
CMPE 320/Spring 08/Project 1: Generating Random Numbers

and Applications

Samir Chettri

February 18, 2008

Abstract

In class we will do much of the theory of probability and statistics. Throughout it we will assume
that a source of random numbers with a given probability distribution exists. When polled, all students
had, for example, heard about the “normal” distribution or ”bell–curve.” This density is ubiquitous in
probability theory. Even more fundamental than that is a random number generator for uniform random
variables. The uniform density is simply a box function extending along the x–axis in the range [0 1] and
since area of a density must be unity, the height of this box is also one. This project investigates methods
of generating such types of random numbers using MATLAB. Some of the programs to be generated are
easy, while others are more difficult.

Students will first do some derivations followed by actual numerical calculations for filter design in
MATLAB. They will hand in both their derivations and program that does the calculations. Upto fifteen
percent of the points for the project will be given for derivations and upto eighty–five percent for the
MATLAB programs. The maximum a student can get is one hundred points.

Keywords: MATLAB, uniform random numbers, chi–square test, other random distribution tests.

Contents

1 Uniform Random Variates 1

2 Testing random number generators 2

2.1 Graphical tests . 2
2.2 The chi–squared test . 2

3 What to do? 3

1 Uniform Random Variates

Consider m, a large prime integer and a, a large fixed integer such that a < m. Random numbers can be
easily generated using a very simple iterative equation -

xi+1 = (axi) mod m. (1)

Here, “mod” refers to the remainder after we divide by m and x0 is the initial seed with the property that
x ∈ [1, 2, . . . , m − 1].

Question 1: To understand how the above random number generator works, use m = 31, x0 = 1
and a = 13. Here are the first three values of the sequence: 1, 13, 14, Create 64 random numbers starting
with x0 = 1. Repeat the calculation using x0 = 2 with all other values remaining the same. Plot the
resulting random numbers using MATLAB (there will be two graphs). Comment on the graphs with notes
in the graphs itself. Hand in your graphs.

1

ht

Table 1: Parameters for two uniform random number generators that use Equation (1) as their basis

Parameter Generator #1 Generator #2
a 65539 16807
m 231 231 − 1

Question 2: Starting with x1 = (ax0) mod m, show that

xn = anx0 mod m, n = 1, 2, 3, (2)

Hint: In order to show this, draw a number line and see the relationships between the quantities in equa-
tion (2). Also, rewrite “mod” using other mathematical operators. Hand in your derivations.

Let us consider two random number generators. Both random number generators use Equation (1)
as their basis. The parameters of each random number generator are given in Table 1.

Question 3: For generator # 1 show that

xk+2 = (6xk+1 − 9xk) mod 231, for all k. (3)

Comment on what this relationship tells you regarding this random number generator. Do not just write an
answer, provide some justification. Hand in your derivations and comments.

2 Testing random number generators

The big issue with random number generators is - are they truly random? At some level, the graph you
drew in the previous section with m = 31, x0 = 1 and a = 13 that had starting sequence 1, 13, 14, . . ., should
convince you that these are not truly random, but pseudo–random. Accordingly, all our tests and comments
below are for pseudo–random numbers.

2.1 Graphical tests

Some interesting things happen when you take three consecutive random numbers from generators 1 and 2
in Table 1 and use them as cartesian coordinates. Use your generators 1 and 2 (that will produce random
numbers in [0 1]) to produce 106 random numbers each in [−1 1], take three consecutive numbers and use
them as X, Y, Z coordinates. Plot each triplet using the MATLAB function plot3 so that the cube is filled
with these points. Plot two volumes, one for each generator and use the interactive features of the graphics
window in MATLAB to find an optimum viewing angle for both. Once you find an optimum viewing angle
by trial and error, use view to force the plots to come to the particular azimuth and elevation view.

2.2 The chi–squared test

We have seen the chi–squared distribution in class as the sum of squares of normal distributions. This sub–
section will elaborate on how chi-squared tests can be used to test the quality of random number generators.
Remember, in this case we are working with uniform random number generators as defined by Equation 1,
but the test we describe below will be applicable to non–uniform random number generators, e.g., normal
distribution, gamma distribution etc.

The procedure is simple.

