CMSC104

• Lecture 2

Remember to report to the lab on Wednesday

Machine Architecture and Number Systems

<u>Topics</u>

- Major Computer Components
- Bits, Bytes, and Words
- The Decimal Number System
- The Binary Number System
- Converting from Binary to Decimal
- Converting from Decimal to Binary
- The Hexadecimal Number System

Major Computer Components

- Central Processing Unit (CPU)
- Bus
- Main Memory (RAM)
- Secondary Storage Media
- I / O Devices

Von Neumann Machine

- Most modern computers are considered to be stored-program computers or <u>"von Neumann"</u> <u>machines</u>, named after the famed computer scientist, John von Neumann.
- Both data and programs are stored in the computer

First Computer?

- Charles Babbage The Father of Computers
 - Difference Engine (1822)
 - Analytical Engine external program computer
- Ada Augusta Byron The First Programmer
 - Countess of Lovelace; daughter of Lord Byron
 - Wrote programs for the Analytical Engine
 - The computer language "Ada", designed for the U.S. Department of Defense, was named so, in her honor.

Schematic Diagram of a Computer

Figure 5 Schematic Diagram of a Computer

Diagram taken from Java Concepts, Fourth Edition

The CPU

- Central Processing Unit
- The "brain" of the computer
- Controls all other computer functions
- In PCs (personal computers) also called the microprocessor or simply processor.

The Bus

- Computer components are connected by a bus.
- A bus is a group of parallel wires that carry control signals and data between components.

Main Memory

- Main memory holds information such as computer programs, numeric data, or documents created by a word processor.
- Main memory is made up of capacitors.
- If a capacitor is charged, then its state is said to be 1, or ON.
- We could also say the **bit is set**.
- If a capacitor does not have a charge, then its state is said to be **0**, or **OFF**.
- We could also say that **the bit is reset** or **cleared**.

Main Memory (cont.)

- Memory is divided into cells, where each cell contains 8 bits (a 1 or a 0). Eight bits is called a byte.
- Each of these cells is uniquely numbered.
- The number associated with a cell is known as its **address**.
- Main memory is volatile storage. That is, if power is lost, the information in main memory is lost.

Main Memory (cont.)

- Other computer components can
 - get the information held at a particular address in memory, known as a READ,
 - or store information at a particular address in memory, known as a WRITE.
- Writing to a memory location alters its contents.
- Reading from a memory location does not alter its contents.

Main Memory (cont.)

- All addresses in memory can be accessed in the same amount of time.
- We do not have to start at address 0 and read everything until we get to the address we really want (sequential access).
- We can go directly to the address we want and access the data (**direct** or **random access**).
- That is why we call main memory RAM (Random Access Memory).

Secondary Storage Media

- Disks -- floppy, hard, removable (random access)
- Tapes (sequential access)
- CDs (random access)
- DVDs (random access)
- Secondary storage media store files that contain
 - computer programs
 - data
 - other types of information
- This type of storage is called persistent (permanent) storage because it is non-volatile.

I/O (Input/Output) Devices

- Information input and output is handled by I/O (input/output) devices.
- More generally, these devices are known as peripheral devices.
- Examples:
 - monitor
 - keyboard
 - mouse
 - disk drive (floppy, hard, removable)
 - CD or DVD drive
 - printer
 - scanner

Bits, Bytes, and Words

- A bit is a single binary digit (a 1 or 0).
- A byte is 8 bits
- A word is 32 bits or 4 bytes
- Long word = 8 bytes = 64 bits
- Quad word = 16 bytes = 128 bits
- Programming languages use these standard number of bits when organizing data storage and access.
- What do you call 4 bits? (hint: it is a small byte)

Number Systems

- The on and off states of the capacitors in RAM can be thought of as the values 1 and 0, respectively.
- Therefore, thinking about how information is stored in RAM requires knowledge of the binary (base 2) number system.
- Let's review the decimal (base 10) number system first.

The Decimal Number System

- The decimal number system is a positional number system.
- Example:
 - 5 6 2 1

 $10^3 \ 10^2 \ 10^1 \ 10^0$

- $1 \times 10^0 = 1$
- $2 \times 10^{1} = 20$
- $6 \times 10^2 = 600$
- $5 \times 10^3 = 5000$

The Decimal Number System

- The decimal number system is also known as base 10. The values of the positions are calculated by taking 10 to some power.
- Why is the base 10 for decimal numbers?
 - Because we use 10 digits, the digits 0 through 9.

