MAGICWEAVER

An Agent-Based Simulation Framework for Wireless Sensor Networks

Sovrin Tolia
University of Maryland
Baltimore County
1000 Hilltop Circle
Baltimore, Maryland

stolial@cs.umbc.edu

ABSTRACT

Distributed sensor networks have been the focus of con-
siderable research during the past few years. Current re-
search on wireless sensor networks can involve a number of
issues, including hardware constraints, communication and
routing issues, data management problems, and software
engineering principles. To clearly understand their char-
acteristics, we require development environments to design
them, explore architectural alternatives, and simulate their
performance. MagicWeaver is an agent-based simulation
framework for wireless sensor networks. It provides abstract
models for sensor tasking and communication, device con-
straints, network topologies and the physical environment.
It also supports a special class of applications characterized
by streaming data-feeds. MagicWeaver illustrates ways in
which agents paradigm extends it’s flexibility to incorporate
teamwork and coordination between sensor agents. In this
paper we discuss MagicWeaver’s underlying design rationale
and provide it’s current implementation status. We also re-
port on results obtained while performing scalability tests
using the JADE agent platform.

Keywords

Sensor Networks, Simulation, Test-bed, Performance issues

1. INTRODUCTION

A sensor node is a small form-factor hardware device typi-
cally consisting of a microcontroller, radio module and en-
vironmental sensors. We envision these to span from ex-
tremely resource-constrained “Smartdusts“[14] type devices
to resource-rich devices with sufficient memory and compute
power. A sensor network is a collection of such devices en-
trusted with the task of sensing and communicating events
from the environment. There is often a distributed set of
resource-rich base stations that perform information aggre-
gation and advanced decision making.

Anupam Joshi
University of Maryland
Baltimore County
1000 Hilltop Circle
Baltimore, Maryland

joshi@cs.umbc.edu

Timothy Finin
University of Maryland
Baltimore County
1000 Hilltop Circle
Baltimore, Maryland

finin@cs.umbc.edu

Typical characteristics of wireless sensor networks include a
large number of nodes deployed to gain sufficient