RBAC Policy Engineering with Patterns

Taufiq Rochaeli* and Claudia Eckert

Departement of Computer Science
Darmstadt University of Technology
{rochaeli,eckert}@sec.informatik.tu-darmstadt.de

Abstract. We present a RBAC policy engineering approach that sup-
ports administrators to specify RBAC policies with the help of experts’
knowledge, which is documented using the pattern paradigm. These
patterns are formalised in Web Ontology Language (OWL) that en-
ables machine interpretation of experts’ knowledge and reasoning about
the RBAC policy. Thus, administrators could specify RBAC policies by
choosing the patterns matching their scenario and asserting instances
without knowing the complex RBAC policy specification.

1 Introduction

Role-Based Access Control (RBAC) [1] offers a better manageability than tradi-
tional Mandatory Access Control (MAC) or Discretionary Access Control (DAC)
to fulfil organisational security policies. However, in an organisation with com-
plex scenarios, the specification of access control policies using role based model
may also be overwhelming for security administrators. They need domain as well
as security experts’ knowledge to accomplish this task. This knowledge provides
security administrators with well-proven empirical solutions to access control
policies specification within a certain domain (i.e. hospital, government, etc.),
which is strongly affected by social and/or economical factors. Furthermore, in-
creasing complexity of the scenario also poses another inconsistency problem,
which is caused by the manual specification of RBAC policies. For this reason,
a tool support to generate RBAC policies specification is required.

We developed a role engineering approach, which follows the scenario-oriented
requirements engineering approach [2] that assists security administrators to
specify the RBAC policies with the help of experts’ knowledge. As argued above,
the experts’ knowledge on specifying RBAC policies with consideration on sev-
eral factors in a certain domain will greatly helps security administrators to
specify RBAC policies.

To document the experts’ knowledge, we follow the structure proposed in
pattern paradigm originated from the architecture field [3]. This paradigm has
been widely used in several fields in computer science [4, 5]. Despite of the im-
provement in their engineering processes, pattern paradigm still has a major

* partially supported by the German Ministry of Education and Research (BMBF)
under SicAri Project.



drawback: novice users find it difficult to interpret and to apply the patterns.
By encoding experts’ knowledge in specifying RBAC policies in semantic lan-
guage, i.e. OWL, we explore the possibilities of automatic generation of RBAC
policies by using reasoning services provided by description logic-based knowl-
edge representation system. With this framework, security administrators only
need to interpret their scenario, search for patterns that match the scenario
and assert instances in the scenario into the knowledge representation system.
Hence, the complexity of RBAC policies specification could be concealed by the
abstraction of more understandable concepts of the scenario.

This paper is organised as follows. Section 2 begins with the background of
this work and subsequently presents the definition of RBAC policy patterns in
description logic notation[6]. Section 3 outlines the generation process of RBAC
policies by using the reasoning services of knowledge representation system. Sec-
tion 4 discusses some related works in pattern paradigm and role engineering.
Finally, section 5 presents the conclusion.

2 Definition of RBAC Policy Pattern

This section briefly describes the background of pattern paradigm and continues
with the motivation that drives the adaptation of pattern paradigm in RBAC
policies specification process. It explains the similarities between construction
design and RBAC policies specification and continues with the definition of
RBAC policies pattern.

To design a building, architects should consider many non-technical human-
related factors, for example, social and/or psychology factors. This is necessary,
due to the fact that people live and interact in the building and have their own
needs. Therefore, architects should design constructions, which fulfil the needs
emerging from these factors.

Christopher Alexander proposed pattern method in his work [3], which struc-
turally captures experts’ knowledge. Each pattern has three general parts, a
context, a problem and a solution. The context describes the environment,
in which the pattern shall apply. It covers both temporal and spatial aspects of
the environment that represent a scenario. In this context, there exist forces!
that need to be resolved. These forces characterise the problem in the context.
Finally, the solution proposes a configuration or a design which should resolves
the existing forces in the context. Collected patterns do not exist independently;
they have one or more relationships with other patterns. These relationships
reflect the conflicts, compatibilities and dependencies between patterns applied
within a context.

The pattern approach in software engineering [4] and security engineering
[5], which captures the solutions considering different non-technical factors, mo-
tivates this work to adapt the pattern approach in RBAC policy specification.
Thus, RBAC policy pattern shall capture this expertise knowledge, which has

! In our work, we interpret forces as requirements and problems.



the solution to specify access control policies in a certain situation by considering
various non-technical factors, even the subtle one.

