CMSC 203-Homework Assignment 3 - Due April 20, 2011

1. Find the terms a_{3}, a_{4}, a_{5}, and a_{6} for the recursively defined sequence given by: $a_{0}=-1, a_{1}=0, a_{2}=1$, and $a_{n}=2\left(a_{n-1}\right)\left(a_{n-3}\right)+\left(a_{n-2}\right)^{2}$ for $n \geq 3$.
$a_{3}=2\left(a_{2}\right)\left(a_{0}\right)+\left(a_{1}\right)^{2}=2(1)(-1)+2(0)^{2}=-2+0=-2$
$a_{4}=2\left(a_{3}\right)\left(a_{1}\right)+\left(a_{2}\right)^{2}=2(-2)(0)+(1)^{2}=0+1=1$
$a_{5}=2\left(a_{4}\right)\left(a_{2}\right)+\left(a_{3}\right)^{2}=2(1)(1)+(-2)^{2}=2+4=6$
$a_{6}=2\left(a_{5}\right)\left(a_{3}\right)+\left(a_{4}\right)^{2}=2(6)(-2)+(1)^{2}=-24+1=-23$

ID

CMSC 203-Homework Assignment 3-Due April 20, 2011

2. In the study of Coding Theory, we quickly encounter recursions on binary strings of data. In particular, the notion of a Linear Recursive Sequence (LRS) is very useful. Consider the following binary sequence definition:
3. Start with initial fill: 100100100 .
4. For the bits in positions x^{9} and x^{3}, calculate the bit in position x^{0} as $\left(x^{9} \oplus x^{3}\right)$.
5. Shift one bit to the right and continue.

So, applying this polynomial to the initial "fill" 100100100 yields the next bit $1 \oplus 1=0$. Shifting the "taps" of the polynomial one position to the right and continuing, we get successive bits: $0,0,1$, etc.
(a) Starting with the initial fill 1101000, apply the polynomial $x^{7} \oplus x^{2} \oplus x^{0}$ to generate the next 4 bits. 1101000: $\quad 1 \oplus 0=1$

1010001: $1 \oplus 0=1$
0100011: $\quad 0 \oplus 1=1$
1000111: $1 \oplus 1=0$
(b) Starting with the initial fill 1111, apply the polynomial $x^{4} \oplus x^{3} \oplus x^{0}$ until it "cycles".
$\mathrm{P}(1111)=0, \mathrm{P}(1110)=0, \mathrm{P}(1100)=0, \mathrm{P}(1000)=1, \mathrm{P}(0001)=0, \mathrm{P}(0010)=0, \mathrm{P}(0100)=1$,
$\mathrm{P}(1001)=1, \mathrm{P}(0011)=0, \mathrm{P}(0110)=1, \mathrm{P}(1101)=0, \mathrm{P}(1010)=1, \mathrm{P}(0101)=1, \mathrm{P}(1011)=1$,
$\mathrm{P}(0111)=1$, so the polynomial has generated the sequence $\underline{1111000100110101111}$.

CMSC 203-Homework Assignment 3 - Due April 20, 2011

3. Using Mathematical Induction, prove for all Natural Numbers $n, \sum_{i=0}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$.

Proof: (Weak Induction)
Basis Step: We will show the statement holds for $n=0$.
0 0

Now, $\sum_{i=0} i^{3}=0^{3}=0$ and $0^{2}(0+1)^{2} / 4=0(1) / 4=0 / 4=0$, hence $\sum_{i=0} i^{3}=0^{2}(0+1)^{2} / 4$.

Inductive Step: Assume $\sum_{i=0}^{k} i^{3}=\frac{k^{2}(k+1)^{2}}{4}$, for some $k>0$ in the Natural Numbers. We want to show:
$\sum_{i=0}^{k+1} i^{3}=\frac{(k+1)^{2}(k+2)^{2}}{4}$.

