
FOURIER - GENIUS OR TERRORISTE?

Samir Chettri 1

1 HUGHES-STX, Kanazawa University, GST, UMBC

In this memo we discuss certain aspects of Fourier analysis.
This is by no means a complete document. However, with
these notes and some of the references the reader should be
able understand key computational aspects of the Fourier
transform. In a later memo we will talk about applications
of the Fourier transform to image processing.

The life of Joseph

By all accounts Fourier led an adventurous life. Born in 1768
to a master tailor, he was orphaned at the age of 10. Through
his intellect he gained a place in the local Benedictine school
where he did very well.

When old enough to be conscripted he is said to have wanted
to join the French army as a member of its elite artillery
corps. He was turned down since he did not have royal blood
in him. This incident may have caused him to take up with
the revolution that brought “liberty, equality and fraternity”
to France.

Naturally, when the new Republic seemed to be in trouble
the definition of treachery was extended and changed. Dur-
ing these troubled times no one was safe including Fourier
who was arrested, released, and arrested again. He was lucky
to get away with his head still attached to his neck (re: guil-
lotine) though he remained a marked man during those years
with the label “terroriste” attached to his name.

At various times in his life he held governmental positions un-
der King Louis and Napolean. The fact that he escaped being
beheaded is probably a testament to his diplomatic talents.
Among his achievements during his “government” period is
his contribution to Egyptology (he encouraged Champollion
who eventually deciphered the Rosetta stone, which was the
key to the heiroglyphics). During this period he is said to
have turned down free lunches in return for granting fat gov-
ernment contracts, whence the saying non existat prandium

gratuitum.

When he turned 21, Fourier lamented that at his age New-
ton and Pascal had acquired many claims to immortality. At
the age of 35 Fourier was still a footnote in the annals of sci-
ence. This changed with his introduction of the Fourier series
which he used to solve the heat equation. A little later he in-
troduced the Fourier integral. At first, his methods were not
accepted by Laplace and Lagrange - both of whom were tow-
ering figures at the time. However, through his intellect and

perseverance he proved himself right and eventually became
a grand old man of French sciences.

Introduction to continuous and discrete
Fourier transforms

In this section we discuss the continuous and discrete Fourier
transforms (FT) in one and two dimensions respectively. Us-
ing the arguments presented here the FT can be extended
to more than two dimensions. Derivations of these formulae
will not be given, though the interested reader is referred to
[1].

Continuous domain

Let f be a function of x. The Fourier transform (FT) of f(x)
is defined as:

F{f(x)} = F (u) =

∫
∞

−∞

f(x)e−j2πuxdx (1)

Note that we are using electrical engineering terminology by
defining j =

√
−1.

The inverse FT (IFT) is defined as

F−1{F (u)} = f(x) =

∫
∞

−∞

F (u)ej2πuxdu (2)

Both the FT and the IFT form a Fourier transform pair.
When speaking about Fourier transforms one should define
both equations.

One thing to note about the FT is that the input function
f(x) can be either real or complex and that in general the
transformation results in complex numbers. Thus we can
represent F (u) as

F (u) = R(u) + jI(u)

or in complex polar form as

F (u) = |F (u)| ejφ(u).

Here |F (u)| = [R(u)2 + I(u)2]1/2 is the Fourier spectrum

and φ(u) = tan−1[I(u)/R(u)] is the phase angle. The power

spectrum is defined as P (u) = |F (u)|2.

We can now extend these definitions to the two variable case.
Let f(x, y) be a function of x and y. The two dimensional
FT is defined as:

F{f(x, y)} = F (u, v) =

∫
∞

−∞

∫
∞

−∞

f(x, y)e−j2π(ux+vy)dxdy

(3)
and the inverse FT (IFT) as

F−1{F (u, v)} = f(x, y) =

∫
∞

−∞

∫
∞

−∞

F (u, v)ej2π(ux+vy)dudv

(4)
Our definitions for the spectrum and the phase remain un-
changed except that the notation accounts for the fact that
we are using two variables instead of one. So the Fourier
spectrum is |F (u, v)| = [R(u, v)2 + I(u, v)2]1/2 , φ(u, v) =
tan−1[I(u, v)/R(u, v)] is the phase angle, and the power spec-

trum is defined as P (u, v) = |F (u, v)|2.

