
Revision 3.0 March 1995

SOFTWARE USERíS MANUAL
FOR
KQML
 (Knowledge Query and
Manipulation Language)

CONTRACT NO. F30602-93-C-01770
CDRL SEQUENCE NO. A008

Prepared for:
United States Air Force�Advanced Research Projects Agency (ARPA)

Prepared by:
Unisys Corporation�70 East Swedesford Road�Paoli, PA 19301
�Table of Contents
� TOC \o "1-3" �1. Scope	� GOTOBUTTON _Toc319929630 � PAGEREF _Toc319929630 �1��
1.1 Identification	� GOTOBUTTON _Toc319929631 � PAGEREF _Toc319929631 �1��
1.2 System Overview	� GOTOBUTTON _Toc319929632 � PAGEREF _Toc319929632 �1��
1.2.1 What is KQML?	� GOTOBUTTON _Toc319929633 � PAGEREF _Toc319929633 �1��
1.2.2 Using KQML in End-User Applications	� GOTOBUTTON _Toc319929634 � PAGEREF _Toc319929634 �1��
1.2.3 Using the TCP/IP API	� GOTOBUTTON _Toc319929635 � PAGEREF _Toc319929635 �1��
1.3 Document Overview.	� GOTOBUTTON _Toc319929636 � PAGEREF _Toc319929636 �2��
2. Referenced Documents	� GOTOBUTTON _Toc319929637 � PAGEREF _Toc319929637 �3��
2.1 Government Documents	� GOTOBUTTON _Toc319929638 � PAGEREF _Toc319929638 �3��
2.2 Non-Government Documents	� GOTOBUTTON _Toc319929639 � PAGEREF _Toc319929639 �3��
3. Execution Procedures	� GOTOBUTTON _Toc319929640 � PAGEREF _Toc319929640 �4��
3.1 The KQML Lisp API	� GOTOBUTTON _Toc319929641 � PAGEREF _Toc319929641 �4��
3.1.1 Configuring the KQML Architecture	� GOTOBUTTON _Toc319929642 � PAGEREF _Toc319929642 �4��
3.1.2 Using KQML Services	� GOTOBUTTON _Toc319929643 � PAGEREF _Toc319929643 �5��
3.1.3 Offering KQML Services	� GOTOBUTTON _Toc319929644 � PAGEREF _Toc319929644 �5��
3.1.4 TCP/IP Procedures	� GOTOBUTTON _Toc319929645 � PAGEREF _Toc319929645 �6��
3.2 The KQML C API	� GOTOBUTTON _Toc319929646 � PAGEREF _Toc319929646 �6��
3.2.1 Integrating agents with C KQML	� GOTOBUTTON _Toc319929647 � PAGEREF _Toc319929647 �7��
3.2.2 Functions provided by the KRIL	� GOTOBUTTON _Toc319929648 � PAGEREF _Toc319929648 �7��
3.2.3 Customizable KQML variables	� GOTOBUTTON _Toc319929649 � PAGEREF _Toc319929649 �15��
3.2.4 KQML environment variables	� GOTOBUTTON _Toc319929650 � PAGEREF _Toc319929650 �7��
3.2.5 KQML Data Structures	� GOTOBUTTON _Toc319929651 � PAGEREF _Toc319929651 �16��
3.3 Running a KQML Facilitator	� GOTOBUTTON _Toc319929652 � PAGEREF _Toc319929652 �16��
3.3.1 Communication with KQML Facilitator using the Lisp API	� GOTOBUTTON _Toc319929653 � PAGEREF _Toc319929653 �17��
3.3.2 Communication with KQML Facilitator using the C API	� GOTOBUTTON _Toc319929654 � PAGEREF _Toc319929654 �Error! Bookmark not defined.��
3.4 The KQML Language	� GOTOBUTTON _Toc319929655 � PAGEREF _Toc319929655 �14��
4. Errors	� GOTOBUTTON _Toc319929656 � PAGEREF _Toc319929656 �16��
4.1 Errors - Lisp API	� GOTOBUTTON _Toc319929657 � PAGEREF _Toc319929657 �16��
4.1.1 TCP/IP Package Errors	� GOTOBUTTON _Toc319929658 � PAGEREF _Toc319929658 �16��
4.2 Errors - C API	� GOTOBUTTON _Toc319929659 � PAGEREF _Toc319929659 �17��
4.2.1 Environment variables	� GOTOBUTTON _Toc319929660 � PAGEREF _Toc319929660 �17��
4.2.2 Error messages	� GOTOBUTTON _Toc319929661 � PAGEREF _Toc319929661 �17��
5. Notes	� GOTOBUTTON _Toc319929662 � PAGEREF _Toc319929662 �18��
�

�Scope
Identification
This Software Userís Manual (SUM) provides the procedures for utilizing the Common Lisp implementation of KQML Version 1.8 and the C implementation of KQML Version 1.95.
System Overview
What is KQML?
Modern computing systems often involve multiple intergenerating computations/nodes. Distinct, and often autonomous nodes can be viewed as agents performing within the overall system, in response to messages from other nodes. There are several levels at which agent-based systems must agree, at least in their interfaces, in order to successfully interoperate:
Transport: how agents send and receive messages;
Language: what the individual messages mean;
Policy: how agents structure conversations;
Architecture: how to connect systems in accordance with constituent protocols.
KQML is primarily concerned with the transport and language levels. It is complementary to work on representation languages for domain content, including the ARPA Knowledge Sharing Initiativeís Knowledge Interchange Format (KIF). KQML has also been used to transmit object-oriented data. KQML is a language for programs to use to communicate attitudes about information, such as querying, stating, believing, requiring, achieving, subscribing, and offering. KQML is indifferent to the format of the information itself, thus KQML expressions will often contain subexpressions in different content languages.
KQML is most useful for communication among agent-based programs, in the sense that the programs are autonomous and asynchronous.
A KQML message is called a performative, in that the message is intended to perform some action by virtue of being sent. A substantial number of KQML performatives can be found in the Specification of the KQML Agent-Communication Language (http://www.cs.umbc.edu/kqml/kqmlspec.ps).
Using KQML in End-User Applications
Any programs can become KQML agents by choosing to accept messages from other programs or choosing to send messages to other programs, or choosing to do both. There is no constraint that a program be either a server or a client. Programs are viewed as agents which are free to initiate communication or respond to communication.
The KQML implementation creates additional processes to handle incoming messages asynchronously. The user's program is free to execute code or respond to local events (e.g., input from the user at the console).
Using the TCP/IP API
The KQML specification doesn't specify the architecture of the environment it is used in. It is possible to use KQML in a TCP/IP network of multiprocessing systems (such as UNIX workstations). But it is also possible to transmit KQML expressions over RS-232 lines or even send them via email. The agents sending them do not have to be multitasking; they can be more primitive computing systems (e.g., computers running MS-DOS). However, each implementation has to make certain assumptions about the environment in which they work.
The Unisys C and Lisp implementations are designed to work in Sun ANSI C and Lucid Common Lisp environments respectively and they assume that communication will be via a network which implements UNIX sockets.
The implementation also assumes that an agent called a facilitator will be running on an accessible and well-known host. The facilitator keeps track of which services are available and at which hosts and IP port they can be reached.
The TCP/IP primitives used by both the C and Lisp KQML implementations provide:
A client facility for opening a connection to a remote TCP/IP service.
A server facility which listens to multiple TCP/IP ports and transfers incoming data to a function associated with the port. It will also monitor open streams and invoke a specified function when new data becomes available.
Document Overview.
This Software Userís Manual explains how KQML is implemented in Common Lisp and C and how to use this implementation to add a KQML interface to existing Common Lisp and C programs. Topics covered include
How to configure your local environment to run KQML.
How to modify an application program to utilize existing KQML services.
How to write a KQML agent, which is an application program that offers to answer queries and respond to assertions via KQML.
How to utilize the lower level TCP/IP functions included with KQML for other application programming purposes.
Referenced Documents
Government Documents
Software Userís Manual for the Common Lisp Implementation of KQML. Contract No. F30602-91-C-0040, CDRL Seq. No. A0005
Software Design Document for the Initial Common Lisp Implementation of the KQML Knowledge Router and Knowledge Router Interface. Contract No. F30602-91-C-0040, CDRL Seq No. A006
Non-Government Documents
Mediated Information Systems Technology, http://louise.vfl.paramax.com/
Draft Specification of the KQML Agent-Communication Language, Finin, Weber, et al.
Contact Tim Finin, Computer Science, University of Maryland Baltimore County, Baltimore MD for current status. (http://www.cs.umbc.edu/kqml/kqmlspec.ps)
KQML as an Agent Communication Language, Finin, Fritzson, McKay and McEntire. The Proceedings of the Third International Conference on Information and Knowledge Management, ACM Press, November 1994. (http://www.cs.umbc.edu/kqml/papers/kqml-acl.ps)
Mediators in the Architecture of Future Information Systems, Wiederhold, IEEE Computer, vol. 25, no. 3, March 1992, pages 38-49.
Execution Procedures
The following sections provide instructions for setting up an environment for the successful execution of application programs, or agents, that use the C or Lisp implementations of KQML.
The KQML Lisp API
There are several steps which need to be followed to integrate and run KQML in a particular environment. These are:
Identify functions in the local program which can be used to respond to incoming messages. Different function can be identified for each KQML performative; these can be broken down, roughly into queries , assertions and general instructions
Identify places in the local program where it will be useful to send expressions to remote programs independently of any replies generated in response incoming messages. Insert calls to the KQML function send-msg in these places.
Install a KQML facilitator in the local environment or identify a facilitator that is available to the local environment.
Configuring the KQML Architecture
The KQML specification doesnít specify the architecture of the environment it is used it. It is possible to use KQML in a TCP/IP network of multiprocessing systems (such as UNIX workstations). But it is also possible to transmit KQML expressions over RS-232 lines or even send them via email. The agents sending them do not have to be multitasking, they can be more primitive computing systems (e.g., computers running MS-DOS). However, each implementation has to make certain assumptions about the environment in which they work.
The Common Lisp implementation is designed to work in Lucid/Sun Common Lisp (Version 4) and it assumes that communication will be via a network which implements UNIX sockets.
The implementation also assumes that a single agent, called a facilitator , will be running on an accessible and well known host. The facilitator keeps track of which agents are available and which at hosts and IP port they can be reached.
Integrating Agents with Lisp KQML
To establish a KQML environment in your local area network:
Install the KQML facilitator (See section 3.4 below) or identify a facilitator available to the local environment.
Set the variables *local-facilitator-name* and *local-facilitator-port* in the file krouter.lisp file.
Set the variable *local-domain* in the file tcp.lisp. (*local-domain* is set to your local internet domain name, e.g., ìvfl.paramax.comî. It is usually permissible to leave this field empty for purely local communications.)
The variables may be set in a separate file which loads the components of KQML, see the file config.lisp for an example of this.
Functions
(start-krouter service-name)
This function initializes local data structures and starts the KQML listener. It also registers the application under the name service-name with the local facilitator.
(stop-krouter)
Removes the applications registration with the facilitator and stops the KQML server.
Variables
local-facilitator-name�*local-facilitator-port*
These variables should be initialized to contain the name and port number at which the local facilitator is available. However, if they are left uninitialized the implementation will consult the UNIX environment variables FACILITATOR_HOST and FACILITATOR_PORT for this information.
Using KQML Services
To use KQML to query a remote service or to send a message of any kind to a remote system, you need to send a KQML message to the remote system. This is accomplished with the functions send-msg and make-msg
Functions
(make-msg performative content &rest arguments)
Constructs and returns a KQML message with the specified performative and content field and all other fields provided. A sample use is:
(send-msg (make-msg ëask-one ìQUERYî :reply-with t :receiver ëfacilitator))
(msg-field msg key)
Returns the field identified by key in the msg
The performative of the message can be retrieved with
(msg-field message :performative).
(send-msg msg)
Delivers the msg to the appropriate host. If the msg contain a :reply-with parameter with an appropriate value then send-msg will wait for a reply and return it as the value of the function otherwise it will return NIL. Note: The value will be a message.
Offering KQML Services
To setup an application to respond to incoming KQML queries and assertions you only need to define and register functions which can handle the incoming message content.
Functions
(define-interface performative language)
Currently the KQML router discriminates among, incoming messages only by what their performative is and what language the content of the message is in. Use define-interface instead of defun to define a function whose only argument is bound to the variable message
For example,
(define-interface (query prolog)�	(make-msg ëreply�		(pl-solve-all (list (msg-field message :content)))))
This expression defines a function which handles incoming queries whose content are Prolog expressions. The function uses msg-field to extract the content of the message and passes it to the function pl-solve-all and then packages the result into a new reply message.
TCP/IP Procedures
This section describes auxiliary routines, contained in a separate Lisp module which provide Common Lisp access to TCP/IP services. The functions support both clients and servers.
Functions
(connect-to-service hostname service &optional quiet)
Returns a bi-directional lisp stream to the remote host hostname connected to the port identified by service hostname is a string which is a hostname that can be resolved by the local operating system or is a string containing a standard form internet address (e.g., ì128.126.7.41î). The service is either a string identifying a named service (i.e. something contained in /etc/services) or an integer identifying a TCP/IP port number.
The function returns NIL if a connection can not be made.
The optional Boolean argument quiet blocks the printing of error messages when a connection can not be made.
(connect hostname service &optional quiet)
Just like connect-to-service except that successive calls with the same hostname and service will return the same stream instead of opening a new one, that is, it maintains a simple connection cache.
A second Boolean returned value indicates whether the connection is a newly opened one (FALSE) or a cached one (TRUE).
(register-service function)
This function is for use in creating a TCP/IP server. It establishes a listener at the next available TCP/IP port. Connections made to this port will have their streams passed to the function which is provided as the only argument.
As a side effect, the assigned port number is stored on the property list of the function under the symbol portnum
The function provided should accept two arguments: a bi-directional stream and a host name (the name of the client initiating the connection).
(start-server)
Actually starts the TCP/IP server. No listeners are active until this function is executed. This function will also call register-service for all functions in the variable *inet-config*.
(stop-server)
Stops the listener process and closes all listener sockets.
Variables
inet-config
This variable contains a list of functions which will automatically be registered as listeners when start-server is called.
local-domain
This variable should be initialized to be the name of the local internet domain (e.g., ìvfl.paramax.comî or ìai.rl.af.milî).
The KQML C API
There are several steps which need to be followed to integrate and run KQML in a particular environment. These are:
Identify functions in the local program which can be used to respond to incoming messages. Different functions can be identified for each KQML performative; these can be broken down roughly into queries, assertions and general instructions. Register these functions with the KQML facilitator using the kqml_register function.
Identify places in the local program where it will be useful to send expressions to remote programs independently of any replies generated in response to incoming messages. Insert calls to the KQML function kqml_send_msg in these places.
Initialize UNIX environment variables and customize variables in KQML header files.
Install a KQML facilitator in the local environment or identify a remote KQML facilitator which can be reached from the local environment.
Start up the facilitator, if necessary, and the application program(s).
Integrating agents with C KQML
Alter your application program's makefile to include the KQML interface library (the KRIL - libkqml.a) and the KQML header file (kqml.h). Insert a call to kqml_initialize in the application, to be executed at startup.
Once you have identified the points in your program where it can respond to incoming messages, declare the functions at those points to the facilitator by inserting a call to kqml_register for each event-handling function.
Next, identify the places where messages need to be sent to a remote service. Substitute calls to kqml_send_msg, or another of the API functions used to send messages at those points.
Alter the values of the settable parameters in kqml.h, if desired.
Recompile your program, and the facilitator if you have changed values in kqml.h.
KQML environment variables
KQML requires that the following environment variables be defined in order to run correctly.
 These variables are defined in the scripts
kqmlenv.csh
,
kqmlenv.sh
 and
kqmlenv.tcl
 in th
e
$KQML_HOME/bin
 directory. Each site should modify this file to suite their environment.

