1. (a) (3 pts.) Use the Laws of Logic to show: $(\neg p \rightarrow r) \wedge(\neg q \rightarrow r) \equiv \neg(p \wedge q) \rightarrow \mathrm{r}$

$$
\begin{aligned}
(\neg p \rightarrow r) \wedge(\neg q \rightarrow r) & \equiv(\neg(\neg p) \vee r) \wedge(\neg(\neg q) \vee r) \\
& \equiv(p \vee r) \wedge(q \vee r) \\
& \equiv(p \wedge q) \vee r \\
& \equiv \neg(\neg(p \wedge q)) \vee r \\
& \equiv \neg(p \wedge q) \rightarrow r .
\end{aligned}
$$

(b) ($\mathbf{3} \mathbf{p t s}$.) Find the negation of the statement: All, who run fast, win races.
Some run fast and do not win races.
(c) ($\mathbf{3}$ pts.) Use the rules of inference to show the following is a valid argument:

$$
\begin{aligned}
& p \rightarrow q \\
& r \rightarrow w \\
& \neg q \\
& r \vee s \\
& s \rightarrow p \\
& \therefore w
\end{aligned}
$$

$$
\frac{r \rightarrow W}{\therefore \omega} Q \in D
$$

2. (a) (3 pts.) Find $A \times B$ for the sets $A=\{10,11,01\}$ and $B=\{100,010,001\}$.

$$
\begin{aligned}
A \times B=\{ & (10,100),(10,010),(10,001), \\
& (11,100),(11,010),(11,001) \\
& (01,100),(01,010),(01,00)\}
\end{aligned}
$$

(b) (4 pts.) Use the Properties of Sets, to show $(A \cup B)-(A \cap B)=(A-B) \cap(B-A)$.

$$
\begin{aligned}
(A \cup B)-(A \cap B)=(A \cup B) \cap(A \cap B)^{(b)} & \left.=(A \cup B) \cap\left(A^{c} \cdot\right) B^{C}\right) \\
& =\left[(A \cup B) \cap A^{c}\right]\left[(A \cup B) \cap B^{C}\right] \\
& =\left[\left(A \cap A^{C}\right) \cup\left(B \cap A^{c}\right)\right] \cup\left[\left(A \cap B^{C}\right) \cup\left(B \cap B^{C}\right)\right] \\
& =[\phi \cup(B-A)][(A-B) \cup \varnothing] \\
& =(B-A) \cup(A-B) \\
& =(A-B))(B-A)
\end{aligned}
$$

3. (a) (3 pts.) What Domain, Image and Range make $F=\{(3,2),(1,5),(5,4),(6,3),(7,9),(8,8)\}$ a One-to-One Function:
domain: $\{3,1,5,6,7,8\}$
image: $\{2,5,4,3,9,8\}$
range: Anything containing $\{2,5,4,3,9,8\}$
(b) $(\mathbf{3} \mathbf{p t s}$.$) What is the inverse of F$ above?

$$
\begin{aligned}
& \text { ts.) What is the inverse of } F \text { above? } \\
& F^{-1}=\{(2,3),(5,1),(4,5),(3,6),(9,7),(8,8)\}
\end{aligned}
$$

(c) $(\mathbf{3}$ pts. $) \mathrm{H}(01101101,11011010)=$ \qquad .

$$
\frac{11011016}{10110111}
$$

(d) (3 pts.) Give an example of a Bijective (1-1 and onto) Function on $\{1,2,3,5,8,13\}$

4. (a) (4 pts.) Use the Euclidean Algorithm to find $\operatorname{GCD}(148,70)$.

$$
\begin{aligned}
148 & =70(2)+8 \\
70 & =8(8)+6 \\
8 & =6(1)+2 \\
6 & =2(3)+0
\end{aligned} \quad \Rightarrow \operatorname{GCD}(148,70)=G C D(70,8) F G C D(8,6)=G C D(6,2)
$$

(b) (4 pts.) Show the algorithm whose complexity is $\left(n^{6}\right)\left(2 n^{7}+2 n^{5}\right)\left(3 n^{4}+3 n^{2}+1\right)$ is $\mathrm{O}\left(n^{17}\right)$.

