Exam 2 CMSC 203

1. (16 points) Circle \mathbf{T} if the corresponding statement is True or \mathbf{F} if it is False.

T F $\operatorname{GCD}(10,0)=0$.
(T) F If a prime divides the square of a Natural number, then it divides the number.

T F If $a \equiv b$ MOD 5, then 5 divides both a and b.
(T) F Recursive algorithms generally use memory more efficiently than their equivalent Iterative version.
(T) $\mathbf{F} \quad 1+2+3+4+\ldots+1000=500(1001)$.

T F Algorithms with $\mathrm{O}\left(n^{2}\right)$ are less efficient than those with $\mathrm{O}\left(2^{n}\right)$.
T) F The two Principles of Mathematical Induction are logically equivalent.
(T) $\mathbf{F} \quad \operatorname{GCD}(1000,678)=\operatorname{GCD}(678,322)$.
2. (8 points) Find the GCD and LCM of $a=2^{4} 5^{8} 7^{3} 11^{1} 17^{6}$ and $b=2^{3} 5^{4} 11^{2} 13^{2} 17^{2} 19^{2}$

$$
\begin{aligned}
& a b=2^{4+3} 5^{8+4} 7^{3+0} 11^{1+2} 13^{0+2} 17^{6+2} 19^{0+2} \\
& \text { so } \operatorname{GCD}(a, b)=2^{3} 5^{4} 7^{0} 11^{1} 13^{0} 17^{2} 19^{0}=2^{3} 5^{4} 11^{1} 17^{2} \\
& \text { and } \operatorname{LCM}(a, b)=2^{4} 5^{8} 7^{3} 11^{2} 13^{2} 17^{6} 19^{2}
\end{aligned}
$$

3. (8 points) List out the search intervals of the Binary Search algorithm to find 6 in the list:

$$
\begin{array}{lllllllllllllll}
3 & 4 & 6 & 9 & 13 & 18 & 21 & 34 & 55 & 72 & 83 & 85 & 92 & 104 & 111
\end{array} 133
$$

Pass 1: $\{3,4,6,9,13,18,21,34\}$ and $\{55,72,83,85,92,104,111,133\}$
Pass 2: $\{3,4,6,9\}$ and $\{13,18,21,34\}$
Pass 3: $\{3,4\}$ and $\{6,9\}$
Pass 4: $\{6\}$ and $\{9\}$
4. (10 points) Find a numeric expression for $\sum_{i=0}^{10} 4 i+5\left(7^{i}\right)$.

$$
\sum_{i=0}^{10} 4 i+5\left(7^{i}\right)=4 \sum_{i=0}^{10} i+5 \sum_{i=0}^{10} 7^{i}=4 \frac{10(11)}{2}+5 \frac{7^{10+1} Ð 1}{7 Ð 1}=220+\frac{5\left(7^{11} Ð 1\right)}{6}
$$

5. (12 points) Trace the Division Algorithm below to find (52 MOD 6).

PROCEDURE MOD(A,B: integers)
WHILE (A > B)

$$
\mathrm{A}=\mathrm{A}-\mathrm{B}
$$

ENDWHILE
OUTPUT (A)

Step	0	1	2	3		4	5	6	7
8									
A	52	46	40	34	28	22	16	10	4
B	6	6	6	6	6	6	6	6	6
(A > B)?	1	1	1	1	1	1	1	1	0
OUTPUT									4.

