1. (20 points) Circle \mathbf{T} for True or \mathbf{F} for False as they apply to the following statements:
\mathbf{T} A statement is either a tautology or a contradiction.
(T) F The set $\{\mathrm{a}, \mathrm{e}, \mathrm{i}, \mathrm{o}, \mathrm{u}, \mathrm{y}\}$ has 64 subsets.
(T) F The empty set is a subset of itself.
(T) F Onto functions map sets to sets of equal or smaller size.
\mathbf{T} If $\Sigma=\{0,1\}$, then $\Sigma^{3}=\{000,111\}$.
\mathbf{T} The negation of an implication is an implication.
\mathbf{T} F The density of a binary string equals its length.
(T) F If $\Sigma=\{0,1\}$, then for any string s in $\Sigma^{8}, \mathrm{H}(s, 11111111)=\mathrm{d}(s)$.

T F The conditional statement and its converse are logically equivalent.
(T) F The set of Rational numbers is countable.
2. (10 points) Use the Laws of Logic to show: $\neg p \wedge(q \vee \neg r) \equiv \neg[(r \rightarrow q) \rightarrow p]$

$$
\begin{aligned}
\neg p \wedge(q \vee \neg r) & \equiv \neg p \wedge(\neg r \vee q) \equiv \neg p \wedge(r \rightarrow q) \equiv \neg[p \vee \neg(r \rightarrow q)] \\
& \equiv \neg[\neg(r \rightarrow q) \vee p] \\
& \equiv \neg[(r \rightarrow q) \rightarrow p]
\end{aligned}
$$

3. (6 points) Find the negation of the following Universal Conditional:

Some people who like Math study Economics.
All people like Math and do not study Economics.
4. (10 points) Use the Rules of Inference to show the following is a valid argument:

$$
\begin{aligned}
& p \rightarrow q \\
& \neg r \rightarrow \neg q \\
& r \rightarrow(s \wedge u) \\
& p \\
& \therefore s
\end{aligned}
$$

1. $p \rightarrow q$ AND p THEREFORE q;
2. $\neg r \rightarrow \neg q$ AND q THEREFORE r;
3. $r \rightarrow(s \wedge u)$ AND r THEREFORE $(s \wedge u)$;
4. $(s \wedge u)$ THEREFORE s.
5. ($\mathbf{1 0}$ points) Given the alphabet $\Sigma=\{0,1\}$, list the subsets of Σ^{4} where each subset contains the elements of Σ^{4} that have the same Hamming Distance from 1100.

| s | 0000 | 0001 | 0010 | 0011 | 0100 | 0101 | 0110 | 0111 | 1000 | 1001 | 1010 | 1011 | 1100 | 1101 | 1110 | 1111 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}(1100, s)$ | 2 | 3 | 3 | 4 | 1 | 2 | 2 | 3 | 1 | 2 | 2 | 3 | 0 | 1 | 1 | 2 |

$\mathbf{H}(1100, s)=0:\{1100\}$
$H(1100, s)=1:\{0100,1000,1101,1110\}$
$\mathrm{H}(1100, s)=2:\{0000,0101,0110,1001,1010,1111\}$
$H(1100, s)=3:\{0001,0010,0111,1011\}$
$\mathbf{H}(1100, s)=4:\{0011\}$
6. (10 points) Using the Properties of Sets, to show $(A-B) \cup(A \cap B) \cup(B-A)=A \cup B$.

$$
\begin{aligned}
(A-B) \cup(A \cap B) \cup(B-A) & =\left(A \cap B^{c}\right) \cup(A \cap B) \cup\left(B \cap A^{c}\right) \\
& =\left(A \cap B^{c}\right) \cup(A \cap B) \cup(A \cap B) \cup\left(B \cap A^{c}\right) \\
& =\left[A \cap\left(B^{c} \cup B\right)\right] \cup\left[\left(A \cup A^{c}\right) \cap B\right] \\
& =(A \cap U) \cup(U \cap B) \\
& =A \cup B .
\end{aligned}
$$

7. (16 points) Given the function $\mathrm{F}=\{(a, 2),(b, 1),(c, 2),(d, 1),(e, 2)\}$
(a) What is the Domain of F?
$\operatorname{Dom}(F)=\{a, b, c, d, e\}$
(b) What is the Image of F ?
$\operatorname{Im}(F)=\{1,2\}$
(c) What is the Inverse of F?
$\mathrm{F}^{-1}=\{(2, a),(1, b),(2, c),(1, d),(2, e)\}$
(d) Why or why not is the Inverse in (c) a function?
F^{-1} is NOT a function since inputs 1 and 2 each map to multiple outputs.
8. (10 points) Find $\mathrm{F}^{\circ} \mathrm{F}^{\circ} \mathrm{F}$ for $\mathrm{F}:\{0,1,2,3,4\} \rightarrow \mathbf{Z}$ given by $\mathrm{F}(x)=3 \mathrm{x}-2$.
$\mathrm{F}=\{(0,-2),(1,1),(2,4),(3,7),(4,10)\} ;$
$\mathrm{F}^{\circ} \mathrm{F}=\{(-2,-8),(1,1),(4,10),(7,19),(10,28)\}^{\circ}\{(0,-2),(1,1),(2,4),(3,7),(4,10)\}$
$=\{(0,-8),(1,1),(2,10),(3,19),(4,28)\} ;$
$\mathrm{F}^{\circ} \mathrm{F}^{\circ} \mathrm{F}=\{(-8,-26),(1,1),(10,28),(19,55),(28,82)\}^{\circ}\{(0,-8),(1,1),(2,10),(3,19),(4,28)\}$
so, $\mathrm{F}^{\circ} \mathrm{F}^{\circ} \mathrm{F}=\{(0,-26),(1,1),(2,28),(3,55),(4,82)\}$
9. (8 points) For the given argument, circle MP if it is an example of Modus Ponens, MT if it is an example of Modus Tollens, CE if it is an example of Converse Error, and IE if it is an example of Inverse Error.

MP MT CE IE All girls like tennis and Mary likes tennis, therefore Mary is a girl.
(MP) MT CE IE All girl like tennis and Mary is a girl, therefore Mary likes tennis.
MP MT CE IE All girl like tennis and Mary is not a girl, therefore Mary dislikes tennis.
MP CE IE All girl like tennis and Mary dislikes tennis, therefore Mary is not a girl.

