
1

Cross-Platform OpenCL Code and Performance
Portability for CPU and GPU Architectures

Investigated with a Climate and Weather Physics
Model

Han Dong, Dibyajyoti Ghosh, Fahad Zafar, Shujia Zhou
{han6, dg9, fahad3, szhou} @ umbc.edu

University of Maryland Baltimore County

Abstract—Current multi- and many-core computing
typically involves multi-core Central Processing Units
(CPU) and many-core Graphical Processing Units (GPU)
whose architectures are distinctly different. To keep
longevity of application codes, it is highly desirable to
have a programming paradigm to support these cur-
rent and future architectures. Open Computing Language
(OpenCL) is created to address this problem. While the
current implementations of OpenCL compiler provide the
capability to compile and run on the architectures above,
most of the current researches investigate the performance
of GPU’s as a compute device. In this paper we will
investigate the portability of OpenCL across CPU and
GPU architectures in terms of code and performance via a
representative climate and weather physics model, NASA’s
GEOS-5 solar radiation model, SOLAR. An OpenCL
implementation portable between CPU’s and GPU’s has
been obtained with significant performance improvement
in some CPU’s and GPU’s. We found that OpenCL’s
vector-oriented programming paradigm assists compilers
with implicit vectorization and consequently significant
performance gains were achieved.

Index Terms—Multi-threaded environments; Parallel
Applications; OpenCL; Vectorization

I. INTRODUCTION

Current trends in computer processor development
have moved from a single powerful core to multi-core
such as Intel Westmere and IBM Power7 and many-
core accelerators such as NVIDIA Fermi and AMD
FireStream GPU’s. These architectural improvements
are useful only if compute-intensive applications can
efficiently utilize all the resources in a computer
system. However, distinct architecture differences, in
particular between CPU’s and GPU’s, pose a very
challenging task for developing an application code
with longevity as well as optimal performance. OpenCL
is created partially to address these issues. It offers a

standard heterogeneous programming environment for
applications to execute on CPU’s, GPU’s and various
types of accelerators and mobile processors [1][2].
OpenCL provides a SPMD (Single Process Multiple
Data) model for programming where the parallel
portions of a program comprise a grid of work items
executing the same code.

In this paper we explore the code and performance
portability of OpenCL across different platforms
consisting of CPU’s and GPU’s using a real-world,
representative climate and weather physics model, solar
radiation (SOLAR). Furthermore, we investigate the
reasons behind performance and portability of IBM
Power6, and Intel CPU’s and NVIDIA GPU’s in Linux
and Mac OSX environments. We evaluate performance
with the number of physics columns in SOLAR from
128 up to 1024. Across the various platforms we noticed
significant performance gains, especially among Intel
CPU processors, including over 300x speedup on certain
column sizes (see Table II). These results have been
adumbrated along with detailed code analysis in the
following sections. We conjecture that these observed
gains are facilitated by Single Instruction Multiple Data
(SIMD) coding style of OpenCL kernels along with the
implicit vectorization capabilities of the OpenCL SDK’s
provided by the vendors.

The rest of the paper is organized as follows: in
Section II, related work in the area of porting code
to CPU and GPU are discussed. Section III provides
an analysis of the GEOS-5 climate model, specifically
the solar radiation component. Section IV lists the
experimental setup in terms of platforms and hardware.
In Section V, we highlight our experiences in porting
the serial C code to a parallel OpenCL version along
with various optimizations that contributed to the overall
performance gains. Section VI presents the results of
our performance gains along with discussions on the

2

code and performance portability from CPU to CPU
platforms, GPU to GPU platforms, and across CPU and
GPU platforms. Section VII touches upon the topic of
explicit manual vectorization through the use of Intel
AVX [3] intrinsic and we conclude our paper in Section
VIII.

II. RELATED WORK

Although research in OpenCL often discuss the
platform independence as its main benefit [4][5][6], there
are few examples of cross-platform OpenCL implemen-
tations for real world applications. Most work in parallel
programming often focused on the performance of GPU
devices instead of CPU devices [7][8][9] where CUDA
often outperforms OpenCL in executing the same code
[10]. To our knowledge, the few works that discuss
performance of OpenCL in CPU’s by Grosser et al [11]
and Zhang et al [12] provide limited in-depth analysis on
the reasons behind the performance gains even though
it has been shown by Lee et al [13] that CPU’s exhibits
similar performance gains compared to GPU’s given
adequate performance tunings.

The SOLAR code was initially translated from
FORTRAN to C, and ported to the IBM Cell Broadband
Engine by Zhou et al [4] where detailed code analysis
and performance improvements were discussed. Fahad
et al [14] extended the serial, single-precision C im-
plementation of SOLAR to the IBM Power architecture
and Intel x86 architecture with OpenCL and obtained
considerable performance improvement (3x to 4x) per
processor core. However, their implementation only ob-
tained an accuracy of 1.0×10−4 between the serial and
parallel implementations and cannot execute on GPU’s.
In this paper, we improve their implementation with a
code runnable across multiple platforms consisting of
CPU’s and GPU’s with an accuracy of 1.0×10−6 and
demonstrate the dramatic performance gains of executing
OpenCL code on CPU processors.