KQML_ANS

The host name of the machine where the facilitator is running and the port number in which
 it is listening for connections. The format
is
host_name:port_no:

KQML_HOME

The complete path to the directory where KQML has been installed.

In addition, the environment variables below may optionally be used.
KQML_WAIT_TIME
If set, the value of this environment variable will determine the default timeout (in seconds) that KRIL will wait for the return of a blocking send. If not set, the KRIL will wait for the return of a blocking send for 30 seconds.
KQML_DBG
If set, the value of this environment variable will determine the directory path in which the KRIL debug file will be stored. The file will be named agent_name.Kdbg. If not set, the stderr will be used to print the debug messages.
KQML_DBG_LEVEL
If set, the value of this environment variable will determine the amount of debugging information generated. The value ranges from 0 (Critical errors) through 9 (Verbose trace of KRIL execution). The default value is 0.
KQML_ROUTER
If set, the value of this environment variable will specify the path of the router program. If not set, the router is expected to be in KQML_HOME/bin/ or in the PATH of the agent.
Functions provided by the KRIL
A KQML interface library is provided for each implementation of KQML. The C KRIL defines a few functions, which are detailed below.
int kqml-initialize
char *application_name
 ans_handler ans_lookup_function

This function initializes local data structures and starts the KQML router. It also registers the application under the symbolic name application_name with the local facilitator. The argument
ans_lookup_function
should be
the constant
KQML_NOT_AN_ANS

if the agent is
not
an Agent Name Server, else it should be
 a function of type
ans_handler
. An application must call this function before executing any calls to kqml_send_msg. If the initialization is successful, returns 1, else -1.

int (
*
ans_handler
)
char *agent_name
char **lookup_ans_name
char **protocol char **
addr_info

This is the prototype of the ans lookup function registered using
kqml_initialize
. The fu
nction looks up the address of the agent specified by the argument
agent_name
 and returns
it
’
s protocol and address in the arguments
protocol

and
addr_info
 and sets the argument
lookup_ans_name
 to the agent
’
s name. If this ANS does not know the address of the agen
t, it returns the address of another ANS which might know the address and sets the argumen
t
lookup_ans_name
 to the other
 ANS
’
s name.
 Returns TRUE on success and FALSE on failure.

int kqml_register handler_function char *performative int blocking
An application calls this function at startup to tell the router what application function(s) to call when a response arrives asynchronously. This will set up an event handler. handler_function is the name of the function to be registered. The value returned by this handler function is returned to the sender of the message as the reply. If the incoming message is a blocking message, the value returned should be the actual response. For non-blocking message, the value should be an acknowledgment of receipt. performative is the kqml performative that would be handled by the handler function. If the performative is NULL, this handler function is registered as the default handler, i.e. if a performative is received for which no handler is registered, the default handler is invoked. blocking is a Boolean which is reserved for future use. Returns 1 on success, -1 on error.
void * (*handler function)	 char *content kqml_message *msg KQML_REPLY_TYPE *reply_type
This is the prototype of the handler function registered using kqml_register. The C-KRIL only defines the function prototype; the agent developer has to provide this function. The argument content is the pointer to the value of the content field of the received message and the argument msg is a pointer to the received KQML message. The argument reply_type is set by the handler to qualify the type of the return value and should be one of the following manifest constants:
KQML_REPLY_ERROR		
Handler encountered an error while processing the message and the return value is a char pointer pointing to the error message.
KQML_REPLY_NONE		
Handler has nothing to reply.
KQML_REPLY_KMSG_LIST	
Return value from the handler is a linked list of KQML messages. This list can be constructed using the kqml_build_kmsg_list routine. The manifest constants KQML_HANDLER_ERROR or KQML_HANDLER_NONE can be used as a valid KMSG_LIST.
KQML_REPLY_KMSG 		
Return value from the handler is a KQML message. Can be constructed using the kqml_build_msg routine.
KQML_REPLY_KMSG_ARRAY	
Return value from the handler is an array of KQML message with NULL as the last element of the array.
KQML_REPLY_STRING		
Return value from the handler is a char pointer.
KQML_REPLY_STRING_ARRAY	
Return value from the handler is an array of char pointer with NULL as the last element of the array.
KQML_REPLY_BIN			
Return value from the handler is a pointer to the structure KQML_BIN_CONTENT (see description in section 3.2.5). This can be used to return binary data.
KQML_REPLY_BIN_ARRAY	
Return value from the handler is an array of the structure described above with NULL as the last element of the array.
KQML_REPLY_LONG		
Return value from the handler is a long pointer.
KQML_REPLY_LONG_ARRAY	
Return value from the handler is an array of long pointers with NULL as the last element of the array.
KQML_REPLY_ULONG		
Return value from the handler is an unsigned long pointer.
KQML_REPLY_ULONG_ARRAY	
Return value from the handler is an array of unsigned long pointers with NULL as the last element of the array.

int kqml_send_msg	int timeout_value char *perf char *content char *rec_agent char *reply_tag kqml_message **reply_msg ...
This function sends an expression to the appropriate destination, i.e. receiving agent using the content and the KQML performative supplied. timeout_value is the time in seconds the kqml_send _msg function wait for the reply; if the timeout_value
 is
the manifest constant
KQML_SEND_TIMEOUT
, the value of the environment variable KQML_WAIT_TIMEOUT is used. perf is a KQML performative to be used as the performative of the KQML message that will be sent, content is the content message of the KQML message that will be sent, rec_agent is the name of the receiving agent that is the destination of this KQML message and reply_tag is a string to be used as the value of the :reply-with field. The fifth argument, reply_msg, is the address of a pointer to a kqml_message structure and will contain the reply to the message sent when the call to kqml_send_msg completes. The reply_tag and the reply_msg arguments should be NON-NULL if the routine should block until a result is returned, and NULL (either or both) if the routine should not block. Finally, this function allows for other arguments to be passed in, using varargs to handle this. The purpose of these final arguments is to provide the API user the ability to specify additional keyword/value pairs to be included in the KQML message sent out. If no additional keyword/value pairs are to be specified, then this argument should be NULL. Returns -1 on error. On success, if a reply is expected and if the reply is the error performative, returns 0; else returns a 1.
int kqml_send_msgv	int timeout_value char *perf char *conten char *rec_agen char *reply_tag kqml_message **reply_msg char *keyword[] char *value[]
This function is identical to the kqml_send_msg function described above. The difference is that whereas kqml_send_msg allows for additional keyword/value pairs by using varargs, kqml_send_msgv allows the user to specify these keyword/value pairs using a character string array. This will be useful to users who will be calling kqml_send_msgv without knowing beforehand the number of additional arguments to be passed.
int kqml_send		int timeout_vlaue kqml_message *message kqml_message **reply_msg
This function is identical to the kqml_send_msg and kqml_send_msgv functions described above. The difference is that whereas kqml_send_msg and kqml_send_msgv allows the user to specify the outgoing message by its components (keyword/value pairs), kqml_send expects the outgoing message to be a kqml_message structure.