6. (8 points) Give a Recursive Definition for the set $S=\{n \in \mathbf{N} \mid n \equiv 3$ MOD 7 $\}$:

Basis: $3 \in S$

Induction: If $n \in S$, then $(n+7) \in S$.
7. (8 points) Show n^{19} is the Big-Oh of the algorithm with complexity:

$$
\left(12 n^{4}+3 n^{3} \log ^{3} n\right)\left(3 n^{7}+4 n^{3}\right)\left(n^{6}+5 n^{2}+4\right)
$$

$\left(12 n^{4}+3 n^{3} \log ^{3} n\right)\left(3 n^{7}+4 n^{3}\right)\left(n^{6}+5 n^{2}+4\right) \leq\left(12 n^{4}+3 n^{3} n^{3}\right)\left(3 n^{7}+4 n^{7}\right)\left(n^{6}+5 n^{6}+4 n^{6}\right)$ $\leq\left(12 n^{6}+3 n^{6}\right)\left(7 n^{7}\right)\left(10 n^{6}\right)=\left(15 n^{6}\right)\left(7 n^{7}\right)\left(10 n^{6}\right)=1050 n^{19}$ which is $\mathrm{O}\left(n^{19}\right)$.

Exam 2 CMSC 203 Spring 2011 Name $\frac{\text { SOLUTION KEY }}{\text { Show All Work! }}$

8. (10 points) Prove ONE of the TWO Theorems below using Mathematical Induction.

Theorem 1: For all Natural numbers $n, \sum_{i=0}^{n} 7^{i}=\frac{7^{n+1} Đ 1}{6}$.

Theorem 2: If $a_{0}=1, a_{1}=10, a_{2}=100$, and $a_{n}=a_{n-1}+a_{n-2}+a_{n-3}$, then $a_{n} \leq 10^{n}$, for all $n \geq 3$.

Theorem 1: Proof (Weak/First Induction):

Basis: Show true for $n=0$. Now, $\sum_{i=0}^{0} 7^{i}=7^{0}=1$ and $\frac{7^{0+1} Đ 1}{6}=\frac{7^{1} Ð 1}{6}=\frac{6}{6}=1$, thus
$\sum^{n} 7^{i}=\frac{7^{n+1} Đ 1}{6}$ for $n=0$.
$i=0$
Induction: Assume true for $n=k$ and show true for $n=(k+1)$. Assume $\sum_{i=0}^{k} 7^{i}=\frac{7^{k+1} Đ 1}{6}$.
Now, $\sum_{i=0}^{k+1} 7^{i}=\sum_{i=0}^{k} 7^{i}+\sum_{i=k+1}^{k+1} 7^{i}=\frac{7^{k+1} Đ 1}{6}+7^{k+1}=\frac{7^{k+1} Đ 1+6\left(7^{k+1}\right)}{6}=\frac{7\left(7^{k+1}\right) Ð 1}{6}=\frac{7^{k+2} Đ 1}{6}$.
Since, $\frac{7^{k+2} Đ 1}{6}=\frac{7^{(k+1)+1} Đ 1}{6}$, we see that $\sum_{i=0}^{k+1} 7^{i}=\frac{7^{(k+1)+1} Đ 1}{6}$, therefore
$\sum^{n} 7^{i}=\frac{7^{n+1} Đ 1}{6}$ for all Natural Numbers, n. QED
$i=0$

Theorem 2: Proof: (Strong/Second Induction)
Basis: Show true for $n=3$. Now $a_{3}=a_{2}+a_{1}+a_{0}=1+10+100=111 \leq 1000=10^{3}$, hence $a_{3} \leq 10^{3}$.
Induction: Assume $a_{3} \leq 10^{3}, a_{4} \leq 10^{4}, a_{5} \leq 10^{5} \ldots, a_{k} \leq 10^{k}$, for some $k>3$. Show $a_{k+1} \leq 10^{k+1}$.
Now, $\mathrm{a}_{k+1}=\mathrm{a}_{k}+\mathrm{a}_{k-1}+\mathrm{a}_{k-2} \leq 10^{k}+10^{k-1}+10^{k-2}=\left(10^{2}+10+1\right) 10^{k-2}=111\left(10^{k-2}\right) \leq 1000\left(10^{k-2}\right)$, thus $\mathrm{a}_{k+1} \leq 1000\left(10^{k-2}\right)=10^{3}\left(10^{k-2}\right)=10^{k+1}$.

Therefore $a_{n} \leq 10^{n}$, for all $n \geq 3$. QED

Exam 2 CMSC 203 Spring 2011 Name SOLUTION KEY Show All Work!