III. ANALYSIS OF SOLAR RADIATION MODEL

In a climate model, the Earth is represented with a
3 dimensional grid. Typically a latitude-longitude grid
where the horizontal direction is used to solve fluid
dynamics equations. A grid in the vertical direction, so-
called column, is used to describe physical processes
such as solar radiation, cloud, and precipitation. The
NASA GEOS-5 climate model is a production-quality
climate modeling code consisting of a few hundred
thousand lines of code written in FORTRAN, as shown
in Figure 1. In this paper, we focus on a particular

portion of the code handling solar radiation effects
(SOLAR), which can take around 10% of the total run-
time depending upon aerosol effects. The code structure
only has dependence in the vertical direction, which is
representative of physical model components used in
climate and weather models. Reduction in execution time
of SOLAR will allow it to be utilized more frequently
and consequently will help improving the predictability
of climate models such as GEOS-5 and weather models
such as the Weather Research and Forecasting (WRF)
Model. In addition, a unified implementation that pre-
serves performance across heterogeneous architectures
will have an enormous impact on its longevity, therefore
reducing the human cost and effort in maintaining the
code. The program structure of SOLAR is shown in
Figure 2 - bulk computations are done in SOLUV and
SOLIR functions. SOLUV and SOLIR perform ultra-
violet and infrared radiation computations, respectively.
Both utilize many of the same methods inside the code
base. The serial C version of SOLAR used in this paper
utilizes single precision floats and consists of 1500 lines
of code. SOLUV takes around 15% of the total runtime
while SOLIR takes around 80% of the total runtime.

Fig. 1. NASA GEOS-5 climate model structure. The red circle
highlights SOLAR code.

IV. EXPERIMENTAL SETUP

The serial C version of SOLAR is used to con-
firm the accuracy of the results and for performance
comparison. Table I lists the various platforms used
in our work, where COMPUTE UNITS refers to the
number of computational units on each platform. This
is due to OpenCL’s abstract platform model [15], which
maps the number of compute units to the number of
threads in CPU processors and similarly to the number of
Streaming Multiprocessors (SM) in GPU devices. Each
compute unit consists of an array of processing elements

3

Fig. 2. The code structure of solar radiation model, SOLAR.

that execute the code.
The Intel Core i7-2630QM is a 4 core Sandy

Bridge processor which can execute 2 simultaneous
threads per core; it supports the latest Intel Streaming
SIMD Extensions (SSE) 4.2 [16], Advanced Vector
Extensions (AVX) [3] and it executes with maximum
COMPUTE UNITS of 8. The Intel Xeon CPU X5670
is a 6 core Nehalem processor which can execute 2
threads per core; however the node has dual Intel Xeon
X5670 processors which executes with maximum COM-
PUTE UNITS of 24 and it supports Intel’s SSE 4.2. The
Intel Core 2 Duo has 2 cores and can execute 1 thread
per core; it runs with maximum COMPUTE UNITS of
2 and supports the Intel SSE 4.1 extensions. Intel’s SSE
and AVX extensions are special instructions that operate
on 128 bit (SSE) and 256 bit (AVX) registers, which
can pack floating point numbers and execute a single
instruction on each float in parallel [17].

The IBM JS22 Power6 blade has dual quad-
core processors that executes with maximum COM-
PUTE UNITS of 8. NVIDIA GeForce GTX 580M is
a Fermi class GPU with compute capability 2.1. It has 8
SM’s and 48 CUDA cores per SM (total of 384 CUDA
cores). It runs with maximum COMPUTE UNITS of 8.
The GeForce GT 320M has compute capability 1.2 with
6 SMs and 12 CUDA cores per SM (total 72 CUDA
cores), and runs with maximum COMPUTE UNITS of
6.

Intel Core i7 and NVIDIA GTX 580M reside on
the same workstation with Ubuntu 11.04 OS. The Intel
Xeon X5670 and IBM Power6 are on different compute

nodes running different versions of Red Hat Linux.
The Intel Core 2 Duo and GeForce GT 320M reside
on the same workstation with Mac OSX 10.6.7 OS.
The serial C version of SOLAR was compiled with -
O2 optimization flag while the parallel implementations
were compiled with -O2 -cl-fast-relaxed-math -cl-mad-
enable optimization flags.

V. PORTING AND OPTIMIZATIONS

We focused our first OpenCL implementation to
run on CPU due to the simplicity of implementation
compared to GPU where special attention needs to
be given for memory coalescing, utilization of local
memory, and minimizing usage of PCI Express Bus.
The CPU version does not use the PCI Express Bus
and local memory is not needed as OpenCL memory
objects are cached by the processor; explicit caching with
local memory introduces unnecessary overhead [18]. The
parallel version of SOLAR consists of 36 kernels and is
executed on OpenCL compute units, either CPU cores
or GPU SM’s.

The functions in SOLUV and SOLIR are paral-
lelized with insights from Intel OpenCL SDK guide
[18]. Some optimizations included: using temporary data
variables to decrease global memory reads and writes,
removing conditional statements to decrease thread di-
vergence within the kernels. Preprocessor macros were
used for constant variables that dictated kernel loop
iterations. Without preprocessor macros, the number of
iterations per loop was determined at run time, usually
after a kernel is issued by the command queue for execu-
tion. Our preprocessor macros enable OpenCL dynamic
compilation to ensure that the variable is known at kernel
compile time allowing compilers to perform implicit
loop unrolling.