int kqml_deliver_msg	char *perf char *content ...
kqml_deliver_msg is used by an application program which is supporting the monitor and subscribe KQML performatives. Messages sent using kqml_deliver_msg will be sent to all appropriate subscribers. The KQML KRIL will automatically handle all incoming requests by clients which contain the monitor or subscribe performative. Whenever an application calls kqml_deliver_msg, the KRIL will determine which clients are listening for the information in the message and route that message to them. Returns a -1 if the message was not delivered to all the subscribers, 0 if it was delivered to some of the subscribers and 1 if it delivered to all the subscribers.
int kqml_deliver_msgv char *perf char *content char *keyword[] char *value[]
This function is identical to the kqml_deliver_msg function described above. The difference is that whereas kqml_deliver_msg allows for additional keyword/value pairs by using varargs, kqml_deliver_msgv allows the user to specify these keyword/value pairs using a character string array. This will be useful to users who will be calling kqml_deliver_msgv without knowing beforehand the number of additional arguments to be passed.
int kqml_deliver		kqml_message *message kqml_message **reply_msg
This function is identical to the kqml_deliver_msg and kqml_deliver_msgv functions described above. The difference is that whereas kqml_deliver_msg and kqml_deliver_msgv allows the user to specify the outgoing message by its components (keyword/value pairs), kqml_deliver expects the outgoing message to be a kqml_message structure.

kqml_message *kqml_build_msg char *perf char *content char *rec_agent char *reply_tag ...
The kqml_build_msg function is used to construct new KQML messages. kqml_build_msg returns a pointer to a freshly allocated kqml_message structure which contains the performative and fields provided. It is not necessary to use this function to construct a message, because kqml_send_msg will construct one for you, but it is provided for programmers who are extending the KRIL or need to use the message structure for some other purpose. The perf argument is a KQML performative to be used as the performative of the new KQML message. content is the content field of the message constructed. rec_agent is the receiver of the message. reply_tag is the reply_with field of the message constructed. Additional keyword/value pairs, for inclusion in the KQML message being built, may be included after the reply_tag argument. Returns a pointer to the constructed message upon success; else NULL.
kqml_message *kqml_build_msgv	char *perf char *content char *rec_agent char *reply_tag char *keyword[] char *value[]
This function is identical to the kqml_build_msg function described above. The difference is that whereas kqml_build_msg allows for additional keyword/value pairs by using varargs, kqml_build_msgv allows the user to specify these keyword/value pairs using a character string array. This will be useful to users who will be calling kqml_build_msgv without knowing beforehand the number of additional arguments to be passed.

char *kqml_get_performative	kqml_message *message
kqml_get_performative returns the performative of the message.
char *kqml_get_field char *field_name kqml_message *message int *value_len kqml_expression_type *value_type
kqml_get_field returns the value of the specified field, if it exists, and NULL if no such field exists in the message. field_name is the name of the field whose value is being requested, and message is the KQML message that will be searched for that field. value_len is the length of the field and value_type is the type of the value expression. The value_type is one of the following manifest constants:
KQML_TYPE_UNKNOWN	
Expression does not conform to KQML syntax.
KQML_TYPE_WORD	
Expression is a KQML word.
KQML_TYPE_STRING	
Expression is a KQML string (string enclosed within double-quotes).
KQML_TYPE_BYTE		
Expression is a KQML byte string (string preceded by #nn” form). Can be used to ship binary data.
KQML_TYPE_QUOTED	
Expression is a quoted KQML value (lisp quoted form).
KQML_TYPE_COMMA 	
Expression is a comma-quoted KQML value i.e., comma is used as the quote character instead of quote (lisp macro syntax).
KQML_TYPE_SEXPR	
Expression is a KQML S-expression (equivalent to lisp s-expr).
The arguments value_len and value_type are not set if they are NULL pointers. KQML fields are identified by their associated keywords.

int kqml_get_field_count	kqml_message *message
kqml_get_field_count will return the number of keyword/value pairs contained in the KQML message structure.
char *kqml_get_ith_field		int field_no kqml_message *message char **field_name char **value int *value_len kqml_expression_type *value_type
kqml_get_ith_field is similar to the kqml_get_field routine described above. The difference is that whereas kqml_get_field extracts the value of a keyword (field) by its name, kqml_get_ith_field extracts it by the keyword number. Since the caller does not keyword name, the routine sets the argument field_name to point to the keyword. The argument value points to the value of the keyword, value_len is the length of the value expression and value_type is the type of the value expression. The arguments field_name, value, value_len and value_type are not set if they are NULL pointers. The keywords are indexed starting from 0. This routine is useful if the caller wants to walk through the KQML message and convert it to some other form, especially for the use of foreign language KRIL wrappers.

int kqml_put_performative	kqml_message *message char *performative
kqml_put_performative will modify the performative of the KQML message if it is defined, or it will set the value, if it is not defined. Returns -1 on error, 1 if the existing performative definition was replaced, 2 if the performative was definited for the first time.
int kqml_put_field 		char *field_name kqml_message *message char *new_value int value_len
kqml_put_field will modify the current value of the field/keyword if that field already exists, or it will add the keyword/value pair to the KQML message, if that field/keyword does not yet exist or delete the keyword/value pair. field_name is the name of the field whose value is being changed or added or deleted, message is the KQML message to be modified with the new value, new_value is the new value of the field/keyword and value_len is the length of t new value. If the argument new_value is NULL, if a parameter with name field_name exists in the message, it is deleted. If the argument value_len argument is -1, new_value is assumed to be a C string and its length is calculated using the strlen routine. KQML fields are identified by their associated keywords. Returns -1 on error, 1 if the value of an existing field was replaced, 2 if the value of a new field was defined.
int kqml_put_embedded_msg	char *field_name kqml_message *message kqml_message *embedded_msg
kqml_put_embedded_msg is similar to kqml_put_field described above. The difference is that whereas kqml_put_field accepts only a character pointer as the value of a field, kqml_put_embedded_msg accepts a KQML message structure. This is useful for constructing nested KQML messages.

