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Abstract

In class we will do principles of filter design. Some of these filter design principles are easy (con-
ceptually and computationally) and others are not. This project considers a deceptively simple method
to design filters involving simple matrix algebra and a powerful minimization theorem from matrix cal-
culus. Once the basic integrals are mastered, the deceptively simple method consists of obtaining the
eigenvalues and eigenvectors of a particular symmetric matrix from which we obtain the particular filter.

Students will first do some derivations followed by actual numerical calculations for filter design in
MATLAB. They will hand in both their derivations and program that does the calculations. Upto fifty
percent of the points for the project will be given for derivations and upto fifty percent for the MATLAB
programs. The maximum a student can get is one hundred points.
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1 The problem

The frequency response of an FIR digital filter with real coefficients a[n], n ∈ {0, 1, 2, . . . , N − 1} is

H [ω] =

N−1
∑

n=0

a[n]e−jωn

=

N−1
∑

n=0

a[n] cos(nω) − j

N−1
∑

n=0

a[n] sin(nω). (1)

Let

T1 =

N−1
∑

n=0

a[n] cos(nω) (2)

T2 =

N−1
∑

n=0

a[n] sin(nω), (3)
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then the phase response is φ(ω) = − tan−1(T2/T1) and the group delay is

τ(ω) =
d

dω
φ(ω) (4)

=
T1T3 + T2T4

T 2
1

cos2
[

tan−1(T2/T1)
]

. (5)

In equation (5) we have

T3 =

N−1
∑

n=0

na[n] cos(nω) (6)

T4 =

N−1
∑

n=0

na[n] sin(nω), (7)

Define a = [a[0] a[1] . . . a[N−1]]T , c(ω) = [1 cos(ω) . . . cos((N−1)ω)]T and s(ω) = [0 sin(ω) . . . sin((N−
1)ω)]T . Thus equation (1) can be re–written as

H(ω) = aT c(ω) − jaT s(ω) = Hr(ω) − jHi(ω). (8)

The goal of course is to approximate a desired filter D(ω) as closely as possible by adjusting the
elements of a. D(ω) could be an ideal low–pass filter, band–pass filter etc. And “closely” also requires
definition. Let us start with D.

D(ω) =

{

M(ω) cos p(ω) − jM(ω) sin p(ω) = Dr(ω) − jDi(ω) ω ∈ passbands
0 ω ∈ stopbands

(9)

As far as error goes, we consider the real and imaginary error separately and combine them as as
sum. The real and imaginary errors in the passbands are:

Er =
[

Dr(ω)
Dr(ω0)

Hr(ω0) − Hr(ω)
]2

= aT
[

Dr(ω)
Dr(ω0)

c(ω0) − c(ω)
] [

Dr(ω)
Dr(ω0)

cT (ω0) − cT (ω)
]

a

Ei =
[

Di(ω)
Di(ω0)

Hi(ω0) − Hi(ω)
]2

= aT
[

Di(ω)
Di(ω0)

s(ω0) − s(ω)
] [

Di(ω)
Di(ω0)

sT (ω0) − sT (ω)
]

a.
(10)

Note terms like D(ω0) and H(ω0) in equation (10). ω0 is a reference frequency at which D(ω0) 6= 0 and
E = 0. Usually, ω0 is placed in the middle of the passband. Also note when we have an error function of
this form, we can write equation (10) in a quadratic form. After the relevant substitutions we get

Er = aT
[

M(ω) cos p(ω)
M(ω0) cos p(ω0)

c(ω0) − c(ω)
] [

M(ω) cos p(ω)
M(ω0) cos p(ω0)

c(ω0) − c(ω)
]T

a

Ei = aT
[

M(ω) sin p(ω)
M(ω0) sin p(ω0)

s(ω0) − s(ω)
] [

M(ω) sin p(ω)
M(ω0) sin p(ω0)

s(ω0) − s(ω)
]T

a.
(11)

The total error in the passband is

Ep =

∫ ωp2

ωp1

(Er + Ei) dω (12)

= aT Qpa (13)

Qp is a real–symmetric, positive–definite matrix. Through similar manipulations the stopband error is

Es = aT

{

∫ ωs2

ωs1

[

c(ω)cT (ω) + s(ω)sT (ω)
]

dω

}

a

= aT Qsa (14)
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Qs is also a real–symmetric, positive–definite matrix while ωp1
, ωp2

and ωs1
, ωs2

are the edge frequencies of
the passband and stopband respectively.