In SOLAR, most of the functions were easily vec-
torized except for the computationally expensive CLD-
FLX function. Listing 6 represents the serial CLDFLX
which not only contains multi-dimensional arrays but
also a three layer conditional statement with data de-
pendencies. A major part of porting and optimization
was spent in breaking the dependence. Listings 7, 8, and
9 represent the result of splitting CLDFLX into three
kernels, upKernel, downKernel, and reductionKernel.
CLDFLX consists of multiple arrays with eight different
layer configurations for clear and/or cloudy weather
conditions. Most arrays are used for initial energy flux
calculations while a final array stores a summation of
the previous energy fluxes. We utilized bit masks with
eight bits to simulate all eight weather configurations.
The upKernel and downKernel are named as such since
the calculations go up and down the columns updating

4

Platform Compute
Units

Clock (GHz) Environment GCC
Version

OpenCL SDK OpenCL
Specification

IBM JS22 Power6 8 4.00 Red Hat 4.1.2-48 4.1.2 IBM Power v0.3 1.1
Intel Core i7 2630QM 8 2.00 Ubuntu 11.04 4.5.2 Intel 1.5 1.1
Intel Core 2 Duo P8600 2 2.40 Mac OSX 10.6.7 4.2.1 Intel 1.1 1.0
GeForce GTX 580M 8 - Ubuntu 11.04 4.5.2 CUDA 4.0.1 1.1
GeForce GT 320M 6 - Mac OSX 10.6.7 4.2.1 CUDA 3.2 1.0
Dual Intel Xeon X5670 24 2.93 Red Hat 4.4.4-13 4.4.4 Intel 1.5 1.1

TABLE I
CHARACTERISTICS OF CPU’S AND GPU’S USED IN PERFORMANCE TESTING.

the initial energy fluxes due to no data dependencies
across the eight different layer configurations. The re-
ductionKernel has data dependencies across the layer
configurations in order to compute an intermediate array
to be used in the final summation. However the interme-
diate array was redundantly recomputed every time. This
was resolved by pre-computing the intermediate array
and passing it to the kernel as an input argument. The
optimizations listed above benefits the GPU devices by
eliminating thread divergence and data dependencies.

The parallel OpenCL implementation contains
around 1800 lines of kernel code and 36 kernels. The ker-
nels range from one-dimensional to three-dimensional.
There are over 70 multidimensional arrays. Each thread
in a kernel maps to each specific index in the arrays
passed as arguments, thus no barriers were required. The
initial porting to OpenCL performed reasonably well on
both CPU and GPU platforms; performance results are
elaborated more in the next section.

VI. RESULTS

Figure 3 shows the execution time for all the dif-
ferent platforms, excluding any initialization, data writes
or reads. In Tables 1 and 2, certain information are
intentionally empty for the GPU’s, such as clock speeds
and speedups per thread. The clocks for the GPU’s are
difficult to compare against CPU’s as GPU’s consist of
multiple vector processing units with its own processing
and graphics clocks. A GPU thread cannot be compared
to a CPU thread as a single GPU thread is much more
lightweight and can be considered as a functional unit
that is part of an entire warp (32 CUDA threads) of
functional units that execute a single vector instruction
across the same data in lockstep.

Table II indicates reasonably good results with Core
i7, Xeon, and GTX 580M. The Core i7 had the best per
thread speedup (24x for each thread) at the case of 512
columns. The Xeon had the best total speedup (359x at
the case of 512 columns) as it could launch 24 threads of
computation compared to the 8 threads of Core i7. The
GTX 580M also showed impressive speedup results even

though there weren’t specific GPU optimizations. Figure
3 demonstrates the scalability of the OpenCL parallel
CPU implementation across the column sizes from 128
up to 1024. Mixed results were recorded with IBM JS22
Power6, Intel Core 2 Duo, and GT 320M platforms.
More detailed analysis of these results are explained in
the next subsections.

A. Performance Portability

Across different CPU platforms, the parallel code
that compiled and ran on one x86 architecture ran
seamlessly on the others as the majority of platforms
adhered to OpenCL 1.1 specifications. One main reason
behind good code portability in the parallel OpenCL
implementation was due to minimal computation com-
plexity within the kernels; the majority of the code
required simple add, subtract, division and multiplication
operations with the occasional if and for loops and did
not utilize many of the native built in functions. We
tested our GPU implementation on two platforms, Mac
OSX v10.6.7 for OpenCL 1.0 specification on NVIDIA
GeForce 320M with compute capability 1.2 and Ubuntu
11.04 for OpenCL 1.1 specification on NVIDIA GTX
580M with compute capability 2.1. After minute changes
were made, we achieved the results with an accuracy
of up to 1.0×10−6 difference compared to the serial C
implementation. It is also important to note the parallel
OpenCL implementation was not optimized for GPU’s.
However the code portability of OpenCL is evident even
across CPU’s to GPU’s and vice versa. The parallel
OpenCL code that compiled and ran on the various CPU
platforms, compiled and executed easily on the GPU
platforms.