KQML_KMSG_LIST *kqml_build_kmsg_list		KQML_KMSG_LIST **list kqml_message *msg
kqml_build_kmsg_list adds the KQML message given by the argument msg to the end of the linked list given by the argument list and returns the list. If the argument list is NULL, a new list is created. Returns NULL on error and the modified/constructed list on success.
void kqml_free_kmsg_list					KQML_KMSG_LIST *list
kqml_free_kmsg_list frees up the memory occupied by the KQML messages contained in the argument list and the memory occupied by the argument list.
void kqml_print_kmsg_list					FILE *stream KQML_KMSG_LIST *list
kqml_print_kmsg_list prints the KQML messages contained in the argument list using the function kqml_print_kmsg.

void kqml_print_msg		FILE *stream kqml_message *message
kqml_print_msg formats and prints the ascii representation of the KQML message structure on the given stream. Note: Currently, the printed message need not conform to KQML syntax.
char *kqml_sprint_msg		char *buffer int *size kqml_message *message
kqml_sprint_msg is similar to kqml_print_msg described above. The difference is that whereas kqml_print_msg prints on to a stream, kqml_sprint_msg prints in a buffer. Further, the output of kqml_sprint_msg conforms to KQML syntax i.e it can be used as input to kqml_put_field. If the argument size is not a NULL pointer, it contains the size of the printed message upon return. If the argument buffer is NULL, the routine creates a buffer to accomodate the entire message or the argument size is expected to give the length of the buffer if it is not NULL. If the size of the buffer is not big enough to print the message, an error (NULL) is returned. Returns NULL on error and the created buffer on success.

int kqml_parse_buffer		char *buffer int len int *processed_len kqml_message **message
kqml_parse_buffer parses the contents of the buffer and creates a KQML message structure from it. The argument len specifies the length of the buffer. Upon completion, the routine returns one of the following manifest constants:
KQML_PARSE_OK			
Parser successfuly parsed and created a KQML message.
KQML_PARSE_EOF			
Parser encountered an abnormal end of file/buffer i.e the parser encountered an end of file/buffer while parsing a message.
KQML_PARSE_NOTHING		
Parser encountered a normal end of file/buffer i.e the parser encoutered an end of file/buffer before starting to parse a message.
KQML_PARSE_TIMEOUT		
Parser timed out while trying read from the file.
KQML_PARSE_INCOMPLETE	
Parser encountered an incomplete message; i.e while parsing, it encounted the start token of the next message.
KQML_PARSE_SYNTAX		
Parser encountered syntax error; i.e the kqml message does not conform to the kqml grammar.
KQML_PARSE_SEMANTIC		
Parser encounted semantic error; i.e one or more of the keywords did not start with a ‘:’.
 KQML_PARSE_MEMORY		
Parser did not have enough memory to parse the message.
and sets the argument processed_len to the number of bytes of the buffer that were consumed by the parser.
int kqml_parse_stream		FILE *stream kqml_message **message
kqml_parse_stream is identical to kqml_parse_buffer described above. The difference is that whereas kqml_parse_buffer reads from a buffer, kqml_parse_stream reads from a stream.
int kqml_parse_fd		int fd kqml_message **message
kqml_parse_fd is identical to kqml_parse_buffer described above. The difference is that whereas kqml_parse_buffer reads from a buffer, kqml_parse_fd reads from a file descriptor.

int kqml_timings
kqml_timings returns TRUE if timings has been enabled and FALSE if not enabled. If timings is enabled, the timings information is written to the file /tmp/agent_name.Ktime by the router.
void kqml_timings_start
kqml_timings_start enables timing functionality.
void kqml_timings_stop
kqml_timings_stop disables timing functionality.

int kqml_logging
kqml_logging returns TRUE if message logging has been enabled and FALSE if not enabled. If logging is enabled, the incoming and outgoing messages are sent to the KQML-LOGGER agent by the router.
void kqml_logging_start
kqml_logging_start enables logging functionality.
void kqml_logging_stop
kqml_logging_stop disables logging functionality.

KQML_KMSG_LIST *kqml_wrapper	KQML_REPLY_TYPE reply_type void *reply
kqml_wrapper is an internal function which will almost never be called by an agent programmer. It is documented for completeness and to provide the agent developer a better understanding of the related kqml_unwrapper function. The kqml_wrapper function wraps data of different types into a KQML_KMSG_LIST data structure. The different type of data accepted by this function is documented in the explanation of the handler_function. Returns HANDLER_ERROR on error and the constructed list on success.
void *kqml_unwrapper				kqml_message *msg KQML_REPLY_TYPE *reply_type
kqml_unwrapper is complementary to kqml_wrapper. It unwraps the native data from KQML message pointed to by the argument msg. The type of the unwrapped data is set in the argument reply_type. Returns NULL and sets the argument reply_type to KQML_REPLY_ERROR on error and returns a pointer to
 the unwrapped data on success.

int
kqml_stricmp

char *string1 char *string2

kqml_stricmp
 is similar to the library function
str
cmp
except that it does a case-insensitive comparison.

int
kqml_strincmp

char *string1 char *string2 int len

kqml_strincmp
 is similar to the library function
strncmp
except that it does a case-insensitive comparison.

int
kqml_digit_count

long number

kqml_digit_count
 returns the number of digits (including the minus sign, if the number is
negative) in the argument
number
.

int
kqml_Udigit_count

unsigned long number

kqml_Udigit_count
 is similar to
kqml_digit_count
 except that it operates only on unsigned
numbers.

int
kqml_digit_to_str

long number char *string

kqml_digit_to_str
 stores the printed representation of (similar to %d
format
of
 the library function
printf
) the argum
ent number in the buffer pointed to by the argument
string
. It also returns the number of
 characters written into the buffer.

int
kqml_Udigit_to_str

unsigned long number char *string

kqml_Udigit_to_str
 is similar to
kqml_digit_to_str
 except that it operates only on unsigned numbers.

void
kqml_critical_section_start

kqml_critical_section_start
 blocks incoming KQML messages
. This function should be called by
the agent before entering
a critical section of the code.

void
kqml_critical_section_end

kqml_critical_section_end
 removes the block placed on incoming KQML message by a previous call to
kqml_critical_section_start
. This function should be called by the agent upon ret
urn from a critical section.

