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Abstract—The generalized Gaussian distribution (GGD) provides a kurtosis where the scale factor is nonnegative and is a function of
flexible and suitable tool for data modeling and simulation, however the noncircularity as shown in [14]. Since the kurtosis of the complex

characterization of the complex-valued GGD, in partlpular_genergtlon of Gaussian is zero, as in the real-valued case, positive normalized
samples from a complex GGD have not been well defined in the literature.

In this study, we provide a thorough presentation of the complex-valued kurt03i§ V&IuE§ implly a SUper'Gf"‘USSian di'stributibe,, a sharpgr
GGD by i) constructing the probability density function (pdf), ii) defining ~ peak with heavier tails, and negative normalized kurtosis values imply
a procedure for generating random numbers from the complex-valued sub-Gaussian distributions.

GGD, and iii) implementing a maximum likelihood estimation (MLE) Recently, use of the full second-order statistics of complex random
procedure for the shape and covariance parameters in the complex

domain. We quantify the performance of the MLE with simulations and ~ Variables, namely the information in the commonly used covariance

actual radar data. as well as the pseudocovariance matrices [12], [15], have proven
Index Terms—MLE, complex-valued signal processing, generalized useful in signal processing. The second-order statistics are used to
Gaussian distribution classify the variable as second-order circular or second-order noncir-

cular,i.e.,a complex-valued random variable is second-order circular
if the pseudocovariance matrix is zero. Due to the recent interest in
incorporating the circular/noncircular properties of complex-valued
The generalized Gaussian distribution (GGD) has found wide usgnals, the CGGD is not restricted to the circular case but is
in modeling various physical phenomena in the signal processiago parameterized by the second moment thus providing a means
community. For example, the GGD has been used to model syntheficvarying the noncircularity of the distribution. To enhance the
aperture radar [1] and echocardiogram [2] images; features for faggfulness of the CGGD, we also provide a method for generating
recognition [3]; load demand in power systems [4]; and subbardmples from a CGGD as well as an MLE for its shape and
signals in images [5]. The use of the GGD has also found utility ifovariance parameters. We provide simulations to quantify the MLE’s
independent component analysis (ICA) where it is used as a flexilplerformance and then test on actual radar data.
class of source density models (s=g, [6], [7], [8])-
The GGD family of densities [9] is obtained by generalizing the

I. INTRODUCTION

Gaussian density to provide a variable rate of decay and is given by Il. COMPLEX PRELIMINARIES
c _(lzl\e . . . . .
px(z;0,c) = WE A complex variablez is defined in terms of two real variables

_ _ _ zr andzr asz = zgr + jzr Wherej = v/—1 and alternately as the
whereI'(-) is the Gamma functiong is the scale parameter, andpivariate vectorz, = [zr, z7]”. It is also convenient to work with

c is the shape parameter. What makes the GGD appropriate int§e augmented vector defined in [13], [16] &s = [z, 2*]" where
many applications is its flexible parametric form which adapts to 1
a large family of symmetric distributions, from super-Gaussian e = { 1 —j -
sub-Gaussian including specific densities such as Laplacian 1) Similarly, a complex random variable is definedas= Zr +jZr
and Gaussianc(= 2). Although the GGD has found wide use,along with the bivariateZ, = [Zr, Z;]" and augmented, =
most applications employ the univariate version. A bivariate GG[¥, Z*|T vector forms. Assuming thaE{Z} = 0, the bivariate
is introduced in [10] and used in modeling a video coding scheme dovariance matrix is thus
[11] along with a maximum likelihood estimate (MLE) for the shape 5
parameter based on a chi-square test, however, the covariance matrix C, = E{ZbeT} _ [ OrR P }
estimate presented is not an MLE. Complex-valued GGD models o1
have been described much less frequently and assume that the sigﬂgl
is circular,i.e., invariant to rotation, as in [1], [6]—both papers use
an MLE for estimating the shape parameter. 2 2 2 _ 52 ;