The Binary Number System

- The binary number system is also known as base 2. The values of the positions are calculated by taking 2 to some power.
- Why is the base 2 for binary numbers?
 - Because we use 2 digits, the digits 0 and 1.

The Binary Number System

- The <u>binary</u> number system is also a positional numbering system.
- Instead of using ten digits, 0 9, the binary system uses only two digits, 0 and 1.
- Example of a binary number and the values of the positions:

20

$$2^{0} = 1$$
 $2^{4} = 16$
 $2^{1} = 2$ $2^{5} = 32$
 $2^{2} = 4$ $2^{6} = 64$
 $2^{3} = 8$

- $1 X 2^0 = 1$
- $0 X 2^1 = 0$
- $1 X 2^2 = 4$
- $1 X 2^3 = 8$

 \mathbf{O}

77₁₀

- $0 X 2^4 = 0$
- $0 \times 2^5 =$
- $1 \times 2^6 = 64$

Converting from Binary to Decimal

Practice conversions:

<u>Binary</u> 11101 1010101 100111 <u>Decimal</u>

Converting from Decimal to Binary

- Perform successive divisions by 2, placing the remainder of 0 or 1 in each of the positions from right to left.
- Continue until the quotient is zero.
- Example: 42₁₀

2 ⁵	24	2 ³	2 ²	2 ¹	20
32	16	8	4	2	1
<u>1</u>	<u>0</u>	<u>1</u>	<u>0</u>	<u>1</u>	<u>0</u>

Converting from Binary to Decimal

Practice conversions:

<u>Decimal</u>	<u>Binary</u>
59	
82	
175	

Working with Large Numbers

0 1 0 1 0 0 0 0 1 0 1 0 0 1 1 1 = ?

- Humans can't work well with binary numbers; there are too many digits to deal with.
- Memory addresses and other data can be quite large. Therefore, we sometimes use the **hexadecimal number system**.

The Hexadecimal Number System

- The <u>hexadecimal</u> number system is also known as base 16. The values of the positions are calculated by taking 16 to some power.
- Why is the base 16 for hexadecimal numbers ?
 - Because we use 16 symbols, the digits 0 through 9 and the letters A through F
 - Computer bus and computer graphics are just two of many that use hexadecimal.

The Hexadecimal Number System

<u>Binary</u>	<u>Decimal</u>	<u>Hexadecimal</u>	<u>Binary</u>	Decimal	<u>Hexadecimal</u>
0	0	0	1010	10	А
1	1	1	1011	11	В
10	2	2	1100	12	С
11	3	3	1101	13	D
100	4	4	1110	14	E
101	5	5	1111	15	F
110	6	6			
111	7	7			
1000	8	8			

The Hexadecimal Number System

 $\underline{C} \quad \underline{8} \quad \underline{B} \quad \underline{0} \quad \underline{5} \quad \underline{1} \\ 16^5 \quad 16^4 \quad 16^3 \quad 16^2 \quad 16^1 \quad 16^0$

Often used with red-green-blue coloring in a two pair format

Hexadecimal: Colors

<u>Decimal</u>	<u>Hexadecima</u>	<u>ıl</u>	
0	0		
1	1		
2	2	E4D051 E4	Examples:
3	3	F4B051=F4	red green blue
4	4		ica gicch blue
5	5	F4 (red)	= 15x16 + 4 = 240 + 4 = 244
6	6	30 (green)	= 3x16 + 0 = 48 + 0 = 48
7	7	5C (blue)	= 5x16 + 12 = 80 + 12 = 92
8	8		
9	9	FFFF00	= FF FF 00
10	А		red green blue
11	В	FF (red)	$= 15 \times 16 + 15 = 240 + 15 = 255$
12	С	FF (green)	
13	D	00 (blue)	= 0x16 + 0 = 0 + 0 = 0
14	Е		which produces the color yellow!
15	F		

Example of Equivalent Numbers

Binary: 101000010100111₂

Decimal: 20647₁₀

Hexadecimal: 50A7₁₆

Notice how the number of digits gets smaller as the base increases.

Converting from Binary to Hex

- Because 16 is the equivalent of 2⁴, it is easy to convert from binary to hex and vice-versa.
- Binary: 1101 0010 1111 0000
- Hex: 0x D 2 F 0

Converting from Binary to Octal

- Octal is another number system that is base 8.
- Because 8 is the equivalent of 2³, it is easy to convert from binary to octal and vice-versa.
- Convert the following binary number to octal:
 - 01 101 001 011 110 000