B. Code Portability

1) CPU: Table II indicates substantial speedup
from the Intel platforms given a limited amount of
computational threads. The reason being that is the Intel
OpenCL SDK provides implicit vectorization through the
compiler, specifically the SSE [16] and AVX intrinsic

5

Fig. 3. Average execution time from 128 to 1024 columns

Column Size
128 256 512 1024

Platform Per
Thread

Total Per
Thread

Total Per
Thread

Total Per
Thread

Total

Intel Core i7-2630QM 5.5 55 11.25 90 24 192 17.7 142
Dual Intel Xeon X5670 3.3 80 6.8 163.7 14.9 359 13 312
GeForce GTX 580M - 21 - 38 - 61.5 - 26
IBM JS22 Power6 1.3 10.2 0.9 7.16 0.27 2.16 0.742 5.93
Intel Core 2 Duo 1.01 2.02 1.05 2.1 0.89 0.445 - -
GeForce GT 320M - 10.02 - 5.329 - - - -

TABLE II
SPEEDUP ACROSS ALL PLATFORMS

[3]. We utilized the Intel Offline Compiler [19] to output
Intel OpenCL kernel assembly as well as ppu-objdump to
output IBM OpenCL kernel assemblies. The results for
the assembly of Intel platforms can be seen in Listing
1 and 2, which indicates the usage of XMM* registers
which are the 128 bit Intel SSE registers [16] that are
available on both the Core i7 and the Xeon X5670. In ad-
dition, we notice that the Core i7 assembly also includes
YMM* register usage. The YMM* registers are the latest
Intel AVX extensions [3] that supports full 8 wide float-
ing point vectors (256 bit). Instructions such as vmulpd
and vpshufd are special SIMD instructions belonging to
the Intel SSE family. The main reason for the dramatic
speedup in our implementation is due to the fact that
the Intel OpenCL SDK helped GCC compiler to further

vectorize instructions at assembly level and the coding
style of OpenCL contributed greatly to this implicit
vectorization. OpenCL’s coding style is SIMD based as
it is intended to run on GPU’s too. Optimizations that are
important for GPU’s such as reducing thread divergence
and improving stridden memory accesses greatly helps
compilers for CPU’s. The primary reason is due to
SIMD style of kernel programming since it eliminates
complex loop constructs. This helps compilers to provide
more effective vectorization as it usually behaves in a
conservative manner for vectorization, only proceeding
when it is safe [20]; this relies upon data dependency
graphs of the loops. If there are no cycles in the graph
then the loop can be easily vectorized [21], and cycles
are broken through the optimization of kernels originally

6

intended to execute on GPU’s to fully exploit the SIMD
feature of vector processors.

vmulpd YMM1, YMM4, YMM1
vpshufd XMM4, XMM5, 3
vcvtss2sd XMM4, XMM4, XMM4
vmovhlps XMM8, XMM5, XMM5
vcvtss2sd XMM8, XMM8, XMM8

Listing 1. OpenCL offline compiler assembly dump of a portion of
kernel code on Intel i7-2630QM.

vmulss XMM0, XMM0, DWORD PTR [RSP +
84]

vmovss XMM1, DWORD PTR [RIP + .
LCPI56_0]

vaddss XMM2, XMM0, XMM1
vmovss DWORD PTR [RSP + 60], XMM2

Listing 2. OpenCL offline compiler assembly dumping of a portion
of kernel code on Intel Xeon X5670.

In Listing 3, vectorization can also be seen on
IBM Power6. Instructions starting with va* and vm*
are the special AltiVec SIMD instruction sets [22] used
for vector multiply and adds. The AltiVec instruction
set enables the usage of 128 bit registers. However,
the performance of the Power6 is not as good as Intel
Core i7 or Xeon. The best speedup was at 128 columns
where a 1.3x speedup per thread was seen. One potential
reason is GCC rather than XLC compiler was utilized to
compile and execute on Power6. Additionally, utilizing
-O2 and -O3 optimization flags with GCC on Power6
produced no speedup for both serial and parallel code. In
fact, the serial implementation executed slower with -O2
and -O3 optimization flags compared to no optimization
flag usage. XLC is a commercially available compiler
from IBM and is specifically designed for PowerPC
architectures; it performs native implicit vectorization to
utilize the AltiVec instruction sets [23]. From the work
of Fahad et al [14], a 3x to 4x speedup was witnessed
per core on the same JS22 IBM Power6 blade due to
optimizations by XLC compiler; further evidence can be
seen from [14] as the serial code on Power6 executed
2.5x faster with XLC compared to GCC. Other research
has also shown XLC to perform better compared to GCC
[24][25]. Why does GCC improve OpenCL performance
on Intel x86 but not so much on IBM PowerPC? The
reason could be due to the difference between Intel
OpenCL SDK and the IBM OpenCL SDK. Intel’s imple-
mentation of OpenCL 1.1 specifications is specifically
optimized for Intel processors; furthermore it provides
implicit vectorization by mapping the code to hardware
vector units and merges OpenCL work items in order
to utilize SSE and AVX intrinsic [26]. However, IBM
OpenCL SDK [27] does not explicit mention implicit

AltiVec vectorization is supported natively through their
OpenCL compiler. Unfortunately, XLC is needed with
IBM OpenCL SDK in order to implicitly generate low
level AltiVec instructions which were unavailable in our
test platforms. Our investigation in the IBM OpenCL
kernel assembly indicated only a small fraction of Al-
tiVec instructions were utilized while the Intel OpenCL
Offline compiler indicated that both Intel Core i7 and
Xeon (Listing 1 and 2) utilized more SSE and AVX
intrinsic.

100006cc: 10 05 29 80 vaddcuw v0,
v5,v5

100006d0: 00 00 0b b0 .long 0xbb0
100006d4: 12 00 00 00 vaddubm v16,

v0,v0
100006d8: 00 00 04 37 .long 0x437
100006dc: 10 05 26 64 vmsumubm v0,

v5,v4,v25

Listing 3. ppu-objdump of assembly on IBM Power6.