A pattern consists of a context with problem and a solution: Pattern =
JhasCtx.Context M FhasSin.Solution. In the next two subsections we define the
main parts of RBAC policy pattern, which are described using description logic
notation.

2.1 Context and Problem

The context of RBAC policy pattern represents a novel description of business
process scenario. It has SubjectInTaskClass and ObjectClass as main concepts,
which are interpreted as a class of subject performing a certain task, and as a
class of resources, respectively. Optionally, the context may also have concepts
and concepts relationships of the Event-controlled Process Chain [7] such as
Event and controlFlow, which links Event with SubjectInTaskClass.

The critical aspect of context of business process is the information that
flows from subjects to objects and vice versa. Information flow is needed in or-
der to perform the business process. On the other hand, a possible unintended
information flow could also pose a security threat to the business process. We
identify two main classes of problem, which arise in this context. They are work-
flow requirements and security threats. These problems are denoted by concept
relationships between SubjectlnTaskClass and ObjectClass. A workflow require-
ment relationship means that a subject needs an access to objects in order to
perform the business process. The workflow relationship is further classified into
hasWflowReqlnput and hasWflowReqOutput, which represent the input and out-
put information flow needed in business process between the subjects in a task
and the objects. A security threat relationship means that a subject could per-
form an attack to objects, which can cause any harm to the business process. The
security attack relationship is also classified into two classes, hasSecThreatInput
and hasSecThreatOutput, which represent the input and output information flow
between the subjects in a task and the objects posing security threats.

Fig. 1 shows an excerpt of transaction pattern context adapted from the ref-
erence model of an industrial business process in [8] with its problem. In this
context, a malicious worker in WarehouseManagement task could issue a fictive
transaction, so that he can steal some goods in the warehouse. This threat is
represented by createFictiveTransactionIn. Note that, we do not define problem
as separate concept, because the problem is already represented by concept re-
lationships.

It is also possible to define a context having conflicting forces, i.e., a task
class requires a write access to a database, but it also poses a security threat
when it write to the database. To prevent this definition, both axioms
" (3hasTask.3hasSecThreatInput.ObjectClass) _J JhasTask.IhasWflowReqlnput.ObjectClass
and
" (3hasTask.3hasSecThreatOutput.ObjectClass) J JhasTask.IhasWflowReqOutput.ObjectClass
should be defined.



TransactionCtx = JhasTask.TransactionMonitoring M JhasTask.WarehouseManagement M
JhasObject. Transaction M FhasObject.Dunningletter M
JhasObject.DeliveryNote M 3hasObject.Inventory M
createFictiveTransactionln T hasSec ThreatOutput

WarehouseManagement = JcreateFictive Transactionln. Transaction M JhasWflowReqlnput.Transaction 1. . .

TransactionMonitoring = JhasWflowReqlnput.Transaction M 3hasWflowReqlnput.DunninglLetter M . . .

Fig. 1. Context and problem of Transaction pattern

2.2 Solution

The solution part of a RBAC policy pattern specifies authorisation policies of a
context that fulfil the requirements within this context. Currently, the solution
only proposes the core RBAC and hierarchical RBAC specification of the RBAC
INCITS standard [1].

A solution defines permission and role concepts, which have different in-
terpretation than the concepts introduced in RBAC model. We interpret per-
mission as a class of subjects which have a certain permission. For example,
P1 = dread.DatabaseX is a class of subjects which are permitted to read data-
base X. A role is interpreted as a class of subjects which have required permis-
sions to perform a task. A role concept is constructed by intersection of different
permissions. With our definition, R2 C R1 is interpreted by DL reasoning service
as: (1) all permissions of R2 are included in R1, (2) all users in R2 are also mem-
bers of R1. Thus, role hierarchy relationship R2 < R1 could be represented by
inclusion R2 C R1. In case of redundant definition of permissions among roles,
role hierarchy could be automatically detected and built by using classification
service provided by reasoning engine.

From the context, the administrator already knows the membership of sub-
jects in task classes. We extend the interpretation of SubjectInTaskClass to a class
of subjects performing a certain task and having the necessary role(s). There-
fore, the solution defines SubjectInTaskClass as intersection of roles. This kind
of definition implicitely defines SubjectinTaskClass = Role, which ensures that
every subjects having task membership are always assigned to roles.

Fig. 2 shows an excerpt of transaction pattern solution.