Discrete domain

As in the continuous case we can define the discrete FT
(DFT) as

X[k] =

N−1∑

n=0

x[n]W−kn
N 0 ≤ k ≤ N − 1 (5)

with WN = exp{j2π/N}.

WN plays an important role in many further calculations.
Thus we immediately state the following important result
concerning sums of integer powers of this quantity. For a
proof see the exercises.

N−1∑

n=0

W kn
N = Nδ[kmodN] =

{

0 for k mod N 6= 0
N for k mod N = 0

(6)

The inverse DFT (IDFT) is defined as 1

x[n] =
1

N

N−1∑

k=0

X[k]W kn
N 0 ≤ n ≤ N − 1. (7)

The above equation can be simply proved by the following
steps:

RHS =
1

N

N−1∑

k=0

X[k]W kn
N

=
1

N

N−1∑

k=0

[
N−1∑

m=0

X[m]W−km
N

]

W kn
N

1Through some matrix algebra, we shall see shortly why the
inverse should be so defined.

=
1

N

N−1∑

m=0

X[m]

[
N−1∑

k=0

W
(n−m)k
N

]

=
1

N

N−1∑

m=0

X[m]δ[(n − m)modN]

= x[n]

With no great effort we can define the two dimensional DFT
as

F (u, v) =
1

MN

M−1∑

x=0

N−1∑

y=0

f(x, y)e−j2π(ux/M+vy/N) (8)

with u = 0, 1, 2, . . . , M − 1 and v = 0, 1, 2, . . . , N − 1.

Finally, the two dimensional inverse DFT is given as

f(x, y) =

M−1∑

u=0

N−1∑

v=0

F (u, v)ej2π(ux/M+vy/N) (9)

with x = 0, 1, 2, . . . , M − 1 and y = 0, 1, 2, . . . , N − 1.

On a square array, very little changes except the transform
and its inverse are made more symmetric. We can write the
pair as:

F (u, v) =
1

N

N−1∑

x=0

N−1∑

y=0

f(x, y)e−j2π(ux+vy)/N (10)

with u, v = 0, 1, 2, . . . , N − 1.

f(x, y) =
1

N

N−1∑

u=0

N−1∑

v=0

F (u, v)ej2π(ux+vy)/N (11)

with x, y = 0, 1, 2, . . . , M − 1.

Properties

In this section we present (without proof) some properties of
the FT in the continuous and discrete domain. Proofs are
left to the student as an exercise.

Continuous domain

1. Conjugate. F{f∗(x, y)} = F ∗(u, v), where the ∗ indi-
cates the complex conjugation operation.

2. Symmetry. If f(x, y) = f(−x,−y) then F (u, v) =
F (−u,−v).

3. Linearity. F{af1(x, y) + bf2(x, y)} = aF1(u, v) +
bF2(u, v).

4. Shift. F{f(x − a, y − b)} = F (u, v)e−j(ua+vb)2π

5. Convolution. F{f(x, y) � h(x, y)} = F (u, v)H(u, v)
where � is the convolution operation. Convolution can
be written as f(x, y) � h(x, y) =

∫
∞

−∞

∫
∞

−∞

f(ξ, η)h(x −
ξ, y − η)dξdη.

Discrete domain

1. Linearity. DFT {ax[n] + by[n]} = aX[k] + bY [k], a, b,∈
C.

2. Periodicity. X[k] = X[k + N].

3. Circular Shift. Given y[n] = x[(n − m)modN], then
Y [k] = W−km

N X[k], m ∈ Z.

4. Frequency Shift. y[n] = W mn
N x[n] ⇔ Y [k] = X[(k −

m)modN], m ∈ Z
5. Parseval’s Theorem

∑N−1

n=0
x[n]y∗[n] =

∑N−1

k=0
X[k]Y ∗[k]. As a special case of this theo-

rem we have
∑N−1

n=0
|x[n]|2 =

∑N−1

k=0
|X[k]|2.

Computational considerations

In section we will discuss how to compute the DFT. We look
at the computational complexity of this method. Then we
discuss the Fast Fourier Transform (FFT) method to com-
pute the DFT. The computational advantages of the FFT
are discussed and also a Fast IDFT is derived.