Now, $\left[0^{3}+1^{3}+2^{3}+\ldots+k^{3}+(k+1)^{3}\right]=\left[0^{3}+1^{3}+2^{3}+\ldots+k^{3}\right]+(k+1)^{3}$

$$
\begin{aligned}
& =\left[k^{2}(k+1)^{2} / 4\right]+(k+1)^{3} \\
& =\left[k^{2}(k+1)^{2} / 4\right]+\left[4(k+1)(k+1)^{2} / 4\right] \\
& =\left[(k+1)^{2} / 4\right]\left[k^{2}+4(k+1)\right] \\
& =\left[(k+1)^{2} / 4\right]\left(k^{2}+4 k+4\right) \\
& =\left[(k+1)^{2} / 4\right](k+2)^{2} \\
& =(k+1)^{2}(k+2)^{2} / 4 .
\end{aligned}
$$

Therefore, $\sum_{i=0}^{n} i^{3}=\frac{n^{2}(n+1)^{2}}{4}$, for all Natural Numbers n. QED

CMSC 203-Homework Assignment 3 - Due April 20, 2011

4. Using the Strong Form of Mathematical Induction, prove for all Natural Numbers $n \geq 3$:

$$
\text { If } a_{n}=a_{n-1}+2 a_{n-2}+3 a_{n-3} \text { and } a_{0}=0, a_{1}=3 \text { and } a_{2}=6 \text {, then } 3 \text { divides } a_{n} \text {. }
$$

Proof: (Strong Induction)
Basis Step: Show 3 divides a_{3}.
Now, $a_{3}=a_{2}+2 a_{1}+3 a_{0}=6+2(3)+3(0)=6+6=12=3(4)$, and 4 is an Integer, hence 3 divides a_{3}.

Inductive Step: Assume 3 divides each of the terms $a_{4}, a_{5}, a_{6}, \ldots, a_{k-1}, a_{\mathrm{k}}$. We need to show 3 divides a_{k+1}.
Now, $a_{k+1}=a_{k}+2 a_{k-1}+3 a_{k-2}$. By the Inductive Hypothesis, we know that $3\left|a_{k}, 3\right| a_{k-1}$ and $3 \mid a_{k-2}$, hence there are Integers p, q, and r such that $a_{k}=3 p, a_{k-1}=3 q$, and $a_{k-2}=3 r$.

This implies $a_{k+1}=3 p+2(3 q)+3(3 r)=3(p+2 q+3 r)$. Since p, q, and r are Integers, it follows that $(p+2 q+3 r)$ is an Integer, thus a_{k+1} is divisible by 3 .

Therefore, 3 divides a_{n} for all Natural Numbers $n \geq 3$. QED
\qquad

CMSC 203-Homework Assignment 3 - Due April 20, 2011

5. Suppose I have 30 different math books, 20 different chemistry books and 10 different biology books.
(a) How many ways can I line all these books on shelf that is large enough to hold them all?
$P(30+20+10,30+20+10)=P(60,60)=60!$
(b) How many ways can I line them up so that all the books of the same type are grouped together?
(Order subjects)(Order math books)(Order chemistry books)(Order biology books)

$$
=3!(30!)(20!)(10!)
$$

(c) How many ways can I choose 3 of each to carry in a bookbag?
(Choose 3 math books)(Choose 3 chemistry books)(Choose 3 biology books)

$$
\begin{aligned}
& =C(30,3) C(20,3) C(10,3) \\
& =(30!/ 27!3!)(20!/ 17!3!)(10!/ 7!3!)
\end{aligned}
$$

(d) How many ways can I perform (c) if I do not want to have a certain pair of biology books together in any of the selections?

All - (Total with the certain pair together $)=\mathrm{C}(30,3) \mathrm{C}(20,3)[\mathrm{C}(10,3)-\mathrm{C}(8,1)]$.

CMSC 203-Homework Assignment 3 - Due April 20, 2011

6. The Mars Candy Company sells bags of M\&Ms with 150 pieces candy colored from 10 different colors.
(a) How many different bags can they produce?

Categories $=\mathrm{C}=10$
Slots $=$ S $=150$
Total Restrictions $=\mathrm{TR}=0$

$$
\begin{aligned}
C((S+C-T R-1),(S-T R)) & =C((10+150-0-1),(150-0)) \\
& =C(159,150) \\
& =159!/(150!9!) .
\end{aligned}
$$

(b) How many different bags can they produce if each bag must contain at least 10 of each color?

Categories $=\mathrm{C}=10$
Slots $=\mathrm{S}=150$
Total Restrictions $=\mathrm{TR}=10(10)=100$

$$
\begin{aligned}
C((S+C-T R-1),(S-T R)) & =C((10+150-100-1),(150-100)) \\
& =C(59,50) \\
& =59!/(50!9!) .
\end{aligned}
$$

