#### CMSC 203 - Homework Assignment 4 - Due May 11, 2011

1. Consider the Sample Space of outcomes when a fair coin is tossed 6 times with an each outcome either a Head (H) or a Tail (T).

(a) What is the probability of the event of 4 Heads?

Let  $E = \{ 4 \text{ Heads} \}$  so |E| = C(6, 4) = 6! / 4!2! = 30/2 = 15 and  $S = \{ 6 \text{ coin tosses} \}$  so

 $P(E) = |E| / |S| = 15 / 2^{6} = 15 / 64.$ 

(b) What is the probability of the event of 4 Heads given the first toss is a Tail?

Let E = { 4 Heads } and F = { Txxxxx } and  $|E \cap F| = |\{ 4H \text{ in } 5 \text{ tosses }\}| = C(5, 4) = 5.$ Hence, P(E | F) =  $|E \cap F| / |F| = 5 / 2^5 = 5 / 32.$ 

#### CMSC 203 - Homework Assignment 4 - Due May 11, 2011

2. In relation to question 1, determine whether or not the probability of tossing 4 Heads is independent of the first toss being a Tail.

Denoting E = { 4 Head of 6 coin tosses } and F = { 6 coin tosses with first toss being a Tail }, from Question 1, we know P(E) = 15/64, P(F) = 1/2 and P(E|F) = 5/32.

If E is Independent of F, then P(E|F) = P(E), so we should have 5/32 = 15/64. However, 5/32 = 10/64, therefore E is not Independent of F.

Alternatively, using the N-S-E-W test, we see that N = 5, W = 32 - 5 = 27, E = 10, and S = 64 - 37 = 27, so E is Independent of F if NS = EW. Now, NS = 5(27) = 135, and EW = 10(27) = 270. Since  $135 \neq 270$ , we see that E is not Independent of F.

### CMSC 203 - Homework Assignment 4 - Due May 11, 2011

3. Draw the directed graph of the relation R on A =  $\{1, 2, 3, 4, 5, 6, 7, 8\}$  defined as R =  $\{(a,b) \mid a,b \in A \text{ and } (a + 2) \equiv b \mod 5\}$ .



| а   | 1    | 2 | 3 | 4   | 5    | 6    | 7 | 8  |
|-----|------|---|---|-----|------|------|---|----|
| a+2 | 3    | 4 | 5 | 6   | 7    | 8    | 9 | 10 |
| b   | 3, 8 | 4 | 5 | 1,6 | 2, 7 | 3, 8 | 4 | 5  |

 $\mathbf{R} = \{(1, 3), (1, 8), (2, 4), (3, 5), (4, 1), (4, 6), (5, 2), (5, 7), (6, 3), (6, 8), (7, 4), (8, 5)\}$ 

### CMSC 203 - Homework Assignment 4 - Due May 11, 2011

4. Consider the relation, R, on the set  $A = \{a, b, c, d, e, f, g, h\}$  given by the graph:



(a) Find [*e*]

 $[e] = \{ a, e, d, f \}$ 

(b) Find the partition of A induced by R

Partition(A) = { { a, e, d, f }, { c }, { b, g, h } }

#### CMSC 203 - Homework Assignment 4 - Due May 11, 2011

5. Let F be a function on the integers given by  $F(n) = (n-5)^2$ . (a) Show that the relation  $R = \{(x,y) | x, y \text{ are integers and } F(x) = F(y)\}$  is a Reflexive, Symmetric, and Transitive relation.

<u>Reflexive</u>: If x is an Integer, then x = x, so (x - 5) = (x - 5) and  $(x - 5)^2 = (x - 5)^2$ . Thus, (x, x) is in R, so R is Reflexive.

<u>Symmetric</u>: Let x and y be Integers with (x, y) in R. This implies that  $(x - 5)^2 = (y - 5)^2$ , so it follows that  $(y - 5)^2 = (x - 5)^2$ . Consequently (y, x) is in R, allowing us to conclude R is Symmetric.

<u>Transitive</u>: Let x, y, and z be Integers with (x, y) in R and (y, x) in R. This means:  $(x-5)^2 = (y-5)^2$ , and  $(y-5)^2 = (z-5)^2$ , thus  $(x-5)^2 = (z-5)^2$ , so (x, z) is in R. Therefore, R is Transitive.

(b) Describe the partition of the integers induced by R. Partition(**Z**) = { {5}, {4, 6}, {3, 7}, {2, 8}, {1, 9}, {0, 10}, {-1, 11}, {-2, 12}, ... }

#### CMSC 203 - Homework Assignment 4 - Due May 11, 2011

6. Consider the database consisting of the following Fields and Records:

| First Name | Last Name | Age | Phone    | Height (in.) | Weight |
|------------|-----------|-----|----------|--------------|--------|
| Alan       | Jones     | 26  | 555-1234 | 68           | 155    |
| Mary       | Smith     | 32  | 555-4321 | 65           | 128    |
| Ted        | Green     | 32  | 555-6789 | 74           | 210    |
| Susan      | Green     | 30  | 555-6789 | 69           | 144    |
| William    | Peters    | 26  | 555-9876 | 73           | 195    |
| Peter      | Williams  | 44  | 555-2468 | 69           | 185    |

(a) For this database, which Fields would serve as Primary Keys?

First Name and Weight are the Primary Keys.

(b) Find  $P_{2,4}$ 

- $P_{2,4} = \{$  (Jones, 555-1234), (Smith, 555-4321), (Green, 555-6789), (Green, 555-6789), (Peters, 555-9876), (Williams, 555-2468)  $\}$ 
  - = { (Jones, 555-1234), (Smith, 555-4321), (Green, 555-6789), (Peters, 555-9876), (Williams, 555-2468) }