How to compute

At this point it will be useful to do an example of the FT and
also speak about the computational complexity of DFT. The
example is for the one dimensional FT, but due to the separa-
bility property of the FT we can compute a two dimensional
DFT as two separate one dimensional transforms.

Consider a discrete signal with the following four values
[f(0) f(1) f(2) f(3)] = [2 3 4 4]. We can now use equa-
tion (5) to get

F (0) =
1

4
[f(0) + f(1) + f(2) + f(3)] = 3.25.

Similarly we can get F (1) as

F (1) =
1

4

3∑

x=0

f(x)e−j2πx/4 =
1

4
(−2 + j)

After going through the tedium we get [F]T =
1
4

[13 − 2 + j − 1 − 2 − j].

We can write the evaluation of [F] as a matrix multiplication
of 1

N
[w] (to be defined) and [f], making for easier visualiza-

tion of the process. [w] is written as:

1 1 1 1

1 e−j2π/4 e(−j2π/4)2 e(−j2π/4)3

1 e(−j2π/4)2 e(−j2π/4)4 e(−j2π/4)6

1 e(−j2π/4)3 e(−j2π/4)6 e(−j2π/4)9

Now define ω = e−j2π/4. Hence the matrix [w] can be written

(in a considerably simplified notation) as:

1 1 1 1
1 ω ω2 ω3

1 ω2 ω4 ω6

1 ω3 ω6 ω9

In general we can define ω = e−j2π/N , where N is the number
of values of f() that we wish to transform. In this case it can
be shown that the matrix [w] is

1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2(N−1)

1 ω3 ω6 · · · ω3(N−1)

...
...

...
...

...

1 ωN−1 ω2(N−1) · · · ω(N−1)2

To obtain the IDFT normally one would invert the [w] ma-
trix. However it is not necessary. On going through some
math we find that the following matrix equation holds:

[f] = [w∗][F]

In the above equation the ∗ indicates the complex conjugate
operation. The significance of this result is that the origi-
nal functions may be recovered from the transformed version
without the need for matrix inversion.

We continue with our example. The [w] matrix can be written
as

1 1 1 1
1 −j −1 j
1 −1 1 −1
1 j −1 −j

and [w∗] can be written as

1 1 1 1
1 j −1 −j
1 −1 1 −1
1 −j −1 j

On performing the indicated multiplication we recover the
original function values.

Note that we perform N2 multiplications to obtain the DFT
of [f]. In the next section we will show how to reduce the
number of arithmetic operations. The algorithm to do this is
called the Fast Fourier Transform.

How to compute faster

The Fast Fourier Transform (FFT) has an interesting his-
tory. Apparently first discovered by Cooley and Tukey in
1965, later historical surveys traced the method back to C.
F. Gauss in an 1805 work that predates Fouriers work on his
famous series! Gauss has said of his method that, “experi-
ence will teach the user that this method will greatly lessen

the tedium of mechanical calculation.” At any rate, having
quick methods to compute the DFT were useless until the
advent of the computer age and so the older methods were
a solution looking for a problem. The following method of
doing the FFT is due to Danielson and Lanczos [2] and goes
back to the 40’s.

The DFT can be written as

F (u) =
1

N

N−1∑

x=0

f(x) ωux
N

where ωN = e(−j2π/N). We have added the subscript N to
reinforce the notion that ω is dependent on N . We make the
further assumption that N = 2n = 2M .

Since we assume that we are using powers of 2 for N we can
break up the sum into two sums. The first sum uses those
values of f(x) for which x is even and the second sum takes
f(x) for x odd. Thus the sum is:

F (u) =
1

2

[

1

M

M−1∑

x=0

f(2x) ωu 2x
2M +

1

M

M−1∑

x=0

f(2x + 1) ω
u(2x+1)
2M

]

.

Noting that ω2ux
2M = ωux

M , the above equation simplifies to

F (u) =
1

2

[

1

M

M−1∑

x=0

f(2x)ωux
M +

1

M

M−1∑

x=0

f(2x + 1)ωux
M ωu

2M

]

.