In this paper, we extend the results for the complex normal distribu-Ce = £{ZaZq'} = [ (0% U_Ra—g)a_l j2p (75 U%U_ﬁ)g—g 72 }
tion defined in [12], [13] to the GGD, by providing a fully-complex ' /
distribution denoted as CGGD, given in (7). As in the univariatghere o2 is the variance ang is the Corre|ati0nE{ZRZI}_ It is
case, the CGGD adapts to a large family of bivariate symmetiifear that the augmented covariance matrix will have real-valued

the augmented covariance matrix is

distributions, from super-Gaussian to sub-Gaussian including specifiggonal elementsC,00) = C,a,1) and complex-valued off-
densities such as Laplacian and Gaussian distributions. Since digyonal elementC,; 6) = C;y1)- For Z to be second-order

CGGD is also a member of the elliptically symmetric distributionsgircular, Cu1,00 = Ch0,1y = 0, e, the variance ofZr and Z;

the normalized kurtosis_ values of the real and_imaginary parts gfe the same andr and Z; are uncorrelated. A measure of second-
a complex random variable are a scaled version of the complgiier noncircularity [17], [18] is|E{Z2}] /E{ZZ*} with bounds
Copyright (¢) 2010 IEEE. The ref for th inall < |E{Z*}| /E{ZZ*} < 1 and |E{Z?}| = 0 indicates circular
opyrig C . e reference fior € paper as original s . . . . . .
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Processingvol. 58, no. 3, part. 1, pp. 1427-1433, March 2010. such that for anyy, the pdf of Z and e’ Z are the same [15].



We note the following identities from [13], [19] between thewhich results in a normalizing term(c) = QFF((QI//CC) and the second
bivariate and augmented forms: line follows from a rectangular to polar coordinate substitution—
T H we can similarly showE{ZrZ;} = 0 which is expected since the
22,2y = Zg Zq . L . .
random variableZ is circular. We use this result to normalize the
2VIC| = VICd| (1) variance ofZ to unity through the linear transforiV, = NZ,
2 eigenvals(C,) = eigenvals(C,) whereN = «/#@I' i.e., dividing by the square root of two times

where| - | is the determinant aneigenvals(-) are the eigenvalues. the standard deviation such th&t{ZZ*} = 1 and E{Zz} =

E{Z?} = 0.5. Applying this transform to (3), we obtain
[Il. CGGD CONSTRUCTION {Z1} pplying 3

A. Pdf derivation pw, (Wy) = ﬁpzb(N_IWb)
In this section, we derive the CGGD by first constructing the 2wl wy)]°
bivariate pdf and then extending this distribution to the complex case = Ble)e ® ®)

with a general augmented covariance matiig,, for noncircular _ cI(2/0) Ty _
data V\/% note tha? the bivariate GGD is defined in [11] howether?-ﬁ(c-) = oz and B{W»W, } = 0.51 for ¢ > 0. The
: ) X 2 ) ’ fdentities in (1) allow us to rewrite (5) in the complex-augmented
the construction shown here provides insight into how the rand%}
variables are generated in Section III-B. . ~[n(e)(wHwq)]
We begin by defining a complex random variatle= Re’® that pwa(Wa) = Ble)e (©)
is a function.c.)f two random v.ariabIeB. and ©. The 1magnitude where pw, (w.) = pw, (Ws). Equation (6) is primarily notational
R, is a modified Gamma variate defined & = G /a ‘where since pdfs are defined with respect to real variables, however, this
G ~ Gamma(2/g, 1) is a gamma-distributed random variable withform allows us to work with probabilistic descriptions directly in
shape paramet&/q and unit scale an® ~ /(0, 27) has a uniform the complex domain as described in [20]. Our goal, however, is

m as

distribution. to have a form with a general augmented covariance matrix. We
Before finding the pdf ofZ, we first find the pdf ofR starting tajlor the covariance matrix by applying a linear transfdEm to the
with the univariate gamma distribution defined as normalized data througlV, = T,W,. The covariance matrix is
2(2/a=1) now given by
pc(z,2/q) = We‘” C., = E{V,VH} = T,E{W,WI T = T,1,T? = T,TZ.

