SHOW ALL WORK!

1. (6 points) How many license plates can a state produce if the plates can contain 7 characters (from 26 letters and 10 digits) if a certain pair of letters cannot be adjacent to one another and all the characters must be distinct?

ALL - (Plates with the pair as XY) - (Plates with the pair as YX)

$$
=P(36,7)-P(35,6)-P(35,6)=(36!/ 29!)-2(35!/ 28!)
$$

2. (6 points) How many ways can a teacher choose 10 students from a class of 13 Boys and 16 Girls, if she must choose the same number of boys and girls?
$($ Choose 5 boys) AND $($ Choose 5 girls $)=\mathrm{C}(13,5) \mathrm{C}(16,5)=(13!/ 8!5!)(16!/ 11!5!)$ or $(13!16!) /(8!5!11!5!)$
3. (6 points) How many orderings are there of the letters of the word ELECTRICALENGINEERING ?

ELECTRICALENGINEERING $=$ EEEEELLCCTRRIIIANNNGG

Orderings $=21!/(5!2!2!2!3!3!2!)$ or $\mathrm{C}(21,5) \mathrm{C}(16,2) \mathrm{C}(14,2) \mathrm{C}(12,1) \mathrm{C}(11,2) \mathrm{C}(9,3) \mathrm{C}(6,1) \mathrm{C}(5,3) \mathrm{C}(2,2)$
4. (6 points) How many ways can I seat 12 people around a circular table?

Orderings $=(12-1)!=11!$
5. (6 points) How many ways can I fill a box of 50 chocolates from 15 types if I must have at least 2 of each type in the box?

Slots $=50$, Categories $=15$, Transitions $=15-1=14$, Total Restrictions $=2(15)=30$ so
Total Boxes $=\mathrm{C}(50+14-30,50-30)=\mathrm{C}(34,20)=\mathrm{C}(34,14)=34!/ 20!14!$

SHOW ALL WORK!

Let R be the relation on \mathbf{Z} given by $\mathrm{R}=\{(a, b) \mid a, b \in \mathbf{Z}$ and $a \equiv b \bmod 10\}$.
6. (6 points) Show the R is Reflexive.

Let x be an Integer, then $(x-x)=0=10(0)$, and 0 is an Integer, hence (x, x) is in R .
Therefore, R is Reflexive.
7. (6 points) Show the R is Symmetric.

Let x and y be Integers with (x, y) in R. This implies $(x-y)=10 k$, for some Integer k.
Thus, $(y-x)=-(x-y)=-10 k=10(-k)$. Since k is an Integer, $(-k)$ is an Integer, hence (y, x) is in R .
Therefore, R is Symmetric.
8. (6 points) Show the R is Transitive.

Let x, y, and z be Integers with (x, y) and (y, z) in R. Thus $(x-y)=10 k$ and $(y-z)=10 m$ for some Integers k and m.

This yields $(x-z)=(x-y)+(y-z)=10 k+10 m=10(k+m)$. Since k and m are Integers, $(k+m)$ is also, hence (x, z) is in R .

Therefore, R is Transitive.
9. (6 points) Describe the partition of \mathbf{Z} induced by R.
$\operatorname{Partition}(\mathbf{Z})=\{[0],[1],[2],[3],[4],[5],[6],[7],[8],[9]\}$
$=\{\{\ldots,-20,-10,0,10,20, \ldots\},\{\ldots-19,-9,1,11,21, \ldots\},\{\ldots,-18,-8,2,12,22, \ldots\}$, $\{\ldots,-17,-7,3,13,23, \ldots\},\{\ldots,-16,-6,4,14,24, \ldots\},\{\ldots,-15,-5,5,15,25, \ldots\}$, $\{\ldots,-14,-4,6,16,26, \ldots\},\{\ldots,-13,-3,7,17,27, \ldots\},\{\ldots,-12,-2,8,18,28, \ldots\}$, $\{. . .,-11,-1,9,19,29, \ldots\}\}$
10. (6 points) Graph the relation on $\{1,2,3,4,5\}$ given as $S=\{(a, b) \mid(a+b) \equiv 1$ MOD 2$\}$

Since $X \equiv 1$ MOD 2 means
$1+$? = odd: 2 and 4
$2+$? $=$ odd: 1,3 , and 5
$3+$? $=$ odd: 2 and 4
$4+$? = odd: 1,3 , and 5
$5+?=$ odd: 2 and 4

Therefore, $S=\{(1,2),(1,4),(2,1),(2,3),(2,5)$,

$$
(3,2),(3,4),(4,1),(4,3),(4,5),
$$

$$
(5,2),(5,4)\}
$$

11. (6 points) What Equivalence Relation induces the Partition $\{\{1,2\},\{3,4,5\}\}$ of the set $\{1,2,3,4,5\}$?