(12)

Now let us define the odd (subscript o) and even (subscript

e) parts as:

Fe(u) =
1

M

M−1∑

x=0

f(2x) ωux
M , (13)

and

Fo(u) =
1

M

M−1∑

x=0

f(2x + 1) ωux
M . (14)

In equations (13) and (14) 0 ≤ u ≤ M − 1. Substituting
equations (13) and (14) into equation (12) we get

F (u) =
1

2
[Fe(u) + Fo(u) ωu

2M] (15)

Noting that ωu+M
M = ωu

M and that ωu+M
2M = −ωu

2M , we can
write an equation to get the second part of the series as

F (u + M) =
1

2
[Fe(u) − Fo(u) ωu

2M] (16)

In principle one could continue the subdivision process till
one reached a single value. The DFT a point is a point it-
self. Then we work with pairs of values, pairs of pairs of val-
ues, pairs of pairs of pairs of values . . . using equations (15)
and (16) each time. The subdivision process amounts to a
reordering of the input sequence of data. In the following
paragraph we show this process for an array of 8 values.

4

3

4

2

ω0

ω0

-1

-1

2 + 4ω0

2 − 4ω0

3 + 4ω0

3 − 4ω0

Figure 1: Signal flow graph for 2 point transforms

Example 1: As an example consider the following input se-

quence [2 3 4 4].

Solution: The reordered data is [2 4 3 4]. Taking the data
two points at a time we get the two two point transforms as
[6 − 2 7 − 1]. Now apply the 4 point transform to this
data to get the following array [13 − 2 + j − 1 − 2 − j].
Throughout this process we have ignored the scaling factor.
Thus the final transformed array is 1

4
[13 −2+j −1 −2−j].

This process can be represented in the form of a signal flow
graph shown in the following figures. First the two two point
transforms are shown in figure 1. In each graph a ◦ represents
an adder, any number associated with a line is a multiplier.
Thus to get the first number in the transform the number 2
is added to the product of 4 and ω0. The second number in
the transform is obtained by adding 2 to the product of the
following numbers 4 ω0(−1). Also, the four point transform
is shown in 2. With a diagram of the signal flow graph it is
easy to visualize the implementation of equations (15) and
(16).

Example 2: In this example consider the following array of val-

ues that we wish to transform - [f0 f1 f2 f3 f4 f5 f6 f7] =
[2 3 4 5 6 7 8 9].

Solution: As a first step we divide it into its even and odd
values [f0 f2 f4 f6] and [f1 f3 f5 f7]. So the 8 points have
been divided into 2 sets of 4 points. For each set of 4 points
group the odd and even points. This gives us [f0 f4], [f2 f6],
[f1 f5], and [f3 f7]. Finally, we can write our reordered
array as [f0 f4 f2 f6 f1 f5 f3 f7] = [2 6 4 8 3 7 5 9]. Re-
membering that the first phase takes the data in pairs

2 + 4ω0

2 − 4ω0

3 + 4ω0

3 − 4ω0

13

−2 + j

−1

−2 − j

ω1

ω0

-1

-1

Figure 2: Signal flow graph for 4 point transforms

and that this phase only involves subtractions and addi-
tions (i.e., no complex multiplications whatsoever) we get
[8 − 4 12 − 4 10 − 4 14 − 4]. Next we do the two four point
transforms shown in Figures 3 and 4.

Finally, an eight point transform is shown in Figure 5 which
gives us the actual FFT. Also note the way in which the figure

−4

12

−4

8

−4 − 4j

−4

−4 + 4j

20

ω1

ω0

-1

-1

Figure 3: Problem 2: Signal flow graph for 4 point trans-
forms, top half of signal.

−4

14

−4

10

−4 − 4j

−4

−4 + 4j

24

ω1

ω0

-1

-1

Figure 4: Problem 2: Signal flow graph for 4 point trans-
forms, bottom half of signal.

encodes equations (15) and (16).

The FFT can be shown to have O(N log2{N}) multiplica-
tions. The older algorithm has N2 multiplications. Thus we
have achieved considerable savings by using the Danielson-
Lanczos Lemma.

The inverse operation

We rewrite the DFT and IDFT for convenience. They are

F (u) =
1

N

N−1∑

x=0

f(x) e−j2πux/N

and

f(x) =
1

N

N−1∑

x=0

F (u) e+j2πux/N .

Take the complex conjugate on both sides of the above equa-
tion. This can be written as

1

N
f∗(x) =

1

N

N−1∑

x=0

F ∗(u) e−j2πux/N .