2) GPU: The GT 320M has 16 KB of local
memory per SM while the GTX 580M has 49 KB of
local memory per SM. Exploring local memory was
severely limited due to large data size requirements in
each column of SOLAR. Attempts to modify multiple
kernels to use local memory blocks did not record any
improvement compared to the non-local memory kernel
code performance. For maximal PCI Express bandwidth
utilization we experimentally used pinned memory. On
PCIe Gen2 cards, pinned memory can attain greater than
5 GBps transfer rate [28]. One problem was OpenCL’s
limitation compared to CUDA when it comes to utilizing
pinned memory. OpenCL does not have control over
whether memory objects are allocated in the pinned
memory. Developers can only request for pinned mem-
ory allocation by CL MEM ALLOC HOST PTR. The
computational flow of SOLAR is not embarrassingly
parallel. It included over 70 multi-dimensional arrays
that needed to be allocated on global memory. This con-
tributed to the difficulty in implementing GPU specific
optimizations as we were not able to identify a specific
kernel that could benefit from utilizing local memory.
However, the attempts to merge kernels greatly improved
GPU performance as we reduced the original 70 kernels
from Fahad et al [14] to about half (36 kernels). Kernel
aggregation helps to reduce kernel invocation overhead
and the optimizations listed in Section V produced more
performance gain. Specifically in GTX 580M, the best
speedup of 61.5x was seen with the case of 512 columns.
However this performance does not seem to be portable
as GT 320M had a performance decrease from 10x at
128 columns to 5x at 256 columns while GTX 580M

7

increased its speedup from 21x at 128 columns to 38x at
256 columns. The GTX 580M was using CUDA’s latest
OpenCL SDK that is adhering to OpenCL 1.1 specifi-
cations while the GT 320M was using an older version
of the SDK that only supported the 1.0 specifications
(Table I). This difference can result in compilers doing
more optimizations with the GTX 580M. Both GPU’s
ran slower at 256 columns compared to 128 columns;
the GTX 580M was 10% slower while the GT 320M
was 4x slower (Figure 3). The GTX 580M not only has
more cores per SM (384 CUDA Cores) compared to the
GT 320M (72 CUDA Cores), but also has more memory
and faster clock speeds [29]. At 256 columns, the GT
320M did not have enough physical resources to run the
application efficiently. The memory limitations of the GT
320M also meant that it was not successful in running
the code at column sizes 512 and 1024 as segmentation
faults occurred (Table II).

VII. DISCUSSION

The Intel Core i7 is a Sandy Bridge processor.
Listing 1 indicates automatic promotion of float arrays
to either float4, thereby using the 128 bit SSE registers
(XMM*), or float8, which are the new 256 bit AVX
registers (YMM*). Since AVX register usage was
limited on Intel Core i7, we attempted to explicitly
use vector data types of float8 instead of regular floats
by including attribute ((vec type hint(float8))) for
each kernel header and padded floating arrays to be
divisible by 8. The main benefit of utilizing manual
vector data types is the ability to map the vector data
to the hardware vector registers. Therefore the float8
arrays will be matched to the width of the underlying
YMM* AVX registers. Although this will adversely
affect the performance portability of the code given that
we are targeting a specific vector width, we hope to
achieve significant gains in performance for the targeted
platform. We have managed to manually vectorize the
SOLUV function which allows performance comparison
of the manually vectorized SOLUV against the SOLUV
of the original parallel OpenCL implementation. The
main challenge in manual vectorization is that vector
data types cannot be used in conditional statements; we
utilized built-in relational functions such as isgreater
or isless and called stub functions for each side of
the conditional in order to resolve this. In addition,
we explicitly avoided extracting vector components
during computation by utilizing vector operations for all
computation to eliminate forced reloading of the same
vector from memory.

vmovaps YMM0, YMMWORD PTR [RIP + .
LCPI16_0]

vdivps YMM0, YMM0, YMMWORD PTR [
R12 + R13]

mov RAX, QWORD PTR [RBP + 24]
vmovaps YMMWORD PTR [RAX + R13], YMM0
mov RAX, QWORD PTR [RBP + 32]
vmovaps YMM0, YMMWORD PTR [RAX + R13]
vmaxps YMM0, YMM0, YMMWORD PTR [

RIP + .LCPI16_1]
vmovaps YMMWORD PTR [RSP], YMM0 # 32-

byte Spill

Listing 4. Intel OpenCL Offline Compiler output of assembly on
Intel Core i7 with explicit AVX.

vmovq XMM0, RAX
vmovlhps XMM0, XMM0, XMM0
vmovaps XMMWORD PTR [RSP + 192], XMM0
vmovaps YMM1, YMMWORD PTR [RIP + .

LCPI9_0]
vextractf128 XMM2, YMM1, 1
vpaddq XMM2, XMM0, XMM2
vpshufd XMM2, XMM2, 8
vmovaps YMMWORD PTR [RSP + 160], YMM1

Listing 5. Intel OpenCL Offline Compiler output of assembly on
Intel Core i7 WITHOUT explicit AVX.

Listings 4 and 5 indicate the difference in usage of
registers; both listings show the same assembly. How-
ever, our results indicate a 5% to 10% speed improve-
ment over the original parallel OpenCL code. The main
reason that our speedup was not as much as expected
was due to the time it took SOLUV to run compared
to SOLIR; SOLUV only takes about 10% to 15% of
the total runtime while SOLIR took 70% to 80% of the
total runtime. We plan to further explore manual usage
of AVX vector data types by converting SOLIR to utilize
float8 as well.