$$
\begin{aligned}
n^{6}\left(2 n^{7}+2 n^{5}\right)\left(3 n^{4}+3 n^{2}+1\right) & \leq n^{6}\left(2 n^{7} 12 n^{7}\right)\left(3 n^{4}+3 n^{4}+n^{4}\right)^{7} \\
& =n^{6}\left(4 n^{7}\right)\left(7 n^{4}\right) \\
& =28 n^{17} \Rightarrow \theta\left(n^{17}\right) .
\end{aligned}
$$

5. (a) ($\mathbf{3}$ pts.) Rewrite $2-8+32-128+512-2048+8192$ as a summation from 1 to 7 .

$$
\begin{aligned}
& 2^{1}-(2)^{3}+(2)^{5}-(2)^{7}+(2)^{9}-(2)^{11}+(2)^{13} \\
= & \sum_{i=1}^{7}(-1)^{(i+1)}(2)^{(2 i-1)} \text { or } \sum_{i=1}^{7}(-1)^{(i-1)} 2^{(2 i-1)}
\end{aligned}
$$

(b) (3 pts.) Find an expression void of summations for the series: $\sum_{i=0}^{n}\left(3^{i}+2 i\right)$.

$$
\begin{aligned}
\sum_{i=0}^{n}\left(3^{i}+2 i\right)=\sum_{i=0}^{n} 3^{i}+\sum_{i=0}^{n} 2 i & =\sum_{i=0}^{n} 3^{i}+2 \sum_{i=0}^{n} i_{i=0} \\
& =\frac{3^{(n+1)}-1}{3-1}+2\left[\frac{n(n+1)}{2}\right]=\frac{3^{(n+1)}-1}{2}+n(n+1)
\end{aligned}
$$

6. (10 pts.) Prove 1 of the 2 Theorems below:

Theorem 1: If a prime number divides the square of an integer, then it divides the integer.
Theorem 2: The square root of a prime integer is irrational. (Assume Theorem 1)
 hance l $T^{2}=k p$

$$
\begin{aligned}
& \text { Lancet }=k p \\
& \text { Directer w/ } \quad n^{2}=p_{1} p_{2} \cdots p_{k} \Rightarrow n^{2}=p_{1}^{2} p_{2}^{2} \cdots p_{k}^{2} \quad b_{u}+p / n^{2}+{ }^{2}
\end{aligned}
$$

$\Rightarrow P$ is one of $P_{1}, P_{2}, \ldots, P_{k}$. Taupe P / n_{1}
7. (10 pts.) Prove 1 of the 2 Theorems that follow by Mathematical Induction.

Theorem 1: There are 2^{n} binary strings of length n.
Theorem 2: If $s_{n}=s_{n-1}+s_{n-2}+s_{n-3}$ when $s_{0}=11, s_{1}=33$, and $s_{2}=55$, then s_{n} is odd, for all $n \geq 3$.
8. (a) ($\mathbf{3}$ pts.) A restaurant serves 6 soups, 4 salads, 14 entrees, 8 desserts, and 9 beverages. How many dinners can they create if each dinner consists of a soup or salad, an entree, and a dessert or beverage?

$$
(6+4)(14)(8+9)=10(14)(17)
$$

(b) ($\mathbf{3} \mathbf{~ p t s .) ~ H o w ~ m a n y ~ w a y s ~ c a n ~ I ~ c h o o s e ~} 5$ students from a class of 30 if a certain pair cannot be selected together?

$$
\text { All-choriesw/the pair }=c(30,5)-c(28,3) \text {. }
$$

(c) ($\mathbf{3}$ pts.) How many ways can judges award 1st, 2nd, 3rd, and 4th Place prizes to 50 contestants?

$$
P\left(S_{0}, 4\right)=\frac{S_{0}!}{(50-4)!}=\frac{S_{0}!}{46!} \text { or } 50.49 \cdot 48 \cdot 47
$$

(d) ($\mathbf{3}$ pts.) How many distinct piles of 300 coins (pennies, nickels, dimes, quarters, half-dollars, and dollars) can I create from a vast quantity of coins, if I must have at least 10 of each in its pile?

$$
\begin{aligned}
& \text { slots }=300 \text { cats }=6 \text { rest }=6.10=60 \\
& \binom{300+6-1-60}{300-60}=\binom{245}{240}=\binom{245}{5}
\end{aligned}
$$

