$$

Hexadecimal: Colors

Decimal	Hexadecimal		
0	0		
1	1		
2	2	F4B051=F4 30 5C	
3	3		
4	4	red green blue	
5	5	F4 (red)	$=15 \times 16+4=240+4=244$
6	6	30 (green)	$=3 \times 16+0=48+0=48$
7	7	5C (blue)	$=5 \times 16+12=80+12=92$
8	8		
9	9	FFFF00	$=\text { FF FF } 00$ red green blue
10	A		
11	B	FF (red)	$=15 \times 16+15=240+15=255$
12	C	FF (green)	$=15 \times 16+15=240+15=255$
13	D	00 (blue)	$=0 \times 16+0=0+0=0$
14	E		which produces the color yellow!
15	F		

Example of Equivalent Numbers

Binary: 101000010100111_{2}

Decimal: $\mathbf{2 0 6 4 7}_{10}$

Hexadecimal: $50 \mathrm{~A} 7_{16}$

Notice how the number of digits gets smaller as the base increases.

Converting from Binary to Hex

- Because 16 is the equivalent of 2^{4}, it is easy to convert from binary to hex and vice-versa.
- Binary: 1101001011110000
- Hex:0x D 2 F 0

Converting from Binary to Octal

- Octal is another number system that is base 8.
- Because 8 is the equivalent of 2^{3}, it is easy to convert from binary to octal and vice-versa.
- Convert the following binary number to octal:
- $01 \quad 101001011 \quad 110 \quad 000$