The Intel Core 2 Duo did not show the performance
improvements as seen in the Intel Core i7 and Xeon. We
suspect this is due to an older version of Intel OpenCL
SDK on Mac OSX (Table I). This older Intel OpenCL
SDK could have a premature implementation of implicit
vectorization compared to the 1.5 SDK and additionally
the Core 2 Duo only supports SSE 4.1 intrinsic, which
contains a limited set of SSE instructions and registers,
therefore resulting in less performing assembly code.
Currently, Intel OpenCL SDK 1.5 does not support Mac
OSX so we are not able to fully investigate the reasons
behind the results seen in the Intel Core 2 Duo. It
may also be of interest to output the assembly of the
executable on Mac OSX in order to confirm the existence

8

of any vectorization.

VIII. CONCLUSION

We have developed a OpenCL code for a rep-
resentative climate and weather physics model that is
able to run across multiple different platforms with
dramatic performance improvement over each core. We
believe these dramatic speedups in CPU demonstrate that
OpenCL provides an interface to implement light-weight
multi-threaded code on CPU’s as POSIX threads are
often much heavier when used in parallel programming.
OpenCL provides access to a multi-threaded program-
ming and execution model while providing a lower level
memory and thread management similar to that of CUDA
for NVIDIA GPU’s. We demonstrated autovectorization
capabilities of the OpenCL compilers across platforms
and have shown significant improvement gains.

REFERENCES

[1] J. Y. Xu, “Opencl the open standard for parallel programming
of heterogeneous systems,” 2008.

[2] D. Singh, “Higher level programming abstractions for fpgas
using opencl,” 2011. [Online]. Available: www.eecg.toronto.
edu/∼jayar/fpga11/Singh Altera OpenCL FPGA11.pdf

[3] INTEL.COM, “Product page,” http://software.intel.com/en-us/
avx, 2011.

[4] S. Zhou, D. Duffy, T. Clune, M. Suarez, S. Williams, and
M. Halem, “The impact of IBM Cell technology on the pro-
gramming paradigm in the context of computer systems for
climate and weather models,” CONCURRENCY AND COM-
PUTATION: PRACTICE AND EXPERIENCE, pp. 2176–2186,
2009.

[5] A. Munshi, “Opencl, parallel computing on the gpu and cpu,”
2008.

[6] J. Brietbart and C. Fohry, “Opencl - an effective programming
model for data parallel computations at the cell broadband
engine,” 2010.

[7] M. J. and V. M., “GPU acceleration of numerical weather
prediction,” Parallel Processing Letters Vol. 18 No. 4. World
Scientific, pp. 531–554, Dec 2008.

[8] J. M. T. H. Govett, M., “Running the NIM next-generation
weather model on gpus,” The 10th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing, May 2010.

[9] K. R, “Gpu computing for atmospheric modeling experience
with a small kernel and implications for a full model,” Com-
puting in Science and Engineering, 2010.

[10] K. Komatsu, K. Sato, Y. Arai, K. Koyama,
H. Takizawa, and H. Kobayashi, “Evaluating perfor-
mance and portability of opencl programs,” Science
And Technology, vol. 2, pp. 781–784, 2010. [On-
line]. Available: http://vecpar.fe.up.pt/2010/workshops-iWAPT/
Komatsu-Sato-Arai-Koyama-Takizawa-Kobayashi.pdf

[11] T. Grosser, A. Gremm, S. Veith, G. Heim, W. Rosenstiel,
V. Medeiros, and M. E. de Lima, “Exploiting heterogeneous
computing platforms by cataloging best solutions for resource
intensive seismic applications,” INTENSIVE 2011, The Third
International Conference on Resource Intensive Applications
and Services, pp. 30–36, 2011.

[12] W. Zhang, L. Zhang, S. Sun, Y. Xing, Y. Wang, and J. Zheng, “A
preliminary study of opencl for accelerating ct reconstruction
and image recognition,” Nuclear Science Symposium Confer-
ence Record (NSS/MIC), 2009 IEEE, pp. 4059–4063, 2009.

[13] V. W. Lee, C. Kim, J. Chhugani, M. Deisher, D. Kim,
A. D. Nguyen, N. Satish, M. Smelyanskiy, S. Chennupaty,
P. Hammarlund, R. Singhal, and P. Dubey, “Debunking
the 100x gpu vs. cpu myth: an evaluation of throughput
computing on cpu and gpu,” SIGARCH Comput. Archit. News,
vol. 38, no. 3, pp. 451–460, Jun. 2010. [Online]. Available:
http://doi.acm.org/10.1145/1816038.1816021

[14] F. Zafar, D. Ghosh, L. Sebald, and S. Zhou, “Accelerating a
climate physics model with opencl,” Symposium on Application
Accelerators in High-Performance Computing 2011, 2011.

[15] AMD, “Opencl and the amd app sdk,” http:
//developer.amd.com/documentation/articles/pages/
OpenCL-and-the-AMD-APP-SDK.aspx, April 2011.

[16] INTEL.COM, “Product page,” http://www.intel.com/support/
processors/sb/CS-030123.htm, Apr. 2011.

[17] S. Siewert, “Using intel streaming simd extensions and intel
integrated performance primitives to accelerate algorithms.”
[Online]. Available: http://software.intel.com/en-us/articles/

[18] Intel, “Writing optimal opencl code with intel opencl sdk,” http:
//software.intel.com/file/39189, 2011.