The above equation is in the form of the DFT. Hence, we can
take the complex conjugate of the transformed variables and
FFT it to get f∗(x)/N . Take the complex conjugate of f∗(x)
and multiply by N to get f(x). The advantage of this is the
fact that we can use the same code to do the FFT and the
inverse FFT.

(−4 − 4j)ω3
8

−4ω2
8

(−4 + 4j)ω1
8

24ω0
8

−4 − 4j

−4

−4 + 4j

20

−1

−1

−1

−1

−4 − 9.7

−4 − 4j

−4 − 1.7j

−4

−4 + 1.7j

−4 + 4j

−4 + 9.7j

44

Figure 5: Problem 2: Signal flow graph for 8 point transform.

A matrix factorization view of the FFT

We have already defined the discrete fourier matrix [w]. Let
us use the notation WN = [w] to represent the N × N DFT
matrix, in order to make typography simpler and start with
W8.

W8 =
1

8

1 1 1 1 1 1 1 1
1 ω8 ω2

8 ω3
8 ω4

8 ω5
8 ω6

8 ω7
8

1 ω2
8 ω4

8 ω6
8 ω8

8 ω10
8 ω12

8 ω14
8

1 ω3
8 ω6

8 ω9
8 ω12

8 ω15
8 ω18

8 ω21
8

1 ω4
8 ω8

8 ω12
8 ω16

8 ω20
8 ω24

8 ω28
8

1 ω5
8 ω10

8 ω15
8 ω20

8 ω25
8 ω30

8 ω35
8

1 ω6
8 ω12

8 ω18
8 ω24

8 ω30
8 ω36

8 ω42
8

1 ω7
8 ω14

8 ω21
8 ω28

8 ω35
8 ω42

8 ω49
8

,

(17)
where, ω8 = exp(−2πi/8) or in general ωN = exp(−2πi/8).
This can be factored into W8 = 1

8
CS where each of the

matrices are written as

S =

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

(18)

and

C =

1 1 1 1 1 1 1 1
1 ω2

8 ω4
8 ω6

8 ω8 ω3
8 ω5

8 ω7
8

1 ω4
8 ω8

8 ω12
8 ω2

8 ω6
8 ω10

8 ω14
8

1 ω6
8 ω12

8 ω18
8 ω3

8 ω9
8 ω15

8 ω21
8

1 ω8
8 ω16

8 ω24
8 ω4

8 ω12
8 ω20

8 ω28
8

1 ω10
8 ω20

8 ω30
8 ω5

8 ω15
8 ω25

8 ω35
8

1 ω12
8 ω24

8 ω36
8 ω6

8 ω18
8 ω30

8 ω42
8

1 ω14
8 ω28

8 ω42
8 ω7

8 ω21
8 ω35

8 ω49
8

.

(19)
The reader should confirm that the product 1

8
CS does indeed

produce W8. This can be done by noting that C is the full
W8 matrix but with even numbered columns, i.e., 0, 2, 4, 6,
first and odd numbered columns, 1, 2, 3, 7 next and that post
multiplication by 1

8
S leads to W8.

Now, S = [δ0 δ4 δ1 δ5 δ2 δ6 δ3 δ7] with

δk = [0 0 . . . 1
︸︷︷︸

kthrow

. . . 0]T , k ∈ {0 . . . 7},

and as indicated in (19) C can be partitioned into four 4× 4
sub–matrices

C =

(
C1 C2

C3 C4

)

Explicitly,

1

4
C1 =

1

4

1 1 1 1
1 ω2

8 ω4
8 ω6

8

1 ω4
8 ω8

8 ω12
8

1 ω6
8 ω12

8 ω18
8

 .

Noting that ω2n
8 = ωn

4 , gives us

W4 =
1

4
C1 =

1

4

1 1 1 1
1 ω4 ω2

4 ω3
4

1 ω2
4 ω4

4 ω6
4

1 ω3
4 ω6

4 ω9
4

 .