For some special queries, a wrapper for kqml_send_msg has been implemented which takes care of defining the required arguments. These special functions are defined below.
struct db_info *kqml_send_sql_query char *perf char *sql_query char *rec_agent int blocking ...
The function kqml_send_sql_query sends an SQL query to the database wrapper named by rec_agent. perf is the performative to be used in the KQML message sent out. This performative should be one that is acceptable to the database wrapper being used as the receiving agent, which, in most cases, will be ask-one or ask-all. sql_query is the database query to be executed by the remote agent/wrapper. rec_agent is the symbolic name of the database wrapper, which must be up and running for the query to succeed. This function will block, waiting for an answer if the value of blocking is TRUE, and will return immediately otherwise. kqml_send_sql_query will return a pointer to a db_info structure (see description in Section 3.5), or NULL if the query could not be executed by the remote server or if there was a problem during transmission of the query.
NOTE: Be sure that a KQML-speaking database wrapper is running for the database being accessed before calling this function.
Customizable KQML variables

KQMLPORT_OFFSET
The offset from port 5000 at which the KQML facilitator will listen for�connections.
 This variable is defined in $KQML_HOME/include/kqml/kqmllib.h

KQML_PARSER_WAIT_TIME
The number of seconds the parser will wait on a file for input before returning with a timeout error.
 This variable is defined in $KQML_HOME/include/kqml/kqmlparse.h

MAX
_
ROUTER
_CONNECTIONS

The number of connections that the router can handle simultaneously. This includes the li
stener connection for incoming messages, the send and receive connections to the agent. T
his value should not be greater than number of files that a process can open (minus two fo
r the debug file and the timing file).

KQML Data Structures
1.	db_info would be accessed by applications which use the database wrapper, which execute calls to SAS, or which use mediators. It is used to hold query results and result table information. Its definition is in the include file db_info.h.
struct	db_info		{�	int		num_rows;�	int		num_cols;�	int		*datatype;�	int		*datalen;�	struct 	u_tag	**res;�	}

2.	u_tag, used by db_info, allows datatypes STRING or INTEGER which are the two possible types returned in a query result. Its definition is in dataconv.h.
struct	u_tag			{�	enum dtype 	dtype;�	union				{�			long	ival;�			char	*sval;�			double	fval;�		 	} 	u_tag_u;�	}
enum 	dtype			{�	string_data_type=1, �	integer_data_type=2, �	float_data_type=3�	}

3.	KQML_BIN_CONTENT, used by handler_function, to pass binary data to the wrapper. Its definition is in kqmlwrapper.h
		struct	KQML_BIN_CONTENT	{�			int 		len;�			void		*msg;�			}			
Running a KQML Facilitator
The KQML facilitator is a stand-alone program, written in C, which functions as a simple database of KQML agents. It maintains a list of all active KQML agents in the local environment and is used by the router to determine the addresses of named agents that are the intended recipients of KQML messages.
Running the facilitator is simple. It is simply started in the background on a selected host. You may choose to add its startup instructions to the /etc/rc.local of a host in your environment in order to ensure that it is always running. The script for starting it up is in $KQML_HOME/bin/start_
ans
.
 The script is run as
start_ans
agent_name
, where
agent_name
 is the facilitator
’
s name.
 The script can be passed an additional flag
“-r
”
 to enable remote shutdown of the facilitator.
 If remote shutdown is enabled, the script
$KQML_HOME/bin/stop_ans
 can be used to stop th
e facilitator.

The
start_ans
 and
stop_ans
 scripts call
kqmlenv.sh
 to setup the KQML environment variables
 and the path of
kqmlenv.sh
 in these two files should be e
dited to match the local setup.
 These scripts also expect the programs
anscheck
 and
anskill
to be present in the
$KQML_H
OME/bin
 directory. The source for these programs can be found in
$KQML_HOME/src/examples

directory.

Normally, the facilitator listens on port 5500. This can be changed by editing the file kqml.h, changing the symbolic constant KQMLPORT_OFFSET, and rebuilding the facilitator. If you do this, change the UNIX environment variable
KQML_ANS
 to
point to
the new port number.
Please note that the details of the facilitator's abilities are not useful to the users of KQML since the implementation hides the transactions with the facilitator, but following is a brief description, for the C and Lisp implementations, of the KQML messages it handles.
Communication with KQML Facilitator using the Lisp and C API
The facilitator responds to the following KQML messages:
(tell :content (symbolic-name
address-info
) :reply-with t
 :ontology protocol
)
Register the KQML agent
symbolic-name
 as being active on the
address
address-info
, belonging to the
communication
protocol
protocol
.
 The expression address-info should not contain any embedded white spaces or
“
()
”
 characters. The syntax of addrerss-info for the TCP/IP protocol is
of the form
host:port:
 where host is the TCP/IP host and port is the TCP/IP port on which the agent is listening
. The facilitator returns a
reply
 performative (described below) on success and an
error

performative on error.

(reply :content
(
fully-qualified-name
ans-name)
�

:in-reply-to t)

Currently, the fully-qualified-name is same as the symbolic-name. In the future, it will be different.
(untell :content
symbolic-name
 :ontology protocol
)
Remove
s
 the
specified protocol entry for this agent
from the facilitator.
 If no protocol is specified, all the entries for this agent is removed.