9. (3 pts.) Consider the following sets with corresponding number of elements indicated in each region:

$$
\begin{aligned}
& |A \cup C|=3+2+2+6+3+B=19 \\
& |S|=3+2+4+2+6+3+3=23 \\
& |(A \cap C) \cap(B \cup C)|=6 \\
& |B \cup C|=2+4+b+3+2+3=20 \\
& |A \cap C|=2+6=8
\end{aligned}
$$

(a) (3 pts.) Find $P(A \cup C)$

$$
P(A \cup C)=\frac{|A \cup C|}{1 S 1}=\frac{19}{23}
$$

$$
\begin{aligned}
& \text { (b) (3 pts.) Find } P((A \cap C) \mid(B \cup C)) \\
& P((A \cap C) \mid(B \cup C))=\frac{|(A \cap C) \cap(B \cup C)|}{|B \cup C|}=4 / 10=1
\end{aligned}
$$

(c) (3 pts.) Determine whether or not $(A \cap C)$ is Independent of $(B \cup C)$

$$
\text { If } P((A \cap C) \cap(B \cup C))=P(A \cap C) P(B \cup C) \text { ? }
$$

$$
\begin{aligned}
& (A \cap C) P(B \cup C) ? \\
& =8 / 23 \cdot \frac{20}{23}=\frac{160}{(23)^{2}} \neq \frac{184}{(23)^{2}}=\frac{(23)}{23^{2}}=\frac{23 .}{23} .
\end{aligned}
$$

10. (a) (3 pts.) Find $P_{2,3}$ for the database whose records are:

$$
\begin{aligned}
& \{(1,2, a),(1,3, a),(2,3, b),(3,1, a),(3,2, c),(3,3, b),(3,4, a),(4,1, c),(4,2, c),(5,2, a),(5,4, b)\} \\
& P_{2,3}=\{(2, a),(3, a),(3, b),(1, a),(2, c),(4, a),(1, c),(4, b)\} \\
& (1, a c),(2, a c),(3, a b),(4, b)
\end{aligned}
$$

(b) (3 pts.) Show that the relation $\mathrm{S}=\{(a, b) \mid a, b$ are Real and $|a|+1=|b|+1\}$ is an Equivalence Relation.

$$
\begin{aligned}
& \forall a \in \mathbb{R},|a|+1=|a|+1 \Rightarrow(a, a) \in S \Rightarrow \text { ReFL. } \\
& \text { If }(a, b) \in S \Rightarrow|a|+1=|b|+1 \Rightarrow|b|+1=|a|+1 \Rightarrow(b a) \in S \Rightarrow \text { Simar. } \\
& \text { If }(0, b) \in S \text { and }(b, c) \in S \Rightarrow|a|+1=|b|+1=|c|+1 \Rightarrow|a|+1=|d|+1 \\
& \Rightarrow(a, c) \in S \Rightarrow \operatorname{TRANS} .
\end{aligned}
$$

(c) ($\mathbf{3} \mathbf{p t s}$.) What partition of the Reals does S induce?

$$
\bigcup_{s \in \mathbb{R}_{T}}[s] \text { where }[s]=\{s,-s\} \text {. }
$$

11. (8 pts.) Find the Truth Table and a Normal Form (either Disjunctive or Conjunctive) of $\mathrm{F}(x, y, z)=x y+z$,

$$
\begin{gathered}
F(x, y, z)=x y+z^{\prime}=x y\left(z+z^{\prime}\right)+\left(x+x^{\prime}\right)\left(y+y^{\prime}\right) z^{\prime}=x y z+x y z^{\prime}+x y^{\prime} z^{\prime}+x^{\prime} y z^{\prime}+x^{\prime} y^{\prime} z^{\prime} \\
=\left(x^{\prime}+y+z^{\prime}\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x+y+z^{\prime}\right)
\end{gathered}
$$

x	y	z	$F(x, y, z)$
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	1
0	1	1	0
0	1	0	1
0	0	1	0
0	0	0	1

$$
\begin{aligned}
\left(x y+z^{\prime}\right) & =\left(x+z^{\prime}\right)\left(y+z^{\prime}\right) \\
& =\left(x+z^{\prime}+y y^{\prime}\right)\left(x x^{\prime}+y+z^{\prime}\right) \\
& =\left(x+y+z^{\prime}\right)\left(x+y^{\prime}+z^{\prime}\right)\left(x+y+z^{\prime}\right)\left(x^{\prime}+y+z\right)
\end{aligned}
$$