9. (10 points) Prove ONE of the TWO Theorems below:

Theorem 1: For all Integers, n, if n is odd, then $n^{2} \equiv 1$ MOD 8 . (Hint: If an Integer is odd, then its successor is even.)

Theorem 2: Between any two distinct Real Numbers is another Real Number.

Theorem 1:

Proof: Let n be an odd Integer, so $n=2 k+1$, for some Integer k. We want to show $n^{2} \equiv 1$ MOD 8 ; that is $\left(n^{2}-1\right)=8 p$, for some Integer p.

Now, $\left(n^{2}-1\right)=(2 k+1)^{2}-1=\left(4 k^{2}+4 k+1\right)-1=4 k^{2}+4 k=4 k(k+1)$. However, since k is an odd Integer, we see that $(k+1)$, the successor of k, is even. This lets us assert that $(k+1)=2 m$, for some Integer m.

Combining all this, we see that $\left(n^{2}-1\right)=4 k(k+1)=4 k(2 m)=8 k m$. Moreover, since k and m are Integers, we conclude that $p=k m$ is an Integer, thus $\left(n^{2}-1\right)=8 p$, for some Integer p.

Therefore $n^{2} \equiv 1$ MOD 8 for any odd Integer n. QED

Theorem 2:

Proof: Let X and Y be distince Real Numbers and, without loss of generality, assume $\mathrm{X}<\mathrm{Y}$.

$$
\text { Now, } \mathrm{X}=(2 \mathrm{X}) / 2=(\mathrm{X}+\mathrm{X}) / 2<(\mathrm{X}+\mathrm{Y}) / 2<(\mathrm{Y}+\mathrm{Y}) / 2=(2 \mathrm{Y}) / 2=\mathrm{Y} .
$$ Moreover, since X and Y are Real, we see that $(\mathrm{X}+\mathrm{Y})$ is Real, hence $[(\mathrm{X}+\mathrm{Y}) / 2$] is Real. Since $\mathrm{X}<(\mathrm{X}+\mathrm{Y}) / 2<\mathrm{Y}$, we conclude, therefore, that there exists a Real Number between distinct Real Numbers. QED

Exam 2 CMSC 203 Spring 2011 Name SOLUTION KEY
 Show All Work!

10. (10 points) Prove ONE of the TWO Theorems below by Contradiction or Contraposition.

Theorem 1: The set of Prime Numbers is infinite.
Theorem 2: For all Integers, $n>2$, if n is prime, then $n \equiv 1$ MOD 2 .

Theorem 1: Proof: (Contradiction) Assume the set of Prime Numbers is finite. Denote the finite set of the Primes as $\left\{p_{1}, p_{2}, p_{3}, \ldots, p_{n}\right\}$ for some Natural Number n.

Now, construct the Natural Number, $\mathrm{M}=\left[p_{1}\left(p_{2}\right)\left(p_{3}\right)(\ldots)\left(p_{n}\right)\right]+1$. Since M is a Natural, it has a prime factor, but since any prime number is also a factor of the product $\left[p_{1}\left(p_{2}\right)\left(p_{3}\right)(\ldots)\left(p_{n}\right)\right]$, we conclude that this prime factor must also divide 1 . However this is a contradiction since no primes divide 1.

Therefore, the set of Primes is infinite. QED

Theorem 2: Proof: (Contraposition) We shall show for any Integer $n>2$, if $n \equiv 0$ MOD 2, then n is composite.

Now, let $n \equiv 0$ MOD 2, for any Integer $n>2$. This means that 2 divides $(n-0)=n$, hence $n / 2$ is an Integer. Moreover, since $n>2$, we see that $n / 2>1$, thus $n / 2=m$ for some Integer m. Consequently, $n=2 m$ with $m>1$, hence n is composite.

Therefore, for all Integers, $n>2$, if n is prime, then $n \equiv 1$ MOD 2. QED

