

Probing High Power Logic Die at Sort

Tim Swettlen 2200 Mission College Blvd. M/S SC2-07 Santa Clara, CA 95054 *Tim.Swettlen@intel.com* 



Intel Test Tooling Operations

### Agenda

- High Power A Test Point of View
- How a Probe Card Affects Power Delivery
  - Space Transformer
  - PCB
  - Probes/Needles
  - Interconnects
- Improvements to the Probe Card
- Measuring the Probe Card
- Summary



## What is High Power?

- For this discussion, products that consume >> 30 Watts of power
  - 1998: Only a few server products (~10%)
  - 2001: All but a few products (~80%)
- Trends:
  - Voltages decreasing
  - Current demand is rapidly increasing
  - Power<sup>1</sup> is exponentially trending over time.

| Year | Frequency | Current | Power | Voltage |
|------|-----------|---------|-------|---------|
| 1990 | 16 mHz    | 1 A     | 5 w   | 5 v     |
| 1993 | 66 mHz    | 3 A     | 10 w  | 3.3 v   |
| 1996 | 200 мнг   | 12 а    | 30 w  | 2.5 v   |
| 1999 | 600 mHz   | 50 а    | 90 w  | 1.8 v   |
| 2002 | 1200 MHz  | 150 а   | 180 w | 1.2 v   |

Source: Power Distribution System Design Methodology & Capacitor Selection for Modern CMOS Technology. L. Smith, R. Anderson, D. Forehand, T. Pelc, T. Roy



#### Intel Test Tooling Operations

Southwest Test Workshop 2001 Tim Swettlen – Intel Corp

<sup>1</sup> Power = Voltage\*Current

### **Power Delivery**

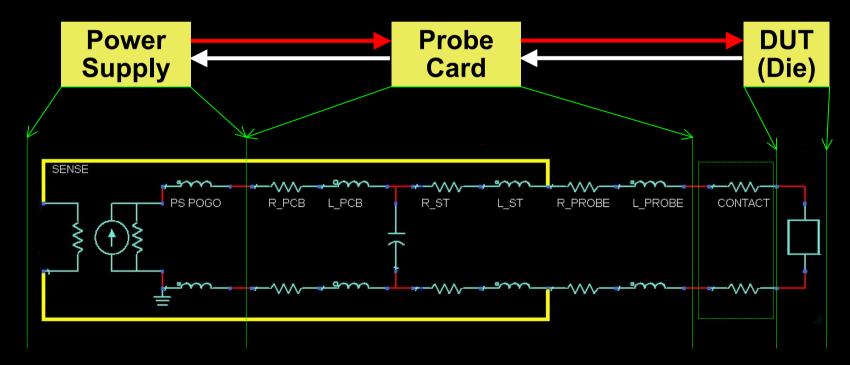

- Goal #1: <u>Stable Voltage</u> during test
  - Many devices require <10% voltage margin</li>
  - Violation can cause false fails at testing
- Why this is a challenge:
  - Current demand (  $\Delta I$  ) is rapidly growing
  - Voltage margins decreasing

$$V = I * Z \qquad \qquad \checkmark \qquad Z = \frac{V}{I}$$

$$Z = \frac{\bigvee \Delta V}{\uparrow \Delta I}$$

Delta V drops Delta I rapidly grows

Impedance targets, Z, are reduced




Intel Test Tooling Operations

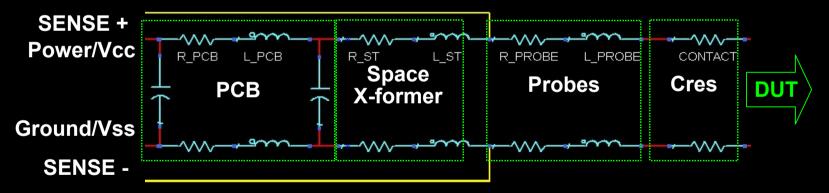


### **Probe Card Impedance**

- Impedance is analogous to resistance, but is a function of frequency  $Z \propto R(f)$ 
  - Loss of energy due to resistance
  - Storage of energy due to inductance and capacitance






Intel Test Tooling Operations

## **Probe Card Impedance**

#### Electrical view of the probe card

#### – PCB & Space Transformer

- » Metal planes
- Probes & Contact Resistance
  - » Many (in parallel) wires
- Capacitance



- Assumes C4 design
- Ignores interface between ST/PCB
- Ignores interface between PCB/PS

Intel Test Tooling Operations

## **Impedance Impacts**

- PCB and Space Transformers
  - Power plane distribution losses
    - » R = Conductivity concerns (Ohms/square)
    - » L = Current flow impediments
      - Breaks in the planes (vias and mounting hardware)

Interfaces

- BGA, Pogo Pins, Solder Joints, Interposers, Probes, etc.