TransactionSIn = Jdefines.ManufacturingRole M Jdefines.ShippingDeptRole M . . .
ManufacturingRole = Jget.DunninglLetter M 3put.DunninglLetter M Jget. Transaction
ShippingDeptRole = Jget.Transaction M Jput.DeliveryNote M Jput.Inventory

TransactionMonitoring = ManufacturingRole

WarehouseManagement = ShippingDeptRole

Fig. 2. Solution of Transaction pattern



2.3 Relationship between RBAC Policy Patterns

The relationships between patterns distinguish pattern from template. They rep-
resent compatibility between patterns and guide the pattern application process.
The compatibility between patterns is represented by refinement and dependency
relationships. The conflict relationship should guide the pattern user to avoid
simultaneous use of these patterns, which have conflicting requirements between
pattern contexts. In this paper, we only focus on conflict relationship. A pattern
can conflict with another pattern, if and only if, the contexts of these patterns
have any task class, which has a security threat relationship in one context, and
also has a workflow requirement relationship in another context to the same
object class. This relationship is formally defined in fig. 3.

confl = hasCtx o
((hasTask o hasSecThreatInput o hasObject™ T hasObject o hasWorkflowReqlnput™ o hasTask™ ) LI
(hasTask o hasSecThreatOutput o hasObject™ 1 hasObject o hasWorkflowReqOutput™ o hasTask™ )) o
hasCtx

Fig. 3. Conflict relationship

3 Generating RBAC policies

In order to generate RBAC policies, security administrator should first interpret
his scenario. Next, he chooses patterns starting from the most general one to
the detailed one. The selection criterion is that the context of patterns should
(partially) match the concrete scenario and (partially) fulfil the requirements of
scenario. For each selected pattern, concept instances of pattern, concept and
solution and concept relationships should be asserted.

After all requirements of scenario have been met by the patterns, he asserts
the instances of scenario matching the context concepts into the knowledge rep-
resentation system. Subject and role assignments are be defined by retrieving
instances of roles. Role and permission assignments are defined by retrieving
concept descendants of role.

4 Related Works

Previous work on formalisation of patterns [9,5] propose formalisation of pat-
terns based on first-order predicate logic and frame-logic, respectively. The first
work only defines the formalisation of pattern solution without its related context
and problem. It also lacks of definition of pattern relationship. The latter work
only defines the formalisation of pattern structure and its relationships. In com-
parison of previous works to our case, we encode the context, problem and the
solution in semantic language based on description logic. Therefore, machine in-
terpretation of context, problem and solution is possible. However, in our current



work, searching and selecting suitable patterns is still done by involving human
intelligence, which interprets the context of pattern. Since the description logic
notation of context is still hard to understand, each pattern also provides the
description of its context as plain text. In the role engineering area, Neumann
et. al. present in [10] a method to derive role from scenario. Our approach differs
in a way that the expertise knowledge in a certain domain is documented using
pattern paradigm instead of catalog.

5 Conclusion

In our approach, the involvement of the policy designer in the RBAC policies
specification task is reduced only to scenario identification, patterns selection
and instances assertion. Thus, the possibility of human error in RBAC policy
specification that could lead into inconsistent and redundant specification could
be avoided.

Acknowledgements

The authors thank anonymous reviewers for helpful comments.

References

1. American National Standards Institute: ANSI Standard 359-2004: Role Based
Access Control (2004)

2. Alistair G. Sutcliffe, Neil A.M. Maiden, Shailey Minocha, Darrel Manuel: Sup-

porting scenario-based requirements engineering. IEEE Transactions on Software

Engineering 24 (1998) 1072 — 1088

Alexander, C.: The Timeless Way of Building. Oxford University Press (1979)

4. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. Addison Wesley
(1995)

5. Schumacher, M.: Security Engineering with Patterns - Origins, Theoretical Model,
and New Applications. Volume 2754 of LNCS. Springer (2003)

6. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P., eds.:
The Description Logic Handbook. Cambridge University Press (2004)

7. (G. Keller, M. Niittgens, A.-W. Scheer)

8. A. -W. Scheer: Wirtschaftsinformatik: Referenzmodelle fiir industrielle
Geschéftsprozesse(in German). Springer (1998)

9. Alencar, P., Cowan, D., Dong, J., Lucena, C.: A pattern-based approach to struc-
tural design composition. In: Twenty-Third Annual International Computer Soft-
ware and Applications Conference, IEEE Press (1999)

10. Neumann, G., Strembeck, M.: A scenario-driven role engineering process for func-
tional rbac roles. In: SACMAT ’02: Proceedings of the seventh ACM symposium on
Access control models and technologies, New York, NY, USA, ACM Press (2002)
33-42

@