wherel is the gamma function. The Gamma random variable is thtl?nue to the unique form of the augmented covariance matrix, the diag-

. S . onal terms are real valued and the off-diagonal terms are conjugates,
raised to the(1/q)th power resulting in the pdf of given by TH = T,. Now given any arbitrary augmented covariance, we find

pr(r) = FL(” (2) the transfornil', using the matrix square rodgte., T, = +/Ca. The
(2/a) matrix square root can be found using the eigenvalue decomposition
where we used the transform of a random variable to a paveer, of C,, such thatC, = V7 AV, where V is the matrix of
if R=X"7thenpr(r) = qri 'px(r). eigenvectors ana is the diagonal matrix of real-valued eigenvalues
The complex variableZ = Re’® can be rewritten in the bivariate due to the Hermitian symmetric properties of the covariance matrix.
case astr = rcos(f) and z; = rsin(f) with inversesr = |z| = |t is easy to show that/C, = V/AV and also|T,| = 1/|C.|.
V2% + 27 and = atar(zr/zr). The joint distribution ofZ, = Applying the transforniT, to the pdf (6), we obtain

[Zr, Z1)" is found through the density transform as

1
1 pve(Va) = =
Dz, (Z6) = mp(R,@) (\/z% + zf,atar(zf/zR)> |’Iia|

= B(e)e~ MO T AT va)]*
wherep g, o) is the joint distribution ofR and® and the determinant |Tal

of the Jacobian is _ 1 B(e)e o e tva)]” @)

cos(f) —rsin(0) VICal
1= sin(d)  rcos(0) -
which defines the general CGGD distribution parameterized by the
Noting thatpr,e)(r,0) = pr(|z|) 5= due to the independence & shapec and augmented covariance mate.

and© andpe (0 s, our joint distribution becomes

!
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Pz, (@) = %6_(2%“?)"/2 B. CGGD generation
Y
e a 2 | ave To generate CGG distributed samples with pdf (7) using Matlab
_© o (zRt=D) 3)

7T(1/c) (www.mathworks.com), we use the same procedure for constructing
the pdf as outlined in Section llI-A,e., first generate the bivariate

WEgque Wf slutgrsliletzuteed r:esqs/'irl]n':]h((egl)a'sst gnéé%ﬂ:ﬁa?q; 'z.r(;a; S;s'(?ngormalized random variable, then substitute the augmented form,
\t,Z) thecir;/arliance tc)1(9pwithl thel variarllce a function Ioé IFol: the YSnd lastly apply a transform to yield the desired covariance. Given
variable to have unit variance (normalized)u we first .solve for thté]e shape parameter wherec = 1 is Gaussian, and augmented
. Y varian , the following pr r nerateés in ndent
second momentE{Z%} = E{Z?}, with the integral covarianceC, the following procedure generates independe

complex variables:

0 o c (22 Z2)c _ .
E{Z%} = / / 2 —— e GRTZD gady 1) Generate» = 1,..., N complex samples:
— oo ;oo TI'F(I/C) Z(Tl) _ gamrnc(l/c, 1)1/(2c)e(]27r rand);
-~ T, 4 c —(r2)e 2) Normalize the complex variance:
= rocos”(0) ———e r dfdr .
/0 /0 )TrF(l/c) w = z/y/Ne(c) where n.(c) = ?E??J'
B c I'2/e)| _ T'(2/c) @ 3) Form augmented vector:
T(1/c) | 2¢ |~ 2r(1/e) wo = [w, conj(w)]";



4) Calculate transform fron€, using matrix square root: IV. MLE PERFORMANCE

To = sqrtm(Ca); Simulations, using data generated with the procedure in Section IlI-

