
CMPE 422/Spring 08/Project 1: Z Transform, Least Squares, and

sequence searching

Samir Chettri

January 21, 2008

Abstract

The Z transform has been taught in class. We are going to apply it to the discovery of signals. We

will consider how the Z transform, and the least squares method can be used to design the response

function of a filter to be able to detect specific signals. After considering an example that we can solve

by hand, we will derive equations using the well known technique of “least-squares.” Students will then

create MATLAB programs to solve the general case.

Studets will hand in both their derivations and program that does the calculations. Upto fifty percent

of the points for the project will be given for derivations and upto fifty percent for the MATLAB programs.

The maximum grade a student can get on this project is one hundred points.

Keywords: Least Squares, impulse response, Z transform, MATLAB.

Contents

1 The problem 1

2 Input data 2

3 What to do? 3

1 The problem

Our textbook, on page 151, writes a transfer function as a ratio of two polynomials in z:

H(z) =
Y (z)

X(z)
=

b0 + b1z
−1 + . . . + bNz−N

1 + a1z−1 + . . . + aDz−D
. (1)

X(z) is the z–transform of the input signal and Y (z) is the z–transform of the output signal. We also assume
that the system is causal. Hence the difference equation in the time domain (Ambardar, p. 62) is:

y[k] = −a1y[k − 1] − . . . − aDy[k − D] + b0x[k] + . . . + bNx[k − N ]. (2)

Let us consider the following signal x[n] = [0, 0, 0,2,−5, 2, 0, 0, . . .], where the bold–face indicates the
origin. We wish to design a filter h[n] which takes this input signal and produces a spike ([1, 0, 0, . . .]) as its
output. Working in the Z domain, we have X(z) = 2 − 5z + 2z2 and Y (z) = 1. From this we can calculate

H(Z) =
1

(2 − z)(1 − 2z)
.

After some manipulation we find that

H(Z) =
1

3

∞
∑

n=0

(2n+1
− 2−(n+1))zn. (3)

1



It should be evident from the solution for H(z), that the impulse response is infinitely long and that
it increases as n increases. Thus a filter such as this, would be impossible to implement on the computer.
On the other hand, if the filter were decreasing, we could truncate it at some finite number of terms. An
alternative to simple truncation exists which could easily be implemented as discussed below.

Let us start by assuming that all sequences we shall work with are causal and real. As discussed
in previous paragraphs, the aim is to design a causal, finite–length filter so that a given input sequence,
[x[0], x[1], . . . , x[n], 0, 0, . . .] gives rise to a known output sequence (say a Kronecker delta function). Call this
the desired output d[r], r ∈ [0 ∞]. Denote the filter by [b[0], b[1], . . . , b[m], 0, 0, . . .]. As indicated by our first
example, this could lead to infinite, increasing filters. Therefore a compromise is in order - we might wish to
approximate d[r] with an output [y[0], y[1], ..., y[m + n], 0, 0, . . .]. The issue then becomes, how closely does
y[·] approximate d[·].

This is where “least–squares” comes in. Start with the error term E

E =

∞
∑

r=0

(d[r] − y[r])
2

=

m+n
∑

r=0

(

d[r] −

m
∑

s=0

h[s]x[r − s]

)2

+

∞
∑

r=m+n+1

d[r]2. (4)

The student should minimize E with respect to h[·] to get a set of equations that are written as:

m
∑

s=0

h[s](

m+n
∑

s=0

x[r − s]x[r − j]) =

m+n
∑

r=0

d[r]x[r − j]. (5)

Let

ρ[j − s] =

m+n
∑

r=0

x[r − s]x[r − j]

and

g[j] =

m+n
∑

r=0

d[r]x[r − j].

This is now a linear system of equations that can be solved relatively easily for the unknowns h[·].

2 Input data

Given an input x[·] = [2,−1, 0, 0, . . .] that we wish to transform to δ[0]. Use the technique of the previous
section to design a finite–length filter h[·] of at most m+1 non–zero terms, i.e., [h[0], h[1], . . . , h[m]]. Tabulate
your results as follows: From the basic theory, the student should write a MATLAB function, LSQZTrans

Table 1: Table of h[·] for different filter lengths, m. What are the values of h[·] tending toward?

h[·] m = 0 m = 1 m = 2 m = 3 m = 10 m = 20

h[0]
h[1]
h[2]
h[3]
·

·

h[20]

2



that will accept the input signal x[·], the desired output d[·], the size of the filter denoted by m, and will
produce the filter itself h[·]. In order to obtain Table 1, the student will write a main program that will
call the function as many times as needed to populate its entries. The main program will also produce the
output sequences for m = 0, 1, 2, 3, 10, 20.

3 What to do?

This project has two parts. The first part deals with performing the derivations needed to understand the
basic theory while the latter one deals with programming in MATLAB.

Derivations - 40%.

1. To show that you understand the least squares method, obtain equation (5) from equation (4). How
did we get the second part of equation (4)? Write the basic least–squares equations (in matrix form).
Comment on the form of the matrix.

2. Due date: xxx March 2008 in class. Your submissions should be neatly written (or typed). Make all
assumptions clear to the reader and show all steps in derivations. Points will be taken off for missing
steps, mistakes etc.

MATLAB - 60%

1. Write a MATLAB function function [h] = LSQZTrans(m, d, x) that solves the matrix problem
in equation (5). Your file name should be the same as the function name, i.e., LSQZTrans.m.

2. Write a calling program Project01Spring2008Main.m that calls LSQZTrans.m with the appropriate
inputs, receives the outputs and creates Table 1. The calling program will also produce the output
sequences for m = 0, 1, 2, 3, 10, 20. Your main program will compare the m = 20 case by plotting it
and simultaneously plotting the Kronecker delta function.

3. Due date: xxx May 2008 by email only.

Remember, points will be taken off for not following the format described above, regardless of whether
you get the right results or not. Late submissions will not be accepted and will be given a grade of zero
points.

3