The total error can be written as a weighted sum of Ep and Es, i.e.,

E = αEp + βEs = aT [αQp + βQs] a (15)

Let Q = αQp + βQs, then the total error is:

E = aT Qa, (16)

where Q is a real–symmetric and positive–definite matrix. If you expand out the value for E, you will see
that it is quadratic in terms of the elements of a. Note that E represents the mean square error between the
ideal (desired) filter and the actual filter, so minimizing it makes sense. Also note, that all the elements of
Q are completely defined so when we speak of minimization, it is the a′s that will be minimized. The fact
that we have a quadratic form permits us to use Rayleigh’s principle 1 for the minimization. This is stated
as:

Theorem 1 Let Q be a symmetric (N−1)×(N−1) matrix with ordered eigenvalues λ0 ≥ λ1 ≥ . . . ≥ λN−1.

Given any (N−1)×1 vector a, and the quadratic system aT Qa, the minimum amin of the quadratic system is

attained at the eigenvalue of λN−1 and is given by the eigenvector of Q corresponding to λN−1. A restriction

is that aT a = 1.

2 An example

We are going to design by hand a 3–tap FIR filter with passband is 0 ≤ ω ≤ π/4 (ωp1
= 0, ωp2

= π/4)
and stopband π/2 ≤ ω ≤ π (ωs1

= π/2, ωs2
= π). From our choice of ωp1

, ωp2
we know that ω0 should lie

between them and we choose ω0 = π/8. We desire a boxcar filter with cutoff frequency at ωc = π/4:

D(ω) =

{

cos τω − j sin τω = e−jτω 0 ≤ ω ≤ π/4
0 π/2 ≤ ω ≤ π

(17)

The student is asked to prove that the general term in the Q matrix (0 ≤ n, m ≤ N − 1) is:

q(n, m) = α

∫ ωp2

ωp1

[d1d2 + d3d4] dω + β

∫ ωs2

ωs1

(cosnω cosmω + sinnω sin mω) dω

d1 =
cos τω

cos τω0
cosnω0 − cosnω

d2 =
cos τω

cos τω0
cosmω0 − cosmω

d3 =
sin τω

sin τω0
sin nω0 − sin nω

d4 =
sin τω

sin τω0
sin mω0 − sin mω

(18)

With q(n, m) as above and assuming α = β = 1 we have

Q =





1.5874 −1.0000 −0.0190
−1.0000 1.5708 −1.0000
−0.0190 −1.0000 1.6272



 (19)

From Q and Theorem 1 we get the FIR filter a = [0.5072 0.7086 0.4095]T

1A good reference for this is Matrix Analysis for Statistics, James. R. Schott, Theorem 3.15, page 105, Wiley.
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Figure 1: Gain of the FIR filter a = [0.5072 0.7086 0.4095]T . Note that the gain is not constant in the
passband frequencies [ωp1

ωp2
] = [0 π/4]
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Figure 2: Group of the FIR filter a = [0.5072 0.7086 0.4095]T . The group delay is more or less constant in
the passband frequencies [ωp1

ωp2
] = [0 π/4]

4



3 The full–blown problem

The previous problem deliberately chosen because the calculations were feasible by hand. Let us proceed to
a larger problem which can only be solved on a computer.

Design a low–pass filter with N = 31, fp = 0.06 and fs = 0.12. We wish to have a group delay of
τ = 12 in the passband. Use α = 1, β = 5 in the design and assume that the filter has zero error ω0 = fp/2.

4 What to do?

This project has two parts. The first part deals with performing derivations in order to understand the basic
theory while the latter one deals with programming in MATLAB.

Derivations - 50%.

1. Prove the first of the pair of equations given by equation (14).

2. Using equations (13, 14) prove equation (18) and then prove that Q is symmetric.

3. Show the steps in the calculations that enable you to get numerical values for equation (18) as shown
in equation (19)

4. Due date: 8 May 2006 in class or by email (if students use a word processor). Your submissions
should be neatly written (or typed). Make all assumptions clear to the reader and show all steps in
derivations. If you are using tables of integrals, copy the integral rather than make a reference to it.

MATLAB - 50%

• Write a MATLAB program (not a function) that solves the full blown problem. Your program will
produce the following outputs

1. The matrix Q using the disp command in MATLAB. Also be sure to use format long so that
you have 16 digits of output.

2. The vector a or aT .

3. The gain and group delay corresponding to a.

• Due date: 15 May 2006 by email only.
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