Name Solution Key

CMSC 203 - Homework Assignment 2 - Due March 30, 2011

1. For the function $f: \mathbf{R} \rightarrow \mathbf{R}$ defined as $f(x)=x^{3}+2$, show:
(a) f is One-To-One

Show that if $f(a)=f(b)$, then $a=b$, for any a and b in \mathbf{R}.
Now, $f(a)=f(b)$ implies $a^{3}+2=b^{3}+2$, so $a^{3}=b^{3}$, thus $a=b$, for any a and b in \mathbf{R}.
Therefore, f is One-To-One.
(b) f is Onto

Show for any y in \mathbf{R}, there is a corresponding x in \mathbf{R} such that $f(x)=y$.
Now, let y be in \mathbf{R}. This implies $(y-2)$ is in \mathbf{R}, yielding that $(y-2)^{1 / 3}$ is in \mathbf{R}. Denoting $x=(y-2)^{1 / 3}$, we see that $f(x)=\left[(y-2)^{1 / 3}\right]^{3}+2=(y-2)+2=y$.

Therefore, f is Onto.

Name Solution Key

CMSC 203 - Homework Assignment 2 - Due March 30, 2011
2. What is the complexity of the following procedure?

```
PROCEDURE FOO(N: Integer)
NSQUARE \(=\mathrm{N} * \mathrm{~N}\)
NCUBED \(=\) NSQUARE*N
COUNT = 1
OUT \(=0\)
FOR I = 1 TO NSQUARE
    FOR J = 1 TO NCUBED
        OUT \(=\) OUT \(+\mathrm{I}+\mathrm{J}\)
        REMAIN \(=\) OUT MOD 2
        IF (REMAIN = 0) THEN COUNT \(=\) COUNT +1
    NEXT J
NEXT I
OUTPUT(OUT, COUNT)
```

Complexity Code
PROCEDURE FOO(N: Integer)
1 NSQUARE $=$ N*N
1 NCUBED $=$ NSQUARE*N
$1 \quad$ COUNT $=1$
$1 \quad$ OUT $=0$
$\mathrm{N}^{2} \quad$ FOR I = 1 TO NSQUARE
$\mathrm{N}^{3} \quad$ FOR $\mathrm{J}=1$ TO NCUBED
$1 \quad$ OUT $=$ OUT + I + J
$1 \quad$ REMAIN $=$ OUT MOD 2
$1 \quad$ IF $($ REMAIN $=0)$ THEN COUNT $=$ COUNT +1

- NEXT J
- NEXT I

1 OUTPUT(OUT, COUNT)
This yields a total complexity of $4+N^{2}\left(N^{3}(3)\right)+1=3 N^{5}+5$. Equivalently, the procedure is $\mathrm{O}\left(\mathrm{N}^{5}\right)$.

Name
Solution Key

CMSC 203 - Homework Assignment 2 - Due March 30, 2011

3. Find the polynomial big- O estimate for the function: $\left(n^{7} \log ^{2} n+n^{11}\right)\left(n^{3}+3 n \log ^{2} n\right)$.

$$
\begin{aligned}
\left(n^{7} \log ^{2} n+n^{11}\right)\left(n^{3}+3 n \log ^{2} n\right) & \leq\left[\left(n^{7}\left(n^{2}\right)+n^{11}\right]\left[n^{3}+3 n\left(n^{2}\right)\right]\right. \\
& =\left(n^{9}+n^{11}\right)\left(n^{3}+3 n^{3}\right) \\
\leq & \left(n^{11}+n^{11}\right)\left(4 n^{3}\right) \\
& =\left(2 n^{11}\right)\left(4 n^{3}\right) \\
& =8 n^{14}
\end{aligned}
$$

Therefore, $\left(n^{7} \log ^{2} n+n^{11}\right)\left(n^{3}+3 n \log ^{2} n\right)$ is $\mathrm{O}\left(n^{14}\right)$.

Name Solution Key

CMSC 203 - Homework Assignment 2 - Due March 30, 2011
4. Use the Euclidean Algorithm to find $\operatorname{GCD}(2140,136)$

By the Quotient-Remainder Theorem, we have:

$$
2140=136(15)+100
$$

$$
\text { and } 136=100(1)+36
$$

$$
\text { and } 100=36(2)+28
$$

$$
\text { and } 36=28(1)+8
$$

$$
\text { and } 28=8(3)+4
$$

$$
\text { and } 8=4(2)+0 \text {. }
$$

Thus, $\operatorname{GCD}(2140,136)$
$=\operatorname{GCD}(136,100)$
$=\operatorname{GCD}(100,36)$
$=\operatorname{GCD}(36,28)$
$=\operatorname{GCD}(28,8)$
$=\operatorname{GCD}(8,4)$
$=\operatorname{GCD}(4,0)$
$=4$

Name Solution Key

CMSC 203-Homework Assignment 2 - Due March 30, 2011
5. Using the Lemma below, prove that if two Integers divide each other, then they are equal.

Lemma: If the product of two Integers is 1 , then the Integers each equal 1.

Prove: If A and B are Integers such that A divides B and B divides A, then $A=B$ and $B=A$.
Proof: Let A and B be Integers such that A divides B and B divides A . Thus, there are Integers m and n with $\mathrm{B}=m \mathrm{~A}$ and $\mathrm{A}=n \mathrm{~B}$.

Now, $\mathrm{A}=n \mathrm{~B}$ implies $\mathrm{A}=n(m \mathrm{~A})=(n m) \mathrm{A}$. Thus, $n m=1$. However, by the Lemma, we conclude it is the case that $m=n=1$.

Therefore, $\mathrm{A}=\mathrm{B}$ and $\mathrm{B}=\mathrm{A} . Q E D$

Name Solution Key

CMSC 203-Homework Assignment 2 - Due March 30, 2011

6. Using the following Lemma, prove $\sqrt{3}$ is irrational.

Lemma: If n is an Integer and 3 divides n^{2}, then 3 divides n.

Prove: $\sqrt{3}$ is irrational.
Proof: (Contradiction) Assume $\sqrt{3}$ is rational. This means, there exist Integers, p and q, such that prove $\sqrt{3}=p / q$, with $q \neq 0$, and such that p and q have no common factors.

Now, $\sqrt{3}=p / q$, implies $3=p^{2} / q^{2}$, so $p^{2}=3 q^{2}$. This implies 3 divides p^{2}, hence the Lemma above allows us to conclude that 3 divides p. In that case, we have that there is an Integer, n, such that $p=3 n$, so $p^{2}=9 n^{2}$.

Combining this with our previous observation, we have: $p^{2}=9 n^{2}=3 q^{2}$, thus $q^{2}=3 n^{2}$. Again, this means that 3 divides q^{2}, so by the Lemma, we see that 3 divides q. However, this is a contradiction, since we have shown that 3 divides p and 3 divides q, so 3 is a common factor of p and q, but p and q have no common factors.

Therefore $\sqrt{3}$ is irrational. $Q E D$

