1. Consider the Sample Space of outcomes when a fair coin is tossed 6 times with an each outcome either a Head (H) or a Tail (T).
(a) What is the probability of the event of 4 Heads?

Let $\mathrm{E}=\{4$ Heads $\}$ so $|\mathrm{E}|=\mathrm{C}(6,4)=6!/ 4!2!=30 / 2=15$ and $\mathrm{S}=\{6$ coin tosses $\}$ so
$P(E)=|E| /|S|=15 / 2^{6}=15 / 64$.
(b) What is the probability of the event of 4 Heads given the first toss is a Tail?

Let $E=\{4$ Heads $\}$ and $F=\{T x x x x x\}$ and $|E \cap F|=\mid\{4 H$ in 5 tosses $\} \mid=C(5,4)=5$.
Hence, $P(E \mid F)=|E \cap F| /|F|=5 / 2^{5}=5 / 32$.

CMSC 203 - Homework Assignment 4 - Due May 11, 2011

2. In relation to question 1, determine whether or not the probability of tossing 4 Heads is independent of the first toss being a Tail.

Denoting $E=\{4$ Head of 6 coin tosses $\}$ and $F=\{6$ coin tosses with first toss being a Tail $\}$, from Question 1, we know $\mathrm{P}(\mathrm{E})=15 / 64, \mathrm{P}(\mathrm{F})=1 / 2$ and $\mathrm{P}(\mathrm{E} \mid \mathrm{F})=5 / 32$.

If E is Independent of F, then $P(E \mid F)=P(E)$, so we should have $5 / 32=15 / 64$.
However, $5 / 32=10 / 64$, therefore E is not Independent of F.

Alternatively, using the $\mathrm{N}-\mathrm{S}-\mathrm{E}-\mathrm{W}$ test, we see that $\mathrm{N}=5, \mathrm{~W}=32-5=27, \mathrm{E}=10$, and $S=64-37=27$, so E is Independent of F if NS $=E W$. Now, NS $=5(27)=135$, and $E W=10(27)=270$. Since $135 \neq 270$, we see that E is not Independent of F.

CMSC 203 - Homework Assignment 4 - Due May 11, 2011
3. Draw the directed graph of the relation R on $\mathrm{A}=\{1,2,3,4,5,6,7,8\}$ defined as $\mathrm{R}=\{(a, b) \mid a, b \in \mathrm{~A}$ and $(a+2) \equiv b \bmod 5\}$.

a	1	2	3	4	5	6	7	8
$a+2$	3	4	5	6	7	8	9	10
b	3,8	4	5	1,6	2,7	3,8	4	5

$$
R=\{(1,3),(1,8),(2,4),(3,5),(4,1),(4,6),(5,2),(5,7),(6,3),(6,8),(7,4),(8,5)\}
$$

CMSC 203 - Homework Assignment 4 - Due May 11, 2011
4. Consider the relation, R , on the set $\mathrm{A}=\{a, b, c, d, e, f, g, h\}$ given by the graph:

(a) Find $[e]$
$[e]=\{a, e, d, f\}$
(b) Find the partition of A induced by R
$\operatorname{Partition}(\mathrm{A})=\{\{a, e, d, f\},\{c\},\{b, g, h\}\}$

CMSC 203 - Homework Assignment 4 - Due May 11, 2011

5. Let F be a function on the integers given by $\mathrm{F}(n)=(n-5)^{2}$.
(a) Show that the relation $\mathrm{R}=\{(x, y) \mid x, y$ are integers and $\mathrm{F}(x)=\mathrm{F}(y)\}$ is a Reflexive, Symmetric, and Transitive relation.

Reflexive: If x is an Integer, then $x=x$, so $(x-5)=(x-5)$ and $(x-5)^{2}=(x-5)^{2}$. Thus, (x, x) is in R , so R is Reflexive.

Symmetric: Let x and y be Integers with (x, y) in R. This implies that $(x-5)^{2}=(y-5)^{2}$, so it follows that $(y-5)^{2}=(x-5)^{2}$. Consequently (y, x) is in R , allowing us to conclude R is Symmetric.

Transitive : Let x, y, and z be Integers with (x, y) in R and (y, x) in R . This means: $(x-5)^{2}=(y-5)^{2}$, and $(y-5)^{2}=(z-5)^{2}$, thus $(x-5)^{2}=(z-5)^{2}$, so (x, z) is in R . Therefore, R is Transitive.
(b) Describe the partition of the integers induced by R.
$\operatorname{Partition}(\mathbf{Z})=\{\{5\},\{4,6\},\{3,7\},\{2,8\},\{1,9\},\{0,10\},\{-1,11\},\{-2,12\}, \ldots\}$

CMSC 203 - Homework Assignment 4 - Due May 11, 2011
6. Consider the database consisting of the following Fields and Records:

First Name	Last Name	Age	Phone	Height (in.)	Weight
Alan	Jones	26	$555-1234$	68	155
Mary	Smith	32	$555-4321$	65	128
Ted	Green	32	$555-6789$	74	210
Susan	Green	30	$555-6789$	69	144
William	Peters	26	$555-9876$	73	195
Peter	Williams	44	$555-2468$	69	185

(a) For this database, which Fields would serve as Primary Keys?

First Name and Weight are the Primary Keys.
(b) Find $\mathrm{P}_{2,4}$
$\mathrm{P}_{2,4}=\{$ (Jones, 555-1234), (Smith, 555-4321), (Green, 555-6789), (Green, 555-6789), (Peters, 555-9876), (Williams, 555-2468) \}
$=\{($ Jones, 555-1234), (Smith, 555-4321), (Green, 555-6789), (Peters, 555-9876), (Williams, 555-2468) \}