- » R = DC drop at interfaces
  - Contact Resistance
- » R = DC drop due to length
- » L = Large loops (pitch) and lengths



Intel Test Tooling Operations

Southwest Test Workshop 2001 Tim Swettlen – Intel Corp

**Break** 

Slide 8

## intel®

## **Improvements – Resistance**

- Reducing Overall Resistance
  - Reduce Contact Resistance
    - » More Power and ground probes in parallel
  - Better Electrical Probes
    - » Shorter
    - » Better conductivity
  - Interfaces (BGA, probes to Space transformer, etc.) with better contact resistance
  - More Space Transformer Planes in Parallel

#### Some Resistance can be nullified by sensing

- <u>Over time</u> (milliseconds) the power supply can
   'overdrive' the system voltage to null out resistance
- Limitations exist as to how far into the system one can tap

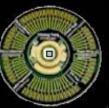


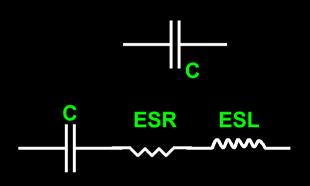


### **Improvements – Inductance**

- Reducing Inductance
  - Reduce interconnect inductance
    - »  $L_{SELF}$  is a direct function of length
    - » Changes in interconnect wire diameter have a small impact
    - » Tighter pitches lend to reducing inductance
    - » Intercalating Power and Ground connections
  - Reduce or remove breaks in the power planes
    - » Places where power and ground paths are separated

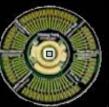
#### Ground path is as important as Power path!


- Equal and opposite currents travel in ground return




Intel Test Tooling Operations

### **Improvements – Capacitance**


- Selecting Capacitance
  - Location, Location, Location
    - » Locate electrically close to DUT
  - Quantity
    - » Too little will diminish effect
    - » Too much will load the circuit
  - Quality
    - » Capacitance has parasitic attributes as well
      - ESR → Resistance
      - ESL → Inductance
    - » Use a Frequency domain analysis to better understand each
- Pick capacitance understanding tradeoffs of ESR,ESL & C





### **Improvement Summary**

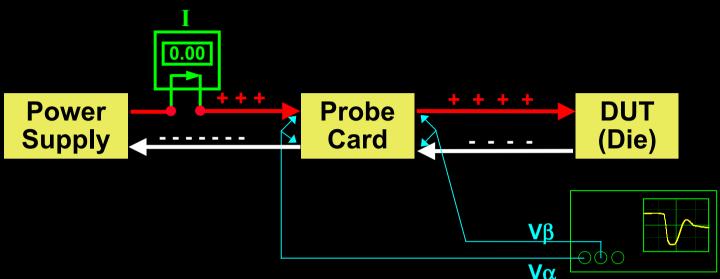
- Major areas of focus:
  - Reduce (AND STABLIZE) Contact Resistance
    - » Shaped tips
  - Shrink interface geometries
    - » Reduce probe/needle lengths
      - Shorter interface means less R & L
  - Capacitor placement
    - » Allow for capacitors to be electrically close to DUT
    - » Focus on many parallel components
      - Reduces ESR & ESL
- Secondary areas of focus:
  - Reducing PCB and ST thickness
  - Intercalate any interface with multiple contacts
  - Tighter pitch interfaces
    - » Reduces the inductance



Intel Test Tooling Operations

## **Measuring Improvements**

- Two equivalent methods
  - Impedance over the operating spectrum (Freq. Domain)
    - » Use a Low Impedance Analyzer
    - » Want to understand Impedance from DC to die demands
    - » Best for piecewise understanding
  - Measure Voltage under load (Time Domain)
    - » Measure the probe card under known load
    - » Best for system response understanding


#### Mix and match the two...

- Delve into the high impact items with piecewise models while still measuring full system response
  - » Superposition allows for piecewise measurements of the system



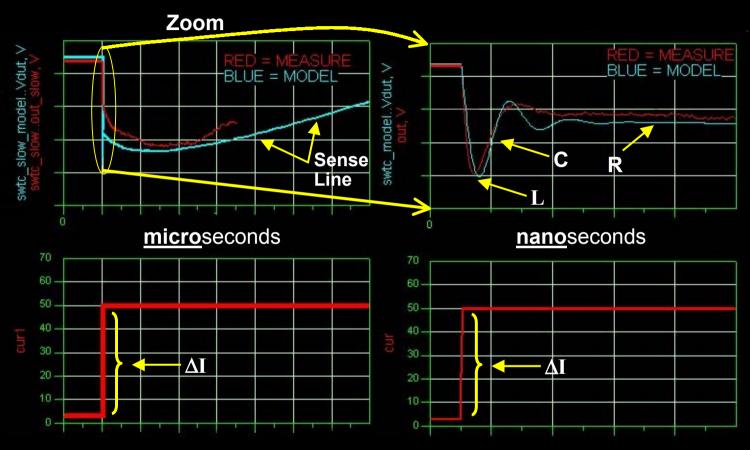


## **One Method – Measuring a Probe Card**



- Voltage drop =  $V\alpha V\beta$
- Measuring current changes will determine DUT load/demand

**Remember:** 


Inductance 
$$\rightarrow V_L = L^* \frac{\Delta I}{\Delta t}$$
  
Resistance  $\rightarrow V_R = I_{DC}^* R$   
 $\therefore Voltage \_ Drop \rightarrow (V_{\alpha} - V_{\beta}) = (V_R + V_L)$ 



Intel Test Tooling Operations



#### **Measurements & Models**



- This design has two distinctive droops
  - Due to placed capacitors
    - » One in nanoseconds (Right Top)
    - » One in microseconds (Left Top)

Intel Test Tooling Operations

## Summary

#### Reduce impedance as power increases

- Reducing Resistance
- Reducing Inductance
- Strategically placing the right amount of capacitance

#### Areas of focus:

- 1. Reducing Contact Resistance
- 2. Reducing Interface lengths
- 3. Allowing for capacitor placement zones
- Measure to validate changes
  - Modeling is good, but limited to quality of input info
  - Superposition allows for piecewise measuring





## **THANK YOU!**

#### **Special Thanks to:**

### Brett Grossman – Intel John Morrissey – Intel



Intel Test Tooling Operations