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Abstract

In class I have repeatedly mentioned the FFT (Fast Fourier Transform) which is a fast way of com-
puting the DFT (Discrete Fourier Transform). In this project we will use the FFT to design equiripple
filter designs. NOTE: Though I am assigning a project involving the FFT prior to your being taught
this important algorithm, rest assured, there is something very important to learn in doing this project
which will become evident when you perform the calculations.

Students will write a function in MATLAB to enable them to create different filters.
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1 The FFT

The FFT has been named one of the top ten algorithms of the 20th century - amath.colorado.edu/resources/
archive/topten.pdf . MATLAB has a function called fft to compute the DFT (to be defined in class). Students
should familiarize themselves with this function by typing help fft within MATLAB. Also do the same for
ifft.

2 FIR Filters and specifications

We have studied convolution in class. This given by

y[n] =
∑

k∈I

h[k]x[n − k]. (1)

In equation 1, x[n], y[n] are the input and output sequences respectively and h[n] is the impulse response
of the filter which has support of I. In this project we assume I is finite (hence the filter is FIR) and is
symmetric, i.e., I = −N,−N + 1, . . . ,−1, 0, 1, . . . , N . As defined, h[n] is not causal, but we can get a casual
filter by delaying h[n] by N samples.

In order to design an FIR filter we have to calculate h[n] such that any constraints placed on the
filter are satisfied. For example we could say “ideal low–pass filter,” with pass–band up to 0.2π and our
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constraints are immediately evident. Typically, we place constraints in the frequency domain. The frequency
response of an FIR filter with support I is

H(ejω) =
∑

n∈I

h[n]e−jωn. (2)

Because H(ejω) is 2π periodic we can use a region of [−π ≤ ω ≤ π] though we are not constrained to do so.
Figure 1 shows the specifications of a (non–ideal) LP filter. The passband region is defined as Fp =

[−ωp ωp] and the filter magnitude is nominally expected to take on unity value here. The stopband is
Fs = [−π − ωs] ∪ [ωs π] where ωs > ωp. Because brick–wall characteristics are impossible to obtain
in practice, there exists a transition region Ft between Fp and Fs. We permit rippling in the pass and
stopbands and these are defined by 1 − δp ≤ |H(ω)| ≤ 1 + δp and |H(ω)| ≤ δs respectively. δp and δs are
small tolerance parameters typically much less than unity. Hence a LP FIR filter is completely defined in
the frequency domain by Fp, Fs and δp, δs, given which we intend to find h[n] where the order (length) of
the filter is 2N + 1. Note that the filter order is not known a priori and is generally obtained through an
iterative process.
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Figure 1: Frequency response specifications for a low pass filter. See text for details.

To complete the design we need to specify the phase of the filter as well. If the FRF is real then

H(ejω) = H∗(ejω).

The student should show that in the time domain this corresponds to h[n] = h[−n] if h[n] is real.

3 Iterative procedure

Specify bounds on the FRF as below

Hid(e
jω) − Ed(ω) ≤ H(ejω) ≤ Hid(e

jω) + Ed(ω), (3)

with Hid(e
jω) being the FRF of the ideal LP filter. To be specific:

Hid(e
jω) =

{

1 ω ∈ Fp

0 ω ∈ Fs
(4)
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and

Ed(ω) =

{

δp ω ∈ Fp

δs ω ∈ Fs
(5)

We have already defined the support I = −N,−N + 1, . . . ,−1, 0, 1, . . . , N and this implies that the
filter must have zero values outside this region.

The iterative algorithm consists of the following steps:

1. Begin with the h[n] of the ideal frequency response (students should know this). This is essentially

an IIR filter, therefore the student should drop terms outside the support I. h0[n] represents the 0th

iteration.

h0[n] =

{

hid[n] n ∈ I
0 otherwise

(6)

A reasonable approximation to the support is shown later.

2. Here is what the kth iteration looks like:

• Compute the FFT of hk[n] on a dense grid of frequencies. If 2N + 1 is length of the filter then
there should at least be 10N points in the FFT. If your edge frequencies are not on the grid, then
choose frequency values on the grid that enable a tighter passband.

• Apply the frequency domain constraint given below

Gk(ejω) =







Hid(e
jω) + Ed(ω) if Hk(ejω) > Hid(ejω) + Ed(ω)

Hid(e
jω) − Ed(ω) if Hk(ejω) > Hid(ejω) − Ed(ω)

Hk(ejω) otherwise
(7)

• Compute the ifft of Gk(ejω) to get gk[n].

• Any gk[n] that is non–zero outside I should be zeroed as below

hk+1[n] =

{

gk[n] n ∈ I
0 otherwise

(8)

• If the MSE is less than a predefined threshold, terminate. MSE is defined as
∑N

n=1
(hk[n] − hk+1[n])

2

N

Another way to check convergence is to see if we meet the filter specifications after some finite,
but large number of iterations.

Are we expected to attain convergence? There is a theory in mathematics that gives a positive answer,
known as the method of projections onto convex sets. The student should accept this but may research it
on–line for their own edification.

How do we determine the filter order? Kaiser [1] showed that the filter order can be written as:

N = ⌈
−20 log10

√

δpδs − 13

14.6(ωs − ωp)/(2π)
+ 1⌉.

This filter order should be considered a lower bound on the order, i.e., so as to meet the filter specifications
we might need an order greater than that described above.

4 Issues

In reality, despite the theory of the method of projections onto convex sets, convergence can be exceedingly
slow. The student should consider the following:

1. The placement of the stopband and the passband need not be exactly ωs and ωp but could be conser-
vative.

2. The tolerance parameters (i.e., that permitting rippling) could be changed to slightly smaller values
that δs and δp, again to be conservative, in order to speed convergence.
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5 Example

A zero phase LP filter which has the following characteristics has to be designed:

Hid(e
jω) =

{

1 0 ≤ ω ≤ 0.4π
0 0.6π ≤ ω ≤ π

(9)

After the design process is followed we get a FRF as shown in Figure 2. Note the rippling in the
passband and the stopband.
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Figure 2: Example 1. This is a lowpass filter design for the example described by equation (9). The iterations
1, 3 and the final step are shown. In the final step, all the conditions on δp, δs, ωp and ωs are met.

6 What to do?

1. Write a MATLAB script (not function) that computes the filter given in Example 1 and plots a result
similar to that given in Figure 2. Also hand in your filter coefficients, i.e., your code will print out
the coefficients on the screen. Since you will be trying various filter sizes and difference tolerance
parameters (δp, δs, ωp and ωs), also produce a table with columns showing number of iterations, the
tolerance parameters and a final column, whether it converged or not. This final column will be filled
in with a ’y’ or a ’n’.

2. Use the Parks-McLellan algorithm (in MATLAB) to design the same filter. Plot your results in a graph
similar to Figure 2. Compare the coefficients with the previous design step.

Due date: 11:59pm on 13 April 2007 by email (single script file + table) only to Haleh Safavi.
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