5) Apply transform: B, are used to quantify the performance of the MLE method outlined
Vo = TaWq in Section 1lI-C; the results are the averages60 runs. We then test

where gamrnd, sqrtm, conj, and rand are Matlab functions. the MLE on actual sea clutter which is a good source of complex-

valued data with a nonstationary distribution.
The results of the shape parameter estimator are shown in Figures
1 and 2. In Figure 1, we plot the shape parameter estimate versus the
Our approach for estimating the shape parameter and covariafig@ shape parameter with sample sizes 28, 256, and 512 with
matrix is to use a maximum likelihood approach. Since our paramgrcular and noncircular data—the noncircular data Ha§Zz2}| =
ters are both real valued and complex valued, we choose to workgin. The results show how well the MLE tracks the true value
the real domain for our MLEIe, the bivariate vector form. Our with 0n|y a S||ght positive bias when > 2 and N = 128. Also
starting point is the log of the pdf (7) witv independent and note that the performance does not degrade with this high value of
identically distributed samples which results in the likelihood fUnCtiOﬁoncircu|arity_ Figure 2 depicts the standard deviation of the Shape
parameter estimate with the same data as the previous figure. As

C. MLE estimator for the covarianc€;, and shape parameter

L(ve;¢) = NIn(B(c)) — %In(|cb|) - indicated, the standard deviation increases linearly with the shape
N . parameter and is the same for both circular and noncircular data.

nc(c)z (v,,T(t)C;lvb(t)) . (8) Figure 3 depicts the performance of tli&, estimate by plotting
t=1 the mean square error (MSE) between the estimate and the true

. 9 9 T . . covariance matrix using circular and noncircular data. What the figure
where our parameter vector # = [o,07,p,c]” and the bivari- . ) .
. . ?Hows is that the MLEs performance increases with both sample
ate vectors are substituted for the augmented vectors. Setting the . ; . :
. . . size and shape parameter with near identical performance using both
derivative of (8) to zero does not yield a closed form solution to the . .
. o ircular and noncircular data. Figure 4 compares the performance of
parameter vector, and hence a numerical solution is warranted. (jur ! .
method is the three step procedure: e MLE and the sample covariance estimator wNh= 256 by
o ) o ) ) depicting the MSE of both estimators versus shape parameter. What
1) The initial Covariance matrix is estimated using the sampige glean from the figure is that the MLE shows better performance
covarianceCy, = >, vo(t)vy (1); _ then the sample covariance estimator as expected, however both
2) The initial shape parametéf is estimated using a momentestimators perform the same wher- 1 since the sample covariance
estimator as suggested in [5], [21]; . . ~is the MLE for the Gaussian case. Figure 5 depicts the number of
3) A Newton-Raphson iteration is used to find the final estimatedeps for the Newton-Raphson iteration to converge versus shape
valuesg. parameter. As seen in the figure, the MLE converges in about five
We show in the simulations section that this three step procediterations on average.
provides fast convergence, typically in five steps with an accuracy ofNext, we test the MLE on complex-valued sea-clutter data with a
1075, over a wide range of parameter values. small target collected with the McMaster University IPIX radar off
In step two, we implement a method of moments estimator pritlie coast of Canada, http://soma.crl.mcmaster.ca/ipix/, see [22] for
to the Newton-Raphson iteration to aid in convergence. The momenore details. The data that we are using is from fifewith radar
used in the estimator is the scale-invariant fourth moment temparameters: X-ban0 m range resolution, horizontal polarization,

defined as . . and pulse repetition time of0~2 seconds. The data is collected in
(v) = E{ZR} E{Z7} blocks of256 time samples with adjacent blocks overlappingl2p
E{z2}*  E{z2}* samples. Each block is then transformed to the frequency domain

which is then tested with the MLE. We test two range gates, one

Using a procedure similar to the one given in (4), we find with a small target in clutter and one with clutter only. Figure 6

