Probabilistic Independence

Consider the following drawing:

In this drawing, we see that $|E|=n+e,|F|=w+n,|E \cap F|=n$, and $|S|=n+s+e+w$.
Now, from Conditional Probability, we have that: $P(E \mid F)=P(E \cap F) / P(F)$, and when E is independent of F, we have that: $P(E \mid F)=P(E)$, so combining these equations yields:

$$
\begin{gathered}
P(E)=P(E \mid F)=P(E \cap F) / P(F), \\
\text { hence } P(E) P(F)=P(E \cap F) .
\end{gathered}
$$

This is our test for Independence: $\mathrm{P}(\mathrm{E} \cap \mathrm{F})=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{F})$.

What This Really Means:

If we replace these terms using their equivalent cardinality forms:

$$
\mathrm{P}(\mathrm{E} \cap \mathrm{~F})=|\mathrm{E} \cap \mathrm{~F}| /|\mathrm{S}|, \mathrm{P}(\mathrm{E})=|\mathrm{E}| /|\mathrm{S}| \text {, and } \mathrm{P}(\mathrm{~F})=|\mathrm{F}| /|\mathrm{S}|
$$

we get:

$$
\mathrm{P}(\mathrm{E} \cap \mathrm{~F})=|\mathrm{E} \cap \mathrm{~F}| /|\mathrm{S}|=(|\mathrm{E}| /|\mathrm{S}|)(|\mathrm{F}| /|\mathrm{S}|)=\mathrm{P}(\mathrm{E}) \mathrm{P}(\mathrm{~F})
$$

so multiplying by $|S|^{2}$ yields:

$$
|\mathrm{E} \cap \mathrm{~F}| \times|\mathrm{S}|=|\mathrm{E}| \times|\mathrm{F}| .
$$

In terms of the $\mathrm{n}, \mathrm{s}, \mathrm{e}$, and w regions, this becomes:

$$
\mathrm{n}(\mathrm{n}+\mathrm{s}+\mathrm{e}+\mathrm{w})=(\mathrm{n}+\mathrm{e})(\mathrm{n}+\mathrm{w})
$$

so

$$
n n+n s+n e+n w=n n+n e+n w+e w
$$

hence

$$
\mathrm{ns}=\mathrm{ew}, \text { which is equivalent to } \mathrm{n} / \mathrm{w}=\mathrm{e} / \mathrm{s} \text {. }
$$

So, what is Independence of E with respect to F ? The ratio (n / w) compares the part of E within F to the rest of F, and the ratio (e / s) compares the part of E outside F to the rest of the things outside F.

Conclusion: E is independent of F when the ratio of E in F to the rest of F equals the ratio of E outside of F to the rest of the things outside of F . That is, E is equally likely within F or outside F .

