CMSC203 - Homework Assignment 1 - Due Monday, February 28

1. Let $A=\{-3,-2,-1,0,1,2,3\}$ and $B=\{-4,-2,0,2,4\}$ be subsets of the Universal Set $U=\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}$. Verify by calculation that: $\left(A \cup B^{c}\right)^{c}=A^{c} \cap B$.
$B^{c}=U-B=\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}-\{-4,-2,0,2,4\}=\{-5,-3,-1,1,3,5\}$, so $A \cup B^{c}=\{-3,-2,-1,0,1,2,3\} \cup\{-5,-3,-1,1,3,5\}=\{-5,-3,-2,-1,0,1,2,3,5\}$, thus $\left(A \cup B^{c}\right)^{c}=U-\left(A \cup B^{c}\right)=\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}-\{-5,-3,-2,-1,0,1,2,3,5\}$ $=\{-4,4\}$.
$A^{c}=U-A=\{-5,-4,-3,-2,-1,0,1,2,3,4,5\}-\{-3,-2,-1,0,1,2,3\}=\{-5,-4,4,5\}$,
hence $A^{c} \cap B=\{-5,-4,4,5\} \cap\{-4,-2,0,2,4\}=\{-4,4\}$.

Therefore, $\left(A \cup B^{c}\right)^{c}=\{-4,4\}=A^{c} \cap B$.

Name_Solution Key
CMSC203 - Homework Assignment 1 - Due Monday, February 28
2. If $A=\{\{1\}, \varnothing\}$, find the Power Set of A.

$$
\mathbf{P}(\mathrm{A})=\{\varnothing,\{\{1\}\},\{\varnothing\},\{\{1\}, \varnothing\}\}
$$

Name_Solution Key
CMSC203-Homework Assignment 1 - Due Monday, February 28
3. Find the truth table of the statement $[p \vee(q \wedge \sim r)] \rightarrow \sim q$.

$p q r$	$[p$	\vee	$(q-\wedge$	$\sim r)]$	\rightarrow	$\sim q$	
T T T	T	T	T	F	F	\boldsymbol{F}	F
T T F	T	T	T	T	T	\boldsymbol{F}	F
T F T	T	T	F	F	F	\boldsymbol{T}	T
T F F	T	T	F	F	T	\boldsymbol{T}	T
FT T	F	F	T	F	F	\boldsymbol{T}	F
FTF	F	T	T	T	T	\boldsymbol{F}	F
FFT	F	F	F	F	F	\boldsymbol{T}	T
FFF	F	F	F	F	T	\boldsymbol{T}	T
Step	1	3	1	2	1	4	l

Name_Solution Key

CMSC203 - Homework Assignment 1 - Due Monday, February 28

4. For the given set of premises, show the following is a valid argument.

$$
\begin{aligned}
& \sim r \wedge s \\
& q \rightarrow r \\
& p \wedge s \rightarrow t \\
& p \vee q \\
& ---------- \\
& \therefore t
\end{aligned}
$$

Step1:

$$
\begin{aligned}
& \sim r \wedge s \\
& ----- \\
& \therefore \sim r \\
& \therefore s
\end{aligned}
$$

Step 2:
$q \rightarrow r$
$\sim r$

$\therefore \sim q$

Step 3: $\quad \begin{array}{ll}p \vee q \\ & \sim q \\ & ---- \\ & \therefore p\end{array}$
Step 4: $\quad p$
s

$\therefore p \wedge s$

Step 5: $\quad p \wedge s \rightarrow t$
$p \wedge s$

$\therefore t$

Name_Solution Key

CMSC203 - Homework Assignment 1 - Due Monday, February 28

5. Use the Property of Sets to show that $A-(A-B)=A \cap B$.

$$
\begin{aligned}
& A-(A-B) \\
& =A \cap(A-B)^{c} \\
& =A \cap\left(A \cap B^{c}\right)^{c} \\
& =A \cap\left[A^{c} \cup\left(B^{c}\right)^{c}\right] \\
& =A \cap\left(A^{c} \cup B\right) \\
& =\left(A \cap A^{c}\right) \cup(A \cap B) \\
& =\varnothing(\cup(A \cap B) \\
& =A \cap B .
\end{aligned}
$$

Name_Solution Key

CMSC203 - Homework Assignment 1 - Due Monday, February 28

6. Give the converse, inverse, contrapositive and negation of the statement:

All people who live in glass houses do not throw stones.

Converse

All people who do not throw stones live in glass houses.

Inverse

All people who do not live in glass houses throw stones.

Contrapositive
All people who throw stones do not live in glass houses.

Negation

Some people live in glass houses and throw stones.

