1. (16 points) Circle **T** if the corresponding statement is True or **F** if it is False.

2. (8 points) Find the GCD and LCM of $a = 2^4 5^8 7^3 11^1 17^6$ and $b = 2^3 5^4 11^2 13^2 17^2 19^2$

$$ab = 2^{4+3}5^{8+4}7^{3+0}11^{1+2}13^{0+2}17^{6+2}19^{0+2}$$

so GCD(*a*,*b*) = $2^35^47^011^113^017^219^0 = 2^35^411^117^2$
and LCM(*a*,*b*) = $2^45^87^311^213^217^619^2$.

3. (8 points) List out the search intervals of the Binary Search algorithm to find 6 in the list: 3 4 6 9 13 18 21 34 55 72 83 85 92 104 111 133

Pass 1: {3, 4, 6, 9, 13, 18, 21, 34} and {55, 72, 83, 85, 92, 104, 111, 133}

Pass 2: {3, 4, 6, 9} and {13, 18, 21, 34}

Pass 3: {3, 4} and {6, 9}

Pass 4: {6} and {9}

4. (10 points) Find a numeric expression for $\sum_{i=0}^{10} 4i + 5(7^{i}).$

$$\sum_{i=0}^{10} 4i + 5(7^{i}) = 4\sum_{i=0}^{10} i + 5\sum_{i=0}^{10} 7^{i} = 4\frac{10(11)}{2} + 5\frac{7^{10+1} \oplus 1}{7 \oplus 1} = 220 + \frac{5(7^{11} \oplus 1)}{6}$$

5. (12 points) Trace the Division Algorithm below to find (52 MOD 6).

PROCEDUE WHILE (A	REM(DD(A	,B: in	nteger	s)						
A = A - B	> D)										
ENDWHILE											
OUTPUT (A)											
Step	0	1	2	3	4	5	6	7	8		
A	52	46	40	34	28	22	16	10	4		
В	6	6	6	6	6	6	6	6	6		
(A > B)?	1	1	1	1	1	1	1	1	0		
OUTPUT									4.		

6. (8 points) Give a Recursive Definition for the set $S = \{n \in \mathbb{N} \mid n \equiv 3 \text{ MOD } 7\}$:

Basis: $3 \in S$

Induction: If $n \in S$, then $(n + 7) \in S$.

7. (8 points) Show n^{19} is the Big-Oh of the algorithm with complexity: $(12n^4 + 3n^3\log^3 n)(3n^7 + 4n^3)(n^6 + 5n^2 + 4).$

$$(12n^{4} + 3n^{3}\log^{3} n)(3n^{7} + 4n^{3})(n^{6} + 5n^{2} + 4) \le (12n^{4} + 3n^{3}n^{3})(3n^{7} + 4n^{7})(n^{6} + 5n^{6} + 4n^{6}) \le (12n^{6} + 3n^{6})(7n^{7})(10n^{6}) = (15n^{6})(7n^{7})(10n^{6}) = 1050n^{19}$$
 which is O(n¹⁹).

8. (10 points) Prove ONE of the TWO Theorems below using Mathematical Induction.

<u>Theorem 1:</u> For all Natural numbers n, $\sum_{i=0}^{n} 7^{i} = \frac{7^{n+1} \oplus 1}{6}$.

<u>Theorem 2:</u> If $a_0 = 1$, $a_1 = 10$, $a_2 = 100$, and $a_n = a_{n-1} + a_{n-2} + a_{n-3}$, then $a_n \le 10^n$, for all $n \ge 3$.

<u>Theorem 1:</u> Proof (Weak/First Induction):

<u>Basis:</u> Show true for n = 0. Now, $\sum_{i=0}^{6} 7^{i} = 7^{0} = 1$ and $\frac{7^{0+1} \oplus 1}{6} = \frac{7^{1} \oplus 1}{6} = \frac{6}{6} = 1$, thus $\sum_{i=0}^{n} 7^{i} = \frac{7^{n+1} \oplus 1}{6} \text{ for } n = 0.$

<u>Induction</u>: Assume true for n = k and show true for n = (k + 1). Assume $\sum_{i=0}^{k} 7^{i} = \frac{7^{k+1} \oplus 1}{6}$.