(ask-one
:ontology protocol
:content symbolic-name :reply-with t)
Ask for one entry in the facilitator for an agent with this symbolic-name
 and using the specified protocol
. The facilitator responds with an error performative if there is a processing error, a sorry performative if there is no such agent or a reply performative if there is an agent with name symbolic-name
 and protocol
.
 The protocol parameter can be a wild-card entry
“
t, nil, null, * or empty
”
 or a list of protocols
“
(protocol1 proctocol2)
”
. In that case, the facilitator will return the first match.

 (reply
:ontology protocol
:content “symbolic-name:
address-info
” �
:in-reply-to t)
(ask-all
:ontology protocol
:content symbolic-name :reply-with t)
Ask for all entries in the facilitator for an agent with this symbolic-name
 and the specified protocol
. If the symbolic-name is
t or
“” or * or nil or null, all the entries in the facilitator
that matches the specified protocol
is requested.
If the protocol is
t or
“
”
 or * or nil or null, all the entries in the facilitator t
hat matches the symbolic-name is requested. If the protocol is a list of protocols, all t
he entries that match one of the protocols and
the symbolic-name is requested.

The facilitator responds with an error performative if there is a processing error, a sorry performative if there is no such agent or a reply performative if there is an agent with name symbolic-name.

 (reply :content ((
symbolic-name-1 (protocol address-info)
�

(protocol address-info)) (symbolic-name-2
�

(protoco
l address-info)) ...) :in-reply-to t)
 �

The KQML Language
Full details describing the current state of KQML can be found in the Specification of the KQML Agent-Communication Language.
KQML establishes a standard protocol and set of conventions for communication among software agent performatives which describe the type of communication being initiated (e.g., a query , an assertion , a definition , etc.)
Each expression in KQML contains a single performative and a list of parameters in the form of keyword/value pairs.
In addition, the KQML language is extensible. Though there exists a basic set of performatives (see Figure below), new performatives may be added to the specification when the need arises.
Basic query performatives:
 evaluate, ask-if, ask-in, ask-one, ask-all
Multi-response query performatives:
 stream-in, stream-all
Response performatives:
 reply, sorry
Generic informational performatives:
 tell, achieve, cancel, untell, unachieve
Generator performatives:
 standby, ready, next, rest, discard, generator
Capability-definition performatives:
 advertise, subscribe, monitor, import, export
Networking performatives:
 register, unregister, forward, broadcast, route

There are about two dozen reserved performative names which fall into seven basic categories.
Errors
Errors - Lisp API
TCP/IP Package Errors
Many of the errors listed here do not indicate a fatal error. Because the system will retry connection attempts, the program may eventually succeed in spite of problems. These errors can be suppressed by setting the variable tcp::*krouter-suppress-warnings* to t
tcp_to_service: host <name> not found
You are attempting to reach a host whose name can not be resolved by the local name service. If you are running a Domain Name Server (DNS), it can not resolve the name. If you are running a local Network Information Service (NIS) or relying on a local host table (/etc/hosts) then the host name you are trying to reach is not in your local database.
tcp_to_service: unknown service: <service name>
You have attempted to reach a service port on a remote machine using a symbolic service name which is not known. This should not occur when using KQML since it only uses numeric port identifiers. If you are using the TCP/IP interface for another purpose, consult with you system administrator to determine why the service name you are using is not known on your system.
tcp_to_service: canít make connection: <message>�tcp_to_service: <message>
This error occurs when the system has properly resolved the host and service identifiers but is unable to make a connection with the remote system. The UNIX <message> at the end may provide additional information on why the connection can not be made. Frequently, the connection isnít made because there is no process at the remote system to accept the connection.
While trying to establish listener for: <function> on port <port>�register-service: canít make socket: <message>
While trying to establish listener for: <function> on port <port>�register-service: canít set socket option: <message>
While trying to establish listener for: <function> on port <port>�register-service: canít bind socket: <message>
These errors occurs when the system is trying to build a KQML listener and is unable to properly allocate a UNIX socket from the operating system. The <message> may give an indication of the reason.
While trying to establish listener for: <function> on port <port>�register-service: canít identify local host: <message>
This message usually signifies a problem with the local UNIX operating system.
Server not started.
The system was unable to start a KQML listener. Earlier messages are likely to have explained why.
get_connection: <message>
The system tried to accept an incoming message, but was unable to. The <message> is a UNIX system message which may explain why.
Errors - C API
When problems occur in starting up an agent or a facilitator, check the following items. For further information in diagnosing problems, consult the C-KQML Installation Manual.
Environment variables
Be sure that the variable KQML_HOST has been properly initialized to the complete pathname of the directory where KQML was installed.
Verify that the UNIX environment variables FACILITATOR_HOST and FACILITATOR_PORT are set. FACILITATOR_HOST should contain the name of the host where the facilitator agent is to run, and FACILITATOR_PORT should contain the port number to be used for communications. This value should be 5000 plus the number assigned to the variable KQMLPORT_OFFSET in KQML_HOST/include/kqml.h. The default value in this file is 500, therefore FACILITATOR_PORT should be set to 5500 unless you have changed the value of KQMLPORT_OFFSET.
Error messages
Many of the errors listed here do not indicate a fatal error. Because the system will retry connection attempts, the program may eventually succeed in spite of problems. These errors are normally written to standard error.
unable to exec router program; error #
This error occurs when the system is unable to initialize the router program for the application. The error number may give an indication of the reason.
unable to verify router is up�timed out waiting for connection�no confirmation message from router
These errors occur when the application is unable to contact the router.
unable to connect; #
This error occurs when a connection to a service cannot be opened. The error number may indicate the reason.

Notes
Improvements to KQML which are currently under development include the following:
An improved facilitator including a persistent internal database and the ability to start-up certain agents if that agent is not currently available.
An improved router including initialization of the router cache with the address information for known agents.
A new conversation module which will insure that the KQML communication protocol is adhered to in all transactions among agents.

KQML	Revision 3.0	Software Userís Manual

Unisys Corporation	Page � PAGE �
19
�	March 1995