Similarly

C2 =

1 1 1 1
ω8 ω3

8 ω5
8 ω7

8

ω2
8 ω6

8 ω10
8 ω14

8

ω3
8 ω9

8 ω15
8 ω21

8

=

1 0 0 0
0 ω8 0 0
0 0 ω2

8 0
0 0 0 ω3

8

1 1 1 1
1 ω2

8 ω4
8 ω6

8

1 ω4
8 ω8

8 ω12
8

1 ω6
8 ω12

8 ω18
8

 ,

or,

1

4
C2 =

1 0 0 0
0 ω8 0 0
0 0 ω2

8 0
0 0 0 ω3

8

W4 = ΩW4.

Having seen the patterns for C1,C2 we can easily write the
corresponding results for the remaining quadrants of C as
1
4
C3 = W4 and

1

4
C4 =

−1 0 0 0
0 −ω8 0 0
0 0 −ω2

8 0
0 0 0 −ω3

8

W4 = −ΩW4.

With Ci, i ∈ {1, 2, 3, 4} being obtained as above, we have

W8 =
1

2

(
IW4 ΩW4

IW4 −ΩW4

)

S

=
1

2

(
I Ω

I −Ω

)(
W4 0

0 W4

)

S

=
1

2
Φ8

(
W4 0

0 W4

)

S.

The notation Φ8 may seem strange, but the utility will be-
come evident shortly.

Now consider matrix M and define

M
(1) ≡ M

M
(2) ≡

(
M 0

0 M

)

M
(3) ≡

M 0 0

0 M 0

0 0 M

Clearly, the above notation has application to our represen-
tation of W8 above. Based on the above definitions we can
prove the following properties:

(
M

(a)
)(b)

= M
(ab)

(M1M2)
(a) = M

(a)
1 M

(a)
2

(αM)(a) = α (M)(a)

Inspecting W8 and using the above properties leads to the
important generalization

W2m =
1

2
Φ2mW

(2)

2m−1
S2m , L = 1, 2, . . . (20)

The reader should compare equation (20) with that for W8

and see if it makes sense.

Now the same technique can be applied repeatedly. Let us
see what this means:

W
(2)

2m−1
=

1

2

[

Φ2m−1W
(2)

2m−2
S2m−1

](2)

, (21)

or,

W2m =
1

22
Φ2mΦ

(2)

2m−1
W

(4)

2m−2
S

(2)

2m−1
S2m . (22)

Clearly this process can be repeated to get a complete fac-
torization

W2m =
1

2m
Φ2mΦ

(2)

2m−1
. . .Φ

(2m−1)
2 S

(2m−1)
2 S

(2m−2)
4 . . .S

(2)

2m−1
S2m .

(23)

Note that the W
(y)
x term has completely disappeared because

repeated application of equation (21) leads to W
(2m)
1 . Re-

membering that W
(a)
L is an L × L matrix replicated a times

to create a block diagonal aL × aL matrix we see that

W
(2m)
1 = I2m ,

i.e., an identity matrix with 2m ×2m elements, leading to the
disappearance of W altogether in equation (23).

Let

S = S
(2m−1)
2 S

(2m−2)
4 . . .S

(2)

2m−1
S2m .

In the next section we will show that S is essentially the
bit–reversal of the indices of the original input vector.

In order to understand equation (23), let us do a complete
factorization or W8.

W8 =
1

23
Φ23Φ

(2)

22
Φ

(22)

21
S.

We will focus on the computations that occur in the Φ ma-
trices while ignoring the bit–reversal for now.

Φ23 =

1 . . . 1 . . .
. 1 . . . ω8 . .
. . 1 . . . ω2

8 .
. . . 1 . . . ω3

8

1 . . . −1 . . .
. 1 . . . −ω8 . .
. . 1 . . . −ω2

8 .
. . . 1 . . . −ω3

8

Φ
(2)

22 =

1 . 1
. 1 . ω4

1 . −1
. 1 . −ω4

. . . . 1 . 1 .

. 1 . ω4

. . . . 1 . −1 .

. 1 . −ω4

Φ
(22)

21 =

1 1
1 −1
. . 1 1
. . 1 −1
. . . . 1 1 . .
. . . . 1 −1 . .
. 1 1
. 1 −1

The reader is asked to confirm that the above three matri-
ces for Φ23 ,Φ

(2)

22
,Φ

(22)

21
correspond to the butterfly diagrams

represented in figures 2, 3, 4 and 5 respectively.

