Computer Animation: Past, Present, and Future

Adam Bargteil University of Maryland, Baltimore County

Hunger (1974)

Star Trek: The Wrath of Khan (1982)

Particle Systems—A Technique for Modeling a Class of Fuzzy Objects

WILLIAM T. REEVES Lucasfilm Ltd

This paper introduces particle systems—a method for modeling fuzzy objects such as fire, clouds, and water. Particle systems model an object as a cloud of primitive particles that define its volume. Over a period of time, particles are generated into the system, move and change form within the system.

Author's address: William T. Reeves, Lucasfilm Ltd, P.O. Box 2009, San Rafael, CA 94912. Permission to copy without fee all or part of this material is granted provided that the copies are not made or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

© 1983 ACM 0730-1301/83/0400-0091 \$00.75

ACM Transactions on Graphics, Vol. 2, No. 2, April 1983, Pages 91-108.

Tron (1982)

Principles of Traditional Animation (1987)

PRINCIPLES OF TRADITIONAL ANIMATION APPLIED TO 3D COMPUTER ANIMATION

John Lasseter Pixar San Rafael California

"There is no particular mystery in animation... it's really very simple, and like anything that is simple, it is about the hardest thing in the world to do." Bill Tytla at the Walt Disney Studio, June 28, 1937. [14]

ABSTRACT

This paper describes the basic principles of traditional 2D hand drawn animation and their application to 3D computer animation. After describing how these principles evolved, the individual principles are detailed, Computer Graphics, Volume 21, Number 4, July 1987

Principles of Traditional Animation (1987)

- * squash and stretch
- * timing
- * anticipation
- * staging
- follow through & overlapping action
- straight ahead and pose-to-pose action

- * slow in and out
- * arcs
- * exaggeration
- secondary action
- * appeal

Jurassic Park (1993)

"it was like one of those moments in history, like the invention of the light bulb or the first telephone call... A major gap had been crossed and things were never going to be the same."

-George Lucas

Toy Story (1995)

THE FOLLOWING PREVIEW HAS BEEN APPROVED FOR ALL AUDIENCES BY THE MOTION PICTURE ASSOCIATION OF AMERICA

The Golden Age of Computer Animation

1995-2015

The "Special Effects Problem"

explosions, tidal waves, city buildings destroyed by robots, aliens, supervillains, etc.

Eulerian Viscoelastic Fluids

Goktekin, Bargteil, O'Brien [SIGGRAPH 2004]

DreamWorks Animation's *Bee Movie* (2007)

Finite Element Destruction: A Success Story

m[4]

- * Fundamental physics simulation^m[1]
 - * Rigid movement
 - * Bending, twisting, stretching
- * <u>Dynamic</u> tearing, cracking, ripping
- * Wide range of materials

Rest

Finite Elements

Deformed

Rest

Finite Elements

Deformed

Rest \mathbf{b}_2

Finite Elements

Deformed

Rest \mathbf{b}_2 \mathbf{b}_1 $\beta = (\mathbf{b}_1 \mathbf{b}_2)^{-1}$

Finite Elements

Deformed

 $\mathbf{X} = (\mathbf{x}_1 \mathbf{x}_2)$

 $\mathbf{F} = \mathbf{X}\beta$

Rest

Elastic Forces "Undo" F

 $\mathbf{F} = \mathbf{X}\beta$

Finite Flements

Deformed

 $\mathbf{X} = (\mathbf{x}_1 \mathbf{x}_2)$

Graphical Modeling and Animation of Ductile Fracture

O'Brien, Bargteil & Hodgins [SIGGRAPH 2002]

Graphical Modeling and Animation of Ductile Fracture

O'Brien, Bargteil & Hodgins [SIGGRAPH 2002]

Graphical Modeling and Animation of Ductile Fracture

Digital Molecular Matter

Parker & O'Brien [SCA 2009]

Moving Picture Company's Kali

Cole [SIGGRAPH 2011 Talk]

MPC Films using Kali / DMM

2015 Technical Achievement Award

The State of the Art

- * special effects are almost universally achieved through computer graphics
- * almost all films contain some computer animation
- * an artist can create almost any effect they can imagine

Groundhog Day (1993)

3:22 / 3:33

Edge of Tomorrow (2014)

more, better tools

interactive animation

The Future

virtual/augmented/mixed reality

content creation

A Specialized Tool for Large-scale Splashing Liquids

Small Scale Liquids

Enright, Marschner & Fedkiw [SIGGRAPH 2002]

Deep Impact

1 20-20-52 6 17 20

43.30

like a good physicist we observe the phenomena we wish to model

An Observation About Splashes

surface tension causes liquids to pinch off into droplets, which then mix freely with air and...

... the liquid appears to expand

A New Model

Bilateral Incompressibility fluid in == fluid out

Unilateral Incompressibility fluid in $\leq =$ fluid out

Traditional Fluid Simulation: Incompressible

New Model: Unilateral Incompressibility

Incompressible Fountain

Unilaterally Incompressible Fountain

Four Dams

Flooded Terrain

Flathead & Philips

bilateral incompressibility

unilateral incompressibility

Beyond Special Effects: Interactive Animation

Learning an Upsampling Operator

Learning an Upsampling Operator

Regularization on Training Data

Model Reduced Fluids

Energizing Fracture

Default

α=0.0

D			α=0.5
)			α=2.0

take away: making offline methods faster is not enough, interactive animation requires new techniques

Reality is Going to Drive

Computer Animation

Virtual / Augmented / Mixed

Content Creation (the elephant in the room)

let's look at physics-based animation / simulation

(1) simulation is a *tool* for artistic expression (2) good tools are easy to use

are physical simulations easy to use?

Physics is like a cat...

... it does what it wants

Artists want dogs

Dynamic Sprites

bring images to life by

letting artists define the behavior and

letting physics handle interaction & timing

Step 1: Draw a "Stuntman"

Step 2: "Rig" Drawing

- * Applying additional controls is simple in position based framework
- * Controls can depend on arbitrary properties of the object
 - * speed
 - * orientation
 - * angular momentum
 - * ... etc

Other Controls

Applied to Destruction

Authoring

Input geometry

Unmodified Rigid Body Simulation

Simulation

Collect Impulses

Simulation

Interesting and Tricky

Update Example Interpolation Weights

Sample Result

Example Iteration

Physics imitating art imitating physics

JJ Abrams Fanfic

A Grand Challenge: Artistic Authoring of Stylized, Interactive Content by Novices

ACM SIGGRAPH

\$50: Professional Member

*We are working to add member benefits, contact me if you have ideas.

Become a Member!

\$19: Student Member

We have a lot of jobs that are 40-80 hours per year.

Volunteer

About Contact Member Login Join

Volunteer

ACM SIGGRAPH is governed and energized by volunteers, and many more volunteers plan and produce the two annual SIGGRAPH conferences. Capable, enthusiastic, and committed people who wish to contribute their vision, industry knowledge, and energy are always invited to volunteer and serve on a committee.

LEARN ABOUT ORGANIZATION VOLUNTEER POSITIONS

GO TO ORGANIZATION VOLUNTEER FORM

LEARN ABOUT CONFERENCE VOLUNTEER LEADERSHIP POSITIONS

GO TO CONFERENCE VOLUNTEER FORM

Volunteer

Thank You!