[19] INTEL.COM, “Inspect your code with the intel opencl
sdk offline compiler,” http://software.intel.com/en-us/articles/
inspect-your-code-with-intel-opencl-sdk-offline-compiler/,
Apr. 2011.

[20] M. Garzarn and S. Maleki, “Program optimization through
loop vectorization,” http://agora.cs.illinois.edu/download/
attachments/38305904/9-Vectorization.pdf, 2010.

[21] C. M. J. Garzaran, “Loop vectorization,” https:
//agora.cs.illinois.edu/download/attachments/28937737/
10-Vectorization.pdf, 2010.

[22] IBM, “Power isa version 2.03,” http://www.power.org/
resources/downloads/PowerISA 203 Final Public.pdf, 2006.

[23] IBM, “XL C/C++ for linux,” http://www-01.ibm.com/software/
awdtools/xlcpp/linux/.

[24] I. I. B. Buros, “Linux performance,” http://www.ibm.com/
developerworks/wikis/download/attachments/104533332/
BillBurosSTG-LinuxonPower-PerformanceConsiderations.ppt,
Feb. 2007.

[25] R. H. Team, “Survey of GCC performance,” http://people.
redhat.com/bkoz/benchmarks.

[26] INTEL.COM, “Intel opencl sdk,” http://software.intel.com/
en-us/articles/intel-opencl-sdk/, Apr. 2011.

[27] IBM, “OpenCL Development Kit for Power,”
https://www.ibm.com/developerworks/community/
groups/service/html/communityview?communityUuid=
80367538-d04a-47cb-9463-428643140bf1.

[28] NVIDIA.COM, “Opencl best practices guide,”
http://developer.download.nvidia.com/compute/cuda/3 2/
toolkit/docs/OpenCL Best Practices Guide.pdf, May 2010.

[29] NVIDIA, http://www.geforce.com/Hardware/NotebookGPUs/
geforce-gtx-580m.

9

f o r (i h =0; ih <2; i h ++)
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / c a l c u l a t e t d a [0] [i h] [0] [mb] , t t a [. .] , r s a
[. .]

/ / c a l c u l a t e t d a [1] [i h] [0] [mb] , t t a [. .] , r s a
[. .]

/ / c a l c u l a t e r r a [i h] [0] [LM+1][mb] , rxa [. .]
/ / c a l c u l a t e r r a [i h] [1] [LM+1][mb] , rxa [. .]
}
f o r (L=1; L< i c t ; L++)
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / c a l c u l a t e t d a [0] [i h] [L] [mb] , t t a [. .] , r s a
[. .]

/ / c a l c u l a t e t d a [0] [i h] [L] [mb] , t t a [. .] , r s a
[. .]

}
}
f o r (im=im1−1; im<im2 ; im ++)
{

f o r (l = i c t ; l<i c b ; l ++)
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / up da t e t d a [m] [i h] [l] , t t a [m] [i h] [l] , r s a [m
] [i h] [l]

}
}
}
}
f o r (i h =0; ih <2; i h ++)
{

i f (i h ==0)
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / c l e a r p o r t i o n , up da t e ch [mb]
}
}
e l s e
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / c l o u d y p o r t i o n , up da t e ch [mb]
}
}

f o r (im =0; im<2; im ++)
{

i f (im ==0)
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / c l e a r p o r t i o n , up da t e cm[mb]
}
}
e l s e
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / c l o u d y p o r i t o n , up da t e cm[mb]
}

}
f o r (i s =0 ; i s <2; i s ++)
{

i f (i s ==0)
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / c l e a r p o r t i o n , up da t e c t [mb]
}
}
e l s e
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / c l o u d y p o r t i o n , up da t e c t [mb]
}
}
}

f o r (l = i c b ; l<LM+1; l ++)
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / up da t e t d a [im] [i h] [l] [mb] , t t a [. . . .] ,
r s a [. . . .]

}
}
f o r (l = i c t ; l >−1; l−−)
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / up da t e r r a [i s] [im] [l] [mb] , rxa [. . . .]
}
}
f o r (l =1 ; l<=LM+1; l ++)
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / up da t e f d n d i f [mb] , f l x d n [l] [mb]
}
}
f o r (l =0 ; l<LM+1; l ++)
{

f o r (mb=0; mb<M BLOCK; mb++)
{

/ / up da t e f a l l [l] [mb] , f s d i r [mb] , f s d i f [mb]
}
}
}
}

Listing 6. Serial CLDFLX code

10

f o r (l = 0 ; l <= NLM + 1 ; l ++)
temp dev rxa = r x a [s t r i d e 5 D + l ∗ NM BLOCK +

k] ;
t e m p d e v r r a = r r a [s t r i d e 5 D + l ∗ NM BLOCK

+ k] ;
denm = 1 . 0 / (1 . 0 − d e v r s a 0 ∗

t emp dev rxa) ;
xx = d e v t d a 0 ∗ t e m p d e v r r a ;
yy = d e v t t a 0 − d e v t d a 0 ;
t e m p f d n d i f = (xx ∗ d e v r s a 0 + yy) ∗ denm ;
f u p d i f = (xx + yy ∗ t emp dev rxa) ∗ denm ;
f l x d n [l ∗ NM BLOCK + k] = d e v t d a 0 +

t e m p f d n d i f − f u p d i f ;
i f (l == (NLM+1))