Verbally the algorithm can be described as follows:

• Perform a bit reversal of the original data vector. This is
a special kind of shuffle and corresponds to multiplying
the S matrix with the input vector. More on this in the
next section.

• Take the vector output by the bit–reversal and pre–

multiply by Φ
(2m−1)
2 to get a new vector out. Note that

the first Φ matrix will always consist of 1’s and −1’s

(as in the Φ
(22)

21
case) causing the the output vector to

consist of paired sums and differences.

• Move right to left using the appropriate Φ in equa-
tion (23) and repeat the matrix vector multiplication.
Terminate after multiplying with Φ2m . Divide by 1/2m.

With the matrix factorization, the computational complexity
of the algorithm can be easily obtained. All the work is done
in the Φ multiplications. Note that each Φ matrix is 2m ×
2m but is sparse. Also note that the number of non–zero
elements in each Φ matrix is the same. For W23 the number
of elements in each Φ matrix is 2 × 23. For general N = 2m,
the number of elements is 2 × 2m and therefore the number
of complex–arithmetic operations to multiply an input vector
with one Φ matrix is O(2m) = O(N). The total number of
Φ matrices for N = 2m is log2(2

m) = m. Hence the overall
complexity of the algorithm is O(m × 2m) = O(N log N).

Essentially equation (23) represents the decimation–in–time
radix–two FFT.

The curly shuffle

In the FFT described, the first operation is the “shuffle” in
which an input array is reordered. The reordering follows a
fixed pattern. As with the butterfly diagrams let us start

with W8 and generalize from there. For ease of reference we
re–write the S matrix

S = S
(2m−1)
2 S

(2m−2)
4 . . .S

(2)

2m−1
S2m ,

and for the 8 × 8 case we have

S = S
(4)
2 S

(2)
4 S8,

with

S8 =

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

S
(2)
4 =

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1

S
(4)
2 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

For example consider an eight term input sequence given as
[f0f1f2f3f4f4f6f7]. After the first shuffle, we get two 4 term
input sequences (denoted as the lower and upper sequences
respectively) [f0f2f4f6] and [f1f3f5f7]. The second shuffle
gives us [f0f4], [f2f6], [f1f5] and f3f7]. Thus the new se-
quence is [f0f4f2f6f1f5f3f7] and this is what is input to two–
point computation, the four–point computation etc. The last
shuffle is not done because it is the identity matrix. The map-
ping can be written in tabular form as:

Decimal Binary

0 → 0 000 → 000
1 → 4 001 → 100
2 → 2 010 → 010
3 → 6 011 → 110
4 → 1 100 → 001
5 → 5 101 → 101
6 → 3 110 → 011
7 → 7 111 → 111

The left hand side of the of the table shows the mapping in
decimal numbers and the right hand side shows the equivalent

binary digits. The remarkable thing about the mapping or
the shuffle is that it can be obtained by a bit reversal (or
mirror image) as can be seen from the from the fight hand
column of the table. Generalizing to data sequences larger
than eight, yet powers of two, we expect that the complete
shuffle should be represented by a bit reversal. We shall now
prove this.

Theorem: Let n = 2l where l ∈ Z+. The complete shuffle is

given by:

0 → rl
0

1 → rl
1

2 → rl
2

...
...

...
...

...
...

n-1 → rl
n−1

Where, rs
p is the bit reversal of the s bit representation of the

number p. For example the s = 4 bit representation of p = 8 is

1000, then r4
8 = 0001.

Proof: We use the method of induction. We can see that
the theorem is trivially true for the case k = 1. Assume it is
true for m = k, i.e., the inductive hypothesis is that the bits
are reversed for m = k. We now proceed to prove that it is
true for m = k + 1.

When m = k+1, the total number of elements is 2k+1. In the
first shuffle the even indexed elements are sent to the lower
half of the interval, i.e., 0, 1, 2, 3, . . ., 2k − 1, while the odd
indexed elements to the upper half, i.e., 2k, 2k + 1, 2k + 2,
. . ., 2k+1 − 1.

Consider the lower half. The transfer (shuffle) is achieved
by a division by 2. If the bit representation of the indices
is bk+1bk . . . b1b0, then for even indices, division by two is a
right circular shift, i.e., the result is given by b0bk+1bk . . . b1.