2

1. Generate a sample by calling the random number generator - in this case it is the uniform random
number generator.

2. Compute a test statistic. In this case it is the chi–square test (to be defined shortly).

3. Assess the likelihood that the data generated by the random number generator is close to the ideal
distribution.

Here is what the chi–square statistic looks like.

v =

k−1∑

x=0

(o[x] − e[x])2

e[x]
. (4)

Intuitively, equation (4 gives us an idea of how close the observed distribution o[x] is to the expected
distribution e[x]. What is the interpretation of o[x]? o[x] is a histogram of the generated random values with
k = 1000 bins. Let n be the total number of random numbers generated by either method given in Table 1.
e[x] is easily calculated from our previous data.

We define a null hypothesis H0 which postulates that the data o[x] comes from a uniform distribution.
The alternative hypothesis H1 is that it is not from a uniform distribution. Now we would like Pr[v∗1 ≤ v ≤

v∗2] = 1 − α where α is a small value and v∗1 and v∗2 represent lower and upper bounds on the value v can
take. This means that if v < v∗1 or v > v∗2 , the test failed and hypothesis H0 is false. v∗1 represents the case
that the histogram is too uniform while v∗2 is the case that it is far from uniform. Remember v = 0 means
that the expected and observed counts are identical. In any random test we should be very surprised if the
chi–squared test statistic is too low as well as if it is too high. If it is too low, it possibly means that the
test was fudged. It is typical to choose α = 0.05 which means that Pr[v∗1 ≤ v ≤ v∗2] = 0.95. Through some
calculations we do not show here, it is assumes that the chi–square “degreees–of–freedom,” (DOF) are k−1.
The number of random numbers chosen are n = 10k.

How do we calculate either v∗1 or v∗2 given α? Consider v∗2 : It is the value of the chi–square distribution
on the x–axis that has DOF = k − 1 and for which the probability (area) to the right of the graph is α/2.
Similar comments apply to v∗1 .

Remember, the chi–squared statistic is not the chi–squared distribution as defined in our texbook
(Therrien and Tummala) on page 148, rather, equation (4) approaches the chi–squared distribution as n and
k become very large.

3 What to do?

This project has two parts. The first part deals with performing derivations in order to understand the basic
theory while the latter one deals with programming in MATLAB.

Derivations - 15%.

1. Answer Question 1, Question 2 and Question 3 in the text.

2. Show all derivations clearly and neatly. Do not skip any detail.

3. Due date: 26 February 2008, directly or by email to our TA (handwritten or scanned are both OK).
Your submissions should be neatly written (or typed). If you are using tables or data from elsewhere,
copy the data or mathematical fact rather than make a reference to it.

4. Late submissions will not be accepted.

3

MATLAB - 85%

• You will write several MATLAB programs and/or functions for random number generation and testing.

1. Create two random number generator functions with the following interfaces: r = randgen1(p,q)

and r = randgen2(p,q). randgen1, randgen2 are functions that create the random generators
listed in Table 1. p, q are integers denoting size of the random array. For example p = q = 1

indicates we will generate a single random number, while p = 1000, q = 2 indicates that r is a
random matrix with 1000 rows and 2 columns. NOTE: All random numbers generated by both
functions should be in [0 1]. Clearly the parameters of each random generator listed in Table 1
will be within the routine itself. Consider carefully what you need to do if you have successive
calls to the random number generator and how you will solve that problem in software.

2. Write a program called v = mychi(obs, exp, k, n) . This will return the v value defined in
equation (4).

3. Write a main program called Project01DriverProgram.m that will set up and call the functions
listed above. Your code will look as below:

% Test 1 - Graphical correlation between three consecutive points

call first RG and scale rvs to be in [-1 1], use plot3 and view

call first RG and scale rvs to be in [-1 1], use plot3 and view

% Test 2 - chi-square test

Use alpha = 0.05 to compute critical values

for i = 1:256

generate 10^6 random numbers each using method 1 and 2

calculate chi--square stat. v using k=1000, n=10000 with mychi()

end

plot two graphs, with v (and critical v) on y-axis and test # i on x-axis

print total # of times each method failed, i.e., went beyond critical v.

• Due date: 11 March 2006 by email only to our TA.

• Late submissions will not be accepted.

4