f d n d i r [k] = d e v t d a 0 ;
f d n d i f [k] = t e m p f d n d i f ;

i f (l < (NLM+1))
t e m p r r = r r [s t r i d e 3 D + l ∗NM BLOCK+k] ;

t emp rs = r s [s t r i d e 3 D + l ∗NM BLOCK+k] ;
t emp td = t d [s t r i d e 3 D + l ∗NM BLOCK+k] ;
t e m p t s = t s [s t r i d e 3 D + l ∗NM BLOCK+k] ;
t e m p t t = t t [s t r i d e 3 D + l ∗NM BLOCK+k] ;

denm = t e m p t s / (1 . 0 − d e v r s a 0 ∗
t emp rs) ;

d e v t d a 1 = d e v t d a 0 ∗ t emp td ;
d e v t t a 1 = d e v t d a 0 ∗ t e m p t t + (

d e v t d a 0 ∗ d e v r s a 0 ∗ t e m p r r +
d e v t t a 0 − d e v t d a 0) ∗ denm ;

d e v r s a 1 = temp rs + t e m p t s ∗
d e v r s a 0 ∗ denm ;

d e v t d a 0 = d e v t d a 1 ;
d e v t t a 0 = d e v t t a 1 ;
d e v r s a 0 = d e v r s a 1 ;

Listing 7. upKernel: First kernel out of three produced to break
data dependence in the serial CLDFLX code - loops up the columns
to update tda tta rsa

i n t mask1 [8] = {0 , 1 , 0 , 1 , 0 , 1 , 0 , 1} ;
i n t mask2 [8] = {0 , 0 , 1 , 1 , 0 , 0 , 1 , 1} ;
i n t mask3 [8] = {0 , 0 , 0 , 0 , 1 , 1 , 1 , 1} ;
i = g e t g l o b a l i d (0) ; j = g e t g l o b a l i d (1) ;
i h = mask1 [j] ; im = mask2 [j] ; i s = mask3 [j] ;
k = j ∗ 16 + i ;
s t r i d e 3 D = i h ∗ (NLM+2)∗NM BLOCK;
s t r i d e 5 D = i s ∗2∗ (NLM+2)∗NM BLOCK+im ∗ (NLM+2)∗

NM BLOCK;
temp = r r [i s ∗ (NLM+2) ∗ NM BLOCK + (NLM+1) ∗

NM BLOCK + k] ;
r r a [i s ∗ 2 ∗ (NLM+2) ∗ NM BLOCK + im ∗ (NLM+2)

∗ NM BLOCK + (NLM+1) ∗ NM BLOCK + k] =
temp ;

r x a [i s ∗ 2 ∗ (NLM+2) ∗ NM BLOCK + im ∗ (NLM+2)
∗ NM BLOCK + (NLM+1) ∗ NM BLOCK + k] =

temp ;
d e v r r a 0 = temp ;
dev rxa0 = temp ;
f o r (l = NLM; l >= 0 ; l −−)

t e m p r r = r r [s t r i d e 3 D + l ∗NM BLOCK+k] ;
t emp rs = r s [s t r i d e 3 D + l ∗NM BLOCK+k] ;
t emp td = t d [s t r i d e 3 D + l ∗NM BLOCK+k] ;
t e m p t s = t s [s t r i d e 3 D + l ∗NM BLOCK+k] ;
t e m p t t = t t [s t r i d e 3 D + l ∗NM BLOCK+k] ;
denm = t e m p t s / (1 . 0 − t emp rs ∗ dev rxa0) ;
d e v r r a 1 = t e m p r r + (temp td ∗ d e v r r a 0 + (

t e m p t t − t emp td) ∗ dev rxa0) ∗ denm ;
dev rxa1 = temp rs + t e m p t s ∗ dev rxa0 ∗

denm ;
r r a [s t r i d e 5 D + l ∗NM BLOCK+k] = d e v r r a 1 ;
r x a [s t r i d e 5 D + l ∗NM BLOCK+k] = dev rxa1 ;
d e v r r a 0 = d e v r r a 1 ;
dev rxa0 = dev rxa1 ;

Listing 8. downKernel: Second kernel out of three produced to break
data dependence in the CLDFLX code - loops down the columns to
update rra rxa

i n t mask1 [8] = {0 , 1 , 0 , 1 , 0 , 1 , 0 , 1} ;
i n t mask2 [8] = {0 , 0 , 1 , 1 , 0 , 0 , 1 , 1} ;
i n t mask3 [8] = {0 , 0 , 0 , 0 , 1 , 1 , 1 , 1} ;
mb = g e t g l o b a l i d (0) ;
l = g e t g l o b a l i d (1) ;
k = g e t g l o b a l i d (2) ;
i h = mask1 [k] ; im = mask2 [k] ; i s = mask3 [k] ;
f c l r [l ∗ NM BLOCK + mb] = f l x d n [(l +1) ∗ (

NM BLOCK+1) + mb] ;
f a l l [l ∗ NM BLOCK + mb] = f a l l [l ∗ NM BLOCK +

mb] + f l x d n [(l +1) ∗ (NM BLOCK+1) + mb] ∗
c t D a t a [(i h ∗ 4 + im ∗ 2 + i s ∗ 1) ∗ 128 +
mb] ;

Listing 9. reductionKernel: Final kernel produced to break data
dependence in the serial CLDFLX code - ctData is the precomputed
array to eliminate dependencies across bitmasks