K(w) = 30(1/c)I'(3/¢) ) depicts the shape parameter estimate for each block with and without
[['(2/0)]? a target. What we glean from the figure is that when a target is
. present the distribution becomes more super-Gaussian as seen by the
Our moment estimator then solves for the root of o . .
smaller shape parameter values. This is expected since a target in
o) = E{Zy} | E{Z;} 3U(1/c)T(3/c) the frequency domain is a line component causing a heavier tail.
E{Z2}  E{z%}* r(2/c)’ The clutter-only data is closer to a Gaussian distribution but still
resulting in the estimator shows areas of low values, around block50 for example. This
demonstrates the non-stationary nature of sea clutter due to the wind
¢ = argmin |f(c)| (10) and wave interactions with the sea and the ability of our MLE to
° follow these fluctuations. This demonstrates the utility of modeling
over the domairc € [0.1, 4] for the simulations. sea clutter with the CGGD.
The moment estimator given in equation (10) and the sample
covariance are not MLEs, however they provide an accurate initial V. CONCLUSION

value to the Newton-Raphson iteration defined as We introduced a complex-valued generalized Gaussian probability

" =¢" ' —H 'V distribution along with a procedure to generate samples from the
_ _ , _ CGGD. Also presented is a maximum likelihood estimator for the
where V. = % is the gradient andH = % is the shape parameter and covariance matrix using a a Newton-Raphson

Hessian matrix evaluated ap™ '. Both V and H are derived iteration. We show empirically the performance of the MLE on
in the appendix. The MLE coded in Matlab can be found atircular and noncircular simulated data and then on complex-valued
http://mlsp.umbc.edu/resources. radar data.
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APPENDIX — R) _  c _ =2 2
AT COM CDIC O
A. Derivation of gradient of likelihood function c—
’ +(m() gy (1))
We begin with the gradient of equation (8) with respect to the
parameter vectop given by 2 2
. O = WO 0eY (e 1 m(o) i)
oL N9t ey m(e) ma o) ’ b -
9of, 2G| T e + ()" mpp(8)]
oL _NO'IQQ c Z c—1 2 2 2
a2 -n (C)CZ(m(t)) my(t)> o°L _ |Cb‘ —OROJ _ 5C _ c—2
dog 2|Cy t=1 do%002 N 2|Cy|? K (c)c; [fe= 1) (m(®)™
N =
%’; - % —(e)e S (m(t)" my(#), and M (£)my (t) + (m(t))° may (1))
t=1
N
87[’ _ N/Bl(c) 2 C / & c 827[/ — —NU’?p_ c 1 t c—2 t ¢
de = B " @nmen (c);m (t) 9207 TOAERINK (c)c; [(e = 1) (m(1)"" ma(t)m, (1)
a +(m(t)" ma,(t)]
—1°(c) Y m*(t)In(m(t))
t=1
0°L —NoZp s
22 = oz —nee) [(e=1)(m(t) " my(t)mp(t)
where m(t) = vE(HC; ' vo(t), mo(t) = 2 — w=eim) - oidp Co? ;[ o
x2—02 m m £ m —2aT e—1
my(t) = 6(;7;(%> = \CI:| (t), mp(t) = 88£t> = 20 ‘((t:)b‘Q y' +(m(t)) my.ﬂ(t)]7
B(e) = 256 = K4 20 ((1/e) (/). /() = L = oy 1
2 (U(1/c) — 2W(2/c)), and ¥(-) is the digamma function. sozgs = 1 |:c (m(n) + C"nc ) + 1} (m ()" ma(t)
R t=1
N
B. Derivation of Hessian of likelihood function —n°(c)e Y (m(1)* In(m(t))ma (1),
t=1

The terms of the Hessian are the second and cross derivatives of

equation (8) with respect to the parameter vegtaresulting in 521 (0 N -
9L N(o2)? N do2dc = —n°(c) {C (ln(n) + " > + 1} ; (m(£))°™ " my(t)
serr ~ Acp MO [em HmO) T mi . -
t: —r(©)e S (mlt)" ™ Inm(®)my (1),
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