Now,
$$\sum_{i=0}^{k+1} 7^{i} = \sum_{i=0}^{k} 7^{i} + \sum_{i=k+1}^{k+1} 7^{i} = \frac{7^{k+1} \oplus 1}{6} + 7^{k+1} = \frac{7^{k+1} \oplus 1 + 6(7^{k+1})}{6} = \frac{7(7^{k+1}) \oplus 1}{6} = \frac{7^{k+2} \oplus 1}{6}.$$

Since,
$$\frac{7^{k+2} \oplus 1}{6} = \frac{7^{(k+1)+1} \oplus 1}{6}, \text{ we see that } \sum_{i=0}^{k+1} 7^{i} = \frac{7^{(k+1)+1} \oplus 1}{6}, \text{ therefore}$$

 $\sum_{i=0}^{n} 7^{i} = \frac{7^{n+1} \oplus 1}{6}$ for all Natural Numbers, *n*. QED

<u>Theorem 2:</u> Proof: (Strong/Second Induction)

<u>Basis</u>: Show true for n = 3. Now $a_3 = a_2 + a_1 + a_0 = 1 + 10 + 100 = 111 \le 1000 = 10^3$, hence $a_3 \le 10^3$. <u>Induction</u>: Assume $a_3 \le 10^3$, $a_4 \le 10^4$, $a_5 \le 10^5$..., $a_k \le 10^k$, for some k > 3. Show $a_{k+1} \le 10^{k+1}$. Now, $a_{k+1} = a_k + a_{k-1} + a_{k-2} \le 10^k + 10^{k-1} + 10^{k-2} = (10^2 + 10 + 1)10^{k-2} = 111(10^{k-2}) \le 1000(10^{k-2})$, thus $a_{k+1} \le 1000(10^{k-2}) = 10^3(10^{k-2}) = 10^{k+1}$.

Therefore $a_n \le 10^n$, for all $n \ge 3$. QED

9. (10 points) Prove ONE of the TWO Theorems below:

<u>Theorem 1:</u> For all Integers, *n*, if *n* is odd, then $n^2 \equiv 1 \text{ MOD } 8$. (Hint: If an Integer is odd, then its successor is even.)

Theorem 2: Between any two distinct Real Numbers is another Real Number.

Theorem 1:

Proof: Let *n* be an odd Integer, so n = 2k + 1, for some Integer *k*. We want to show $n^2 \equiv 1 \text{ MOD } 8$; that is $(n^2 - 1) = 8p$, for some Integer *p*.

Now, $(n^2 - 1) = (2k + 1)^2 - 1 = (4k^2 + 4k + 1) - 1 = 4k^2 + 4k = 4k(k + 1)$. However, since k is an odd Integer, we see that (k + 1), the successor of k, is even. This lets us assert that (k + 1) = 2m, for some Integer m.

Combining all this, we see that $(n^2 - 1) = 4k(k + 1) = 4k(2m) = 8km$. Moreover, since k and m are Integers, we conclude that p = km is an Integer, thus $(n^2 - 1) = 8p$, for some Integer p.

Therefore $n^2 \equiv 1 \text{ MOD } 8$ for any odd Integer *n*. QED

Theorem 2:

Proof: Let X and Y be distince Real Numbers and, without loss of generality, assume X < Y.

Now, X = (2X)/2 = (X + X)/2 < (X + Y)/2 < (Y + Y)/2 = (2Y)/2 = Y. Moreover, since X and Y are Real, we see that (X + Y) is Real, hence [(X + Y)/2] is Real. Since X < (X + Y)/2 < Y, we conclude, therefore, that there exists a Real Number between distinct Real Numbers. QED

10. (10 points) Prove ONE of the TWO Theorems below by Contradiction or Contraposition.

Theorem 1: The set of Prime Numbers is infinite.

<u>Theorem 2:</u> For all Integers, n > 2, if *n* is prime, then $n \equiv 1 \text{ MOD } 2$.

<u>Theorem 1:</u> Proof: (Contradiction) Assume the set of Prime Numbers is finite. Denote the finite set of the Primes as $\{p_1, p_2, p_3, ..., p_n\}$ for some Natural Number *n*.

Now, construct the Natural Number, $M = [p_1(p_2)(p_3)(...)(p_n)] + 1$. Since M is a Natural, it has a prime factor, but since any prime number is also a factor of the product $[p_1(p_2)(p_3)(...)(p_n)]$, we conclude that this prime factor must also divide 1. However this is a contradiction since no primes divide 1.

Therefore, the set of Primes is infinite. QED

<u>Theorem 2:</u> Proof: (Contraposition) We shall show for any Integer n > 2, if $n \equiv 0$ MOD 2, then n is composite.

Now, let $n \equiv 0$ MOD 2, for any Integer n > 2. This means that 2 divides (n - 0) = n, hence n/2 is an Integer. Moreover, since n > 2, we see that n/2 > 1, thus n/2 = m for some Integer *m*. Consequently, n = 2m with m > 1, hence *n* is composite.

Therefore, for all Integers, n > 2, if n is prime, then $n \equiv 1 \text{ MOD } 2$. QED