Exam2 CMSC 203 Spring2011 Name SOLUTION KEY
Show All Work!

1. (16 points) Circld if the corresponding statement is Trud=af it is False.
T @ GCD(10, 0) = 0.

@ F If a prime divides the square of a Natural numtiean it divides the number.
T @ If a=bMOD 5, then 5 divides botaandb.

@ F Recursive algorithms generally use memory morieiefftly than their
equivalent Iterative version.

@ F 1+2+3+4+ ..+ 1000 =500(1001).

T @ Algorithms with 0(12) are less efficient than those with &2
@ F The two Principles of Mathematical Induction avgitally equivalent.

@ F  GCD(1000, 678) = GCD(678, 322).
2. (8 points) Find the GCD and LCM af= 2587311117 andb = 225*11°13°1 721

ab = 2A*358+473+0 1421 30429 76+21 P+2
so GCD@b) = 254791111301 7219° = 23571111 72
and LCM@,b) = 2#587311213217%19° .

3. (8 points) List out the search intervals of Bueary Search algorithm to find 6 in the list:
3469 13 18 21 34 55 72 83 85 92 104 133

Pass 1: {3, 4,6, 9, 13, 18, 21, 34} and {55, 82, 85, 92, 104, 111, 133}
Pass 2: {3, 4, 6, 9} and {13, 18, 21, 34}
Pass 3: {3, 4} and {6, 9}

Pass 4: {6} and {9}
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4. (10 points) Find a numeric expression @4i + 5(7i)

i=0

10
. 0+1 11
S 4i+5(7) = 42”’527 10(11) +5 7551’1 =220+2L_B1) 691

i=0

5. (12 points) Trace the Division Algorithm belowfind (52 MOD 6).

PROCEDURE MOD(A,B: integers)

WHILE (A > B)
A=A-B
ENDWHILE
OUTPUT (A)
Step 0 1 2 34 5 6 7 8
A 52 46 40 34 282 16 10 4
B 6 6 6 66 6 6 6 6
(A > B)? 1 1 1 1 11 1 1 0
OUTPUT 4

6. (8 points) Give a Recursive Definition for #et S=H 0N |n=3 MOD 7}:
Basis: 30 S

Induction: Ifn 0 S, thenih + 7) 0 S.

7. (8 points) Show!?is the Big-Oh of the algorithm with complexity:
(12n* + 3n3log® N)(3n’ + 4n%)(n® + Bn? + 4).

(12n* + 3n3log® n)(3n’ + 4n3)(n® + Bn? + 4) <(12n* + 3n®n3)(3n’ + 4n")(n® + 5n® + 4nd)
< (A28 + 3n®)(7n”)(n®) = (1mO)(7n”)(10n®) = 105M1° which is OAL®).
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8. (10 points) Prove ONE of the TWO Theorems balemg Mathematical Induction.

n
Theorem 1For all Natural numbens, Z 7 =
i=0

n+1

/7 bl
6 .

Theorem 2if ag=1,a; = 10,a, = 100, andy, =a,_1 + a,_» + a,-3 , thena,, < 10", for alln > 3.

Theorem 1:Proof (Weak/First Induction):
0

. 0+1
Basis:Show true fon = 0. Now, Z 7 =7 =1 anc.7 bl_7Hb1_6_ 1 ,thus
- 6 6 6
i=0
no n+1
Z?' -7 _BPlern=o
6
i=0
k

. P 7*pa

Induction: Assume true fon = k and show true fon = (k + 1). Assumez 7 = 5
i=0
k+1 k k+1
k+1 k+1 k+1 kK+1 k+2
i i i _7 P11, k+1 _7 "PD1+6(7 ) _ 77 H)P1 _77°P1

Now,27—27+27— 5 +7 = 5 = 5 = 5 .

i=0 i=0 i=k+1

k+1
k+2 (k+1) +1 , (k+1)+1
Since,7 bl _7 20 , We see thaz 7 = bl , therefore
6 6
i=0
n
7""1p1

Z 7' = for all Natural Numbers). QED

i=0

6

Theorem 2Proof: (Strong/Second Induction)

Basis:Show true fon = 3. Nowag =a, + a; +ag =1 + 10 + 100 = 111 4000 = 16,

henceas < 10°.

Induction: Assumeag < 10°, a, < 10, ag < 10°..., a, < 10K, for somek > 3. Showay,; < 10,

NOW, 8sq = 8 + 8cq + 8ep < 10+ 101 + 102 = (107 + 10 + 1)1672 = 111(1672) < 1000(1672),
thus g1 < 1000(1672) = 103102 = 10,

Thereforea,, < 10", for alln > 3. QED
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9. (10 points) Prove ONE of the TWO Theorems below:

Theorem 1for all Integersn, if nis odd, them? = 1 MOD 8.
(Hint: If an Integer is odd, then its successa\sn.)

Theorem 2Between any two distinct Real Numbers is anotreal Rlumber.

Theorem 1:

Proof: Letn be an odd Integer, so= 2k + 1, for some Integét. We want to show
n®=1 MOD 8; that isif* — 1) = &, for some Integep.
Now, - 1) = (k+ 1P —1= (4% + 4+ 1) -1 = &>+ 4k = 4k(k + 1). However,
sincek is an odd Integer, we see thlat{1), the successor kf is even. This lets us assert that
(k + 1) = 2n, for some Integem.

Combining all this, we see thaltz(— 1) = &(k + 1) = &(2m) = 8&m. Moreover, sinc& andm are
Integers, we conclude thpt= kmis an Integer, thusn% - 1) = &, for some Integep.
Therefore? = 1 MOD 8 for any odd Integer. QED

Theorem 2:
Proof: Let X and Y be distince Real Numbers anithout loss of generality, assume X <.

Now, X = (2X)/2 = (X+X)/2 <X+Y)/2 < (Y+Y)/2 = (2Y)/2 =Y.
Moreover, since X and Y are Real, we see that ¥ #s Real, hence [ (X +Y) /2] is Real. Since
X < (X+Y)/2 <Y, we conclude, thereforeaththere exists a Real Number between distinct Real
Numbers. QED
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10. (10 points) Prove ONE of the TWO Theorems bdgvContradiction or Contraposition.
Theorem 1The set of Prime Numbers is infinite.

Theorem 2For all Integersn > 2, ifnis prime, them=1 MOD 2.

Theorem 1Proof: (Contradiction) Assume the set of Prime Nens is finite. Denote the finite set
of the Primes asf{;, p,, Pz, ... ,Pn} for some Natural Numbaen.

Now, construct the Natural Number, Mpz([p,)( p3)( --- )(Pp)] + 1. Since M is a Natural, it has a
prime factor, but since any prime number is al§actor of the productd(p,)( p3)( ... )(py)], we

conclude that this prime factor must also dividél@wever this is a contradiction since no primes
divide 1.

Therefore, the set of Primes is infinite. QED

Theorem 2Proof: (Contraposition) We shall show for any ggen > 2, ifn=0MOD 2, them is
composite.

Now, len =0 MOD 2, for any Integen > 2. This means that 2 dividas< 0) =n, hence/2 is an
Integer. Moreover, sinae> 2, we see that/2 > 1, thugi/2 =mfor some Integem. Consequently,
n=2mwith m> 1, hencen is composite.

Therefore, for all Integers,> 2, ifnis prime, them=1 MOD 2. QED