Relation $=(\{1,2\} \times\{1,2\}) \cup(\{3,4,5\} \times\{3,4,5\})$
$=\{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(3,5),(4,3),(4,4),(4,5),(5,3),(5,4),(5,5)\}$
12. (10 points) Find the Primary Keys and $P_{3,6}$ for the trumpet database:

Make	Model	Year	Serial No.	Key	Finish
Conn	38 A	1955	105523	Bb	Silver
Conn	40 B	1938	52234	Bb	Brass
Conn	22A	1966	212203	C	Silver
Olds	Special	1966	524366	Bb	Silver
Olds	Super	1955	161230	C	Gold
Olds	Mendez	1966	210658	Bb	Silver
Selmer	24A	1953	14522	Bb	Gold
Selmer	Paris	1955	18502	Bb	Silver
Selmer	Radial	1974	64299	C	Brass

Primary Keys $=$ Model and Serial No.
$P_{3,6}=\{(1955$, Silver $),(1938$, Brass $),(1966$, Silver $),(1955$, Gold $),(1953$, Gold $),(1974$, Brass $)\}$
(Note: NO duplicate ordered pairs allowed!)

CMSC 203 Spring 2011 Examination 3 Name_ Solution Key

13. (6 points) (a) For a collection of 45 coins, if 27 are quarters, 12 are quarters from the 1990's, and 20 are coins from the 1990's. Show that the probability the a coin being a quarter is INDEPENDENT from it being from the 1990's?

Denote $\mathrm{E}=\{$ Quarters $\}$ and $\mathrm{F}=\{$ Coins from the 1990's $\}$
Test 1: Show $P(E \mid F)=P(E)$. Since $P(E \mid F)=|E \cap F| /|F|=12 / 20=3 / 5=27 / 45=P(E)$, we see that E is Independent of F.
Test 2: North $=12$, South $=(45-27-20+12)=10$, East $=(27-12)=15$ and West $=(20-12)=8$, so North $($ South $)=12(10)=120=15(8)=$ East $($ West $)$, so E is Independent of F.
14. (6 points) Find the probability of rolling 2 fair dice and getting a total of at least 10 if the first die rolls at least 4 ?

First Roll Second Roll(s)

$E=\{$ Sum $\geq 10\}$ and $F=\{$ First $=4,5$, or 6$\}$ then $|E \cap F|=6$ and $|F|=18$, therefore $\mathrm{P}(\mathrm{E} \mid \mathrm{F})=6 / 18=1 / 3$.
15. (6 points) (a) Find the Disjunctive Normal Form for the Boolean Polynomial $\mathrm{F}(w, x, y, z)=w^{\prime} z+\mathrm{w} x^{\prime} y^{\prime}$
$\mathrm{F}(w, x, y, z)=w^{\prime} z+\mathrm{w} x^{\prime} y^{\prime}=w^{\prime}\left(x+x^{\prime}\right)\left(y+y^{\prime}\right) z+\mathrm{w} x^{\prime} y^{\prime}\left(z+z^{\prime}\right)$

$$
=w^{\prime} x y z+w^{\prime} x x^{\prime} y z+w^{\prime} x y^{\prime} z+w^{\prime} x x^{\prime} y^{\prime} z+w x^{\prime} y^{\prime} z+w x^{\prime} y^{\prime} z z^{\prime}
$$

16. (6 points) Find the Disjunctive Normal Form of the polynomial with Truth Table:

\mathbf{x}	\boldsymbol{y}	\boldsymbol{z}	$\mathbf{F}(\mathbf{x}, \boldsymbol{y}, \boldsymbol{z})$			
1	1	1	0			
1	1	0	1	\ggg	$x y z^{\prime}$	
1	0	1	0			
1	0	0	1		$x>$	$x y^{\prime} z^{\prime}$
0	1	1	0			
0	1	0	0			
0	0	1	1	\ggg	$x^{\prime} y^{\prime} z$	So $F(x, y, z)=x y z^{\prime}+x y^{\prime} z^{\prime}+x^{\prime} y^{\prime} z$
0	0	0	0			