For odd indices, the shift is to the upper half. In decimal
form this is written as:

Decimal

1 → 2k + 0

3 → 2k + 1

5 → 2k + 2

7 → 2k + 3

9 → 2k + 4
...

...
...

2k+ − 1 → 2k+1 − 1

While in binary form it is:

Binary

000. . . 0001 → 100. . . 0 + 000. . . 0000
000. . . 0011 → 100. . . 0 + 000. . . 0001 = 100. . . 001
000. . . 0101 → 100. . . 0 + 000. . . 0010 = 100. . . 010
000. . . 0111 → 100. . . 0 + 000. . . 0011 = 100. . . 011
000. . . 1001 → 100. . . 0 + 000. . . 0100 = 100. . . 100
...

...
...

111. . . 1111 → 111. . . 1111

What these two tables are really saying is that the odd num-
ber 1, 3, 5, . . . , p, . . . , 2k − 1 is represented as p = 2q + 1 for
q = 0, 1, 2, In tabular form this is written as:

Decimal

2 × 0 + 1 = 1 → 2k + 0

2 × 1 + 1 = 3 → 2k + 1

2 × 2 + 1 = 5 → 2k + 2

2 × 3 + 1 = 7 → 2k + 3

2 × 4 + 1 = 9 → 2k + 4
...

...
...

2 × q + 1 = p → 2k + q
...

...
...

2k+ − 1 → 2k + 2k − 1

Thus, to get the number q you subtract 1 from p and divide
by 2. Now the number p always ends in 1 because it is odd,
i.e., p = bk+1bk . . . b11. So, subtracting unity from it gives
us an even number bk+1bk . . . b10 and dividing by 2 gives us
a right circular shift 0bk+1bk . . . b1. Now, 2k = 100 . . . 000,
i.e., k + 1 binary digits with 1 in the left most place and all
others being 0). Thus adding the two numbers in the above
table gives us 1bk+1bk . . . b1 which is the equivalent of a right
circular shift. Thus the shuffle is b0bk+1bk . . . b1 for even or
odd integers.

Now we continue by performing the shuffle on the lower and
upper halves that were obtained by the initial shuffle. In
this case the bit representation is bkbk−1 . . . b1b0 and the full
shuffle on this reverses the bits by the inductive hypothesis.
Hence, the number m gets shifted to b0b1b2 . . . bkbk+1.

Two dimensional transforms

In this subsection we show how we can decompose the two
dimensional DFT into the product of two one dimensional
DFT’s. Also, we assume that x indexes f(x, y) along a col-
umn while y indexes f(x, y) along a row. Again, for conve-
nience we write the 2D DFT and its inverse below.

F (u, v) =
1

N

N−1∑

x=0

N−1∑

y=0

f(x, y)e−j2π(ux+vy)/N .

with u, v = 0, 1, 2, . . . , N − 1.

f(x, y) =

N−1∑

u=0

N−1∑

v=0

F (u, v)ej2π(ux+vy)/N . (24)

with x, y = 0, 1, 2, . . . , M − 1.

Rewrite the DFT as

F (u, v) =
1

N

N−1∑

x=0

[
N−1∑

x=y

f(x, y)e−j2πvy/N

]

e−j2πux/N

or

F (u, v) =
1

N

N−1∑

x=0

F (x, v)e−j2πux/N

with

F (x, v) =

N−1∑

x=y

f(x, y)e−j2πvy/N

Hence the two dimensional DFT is obtained by taking the
one dimensional transform of the rows of f(x, y) and multi-
plying by N to get F (x, v). Next we take the FFT along each
row of F (x, v) to get F (u, v). This property of the DFT is
called separability and ensures that we can trivially write a
2-D FFT routine, provided we have a one dimensional FFT
routine available.

A word from the man himself

In [2] there is the following quote by Fourier: “These same
theorems which enable us to solve the heat equation have
immediate applications to questions in general analysis and
dynamics whose solutions have long been sought.” Amen to
that.

Posterity has not forgotten Joseph Fourier - Egyptologist,
mathematician, terroriste and public servant.

References

1. D. F. Elliott and D. R. Rao. Fast Transforms – Al-
gorithms, Analysis, Applications. Academic Press, Or-
lando, 1982.

2. T. W.. Korner. Fourier Analysis. Cambridge University
Press, Cambridge, 1988.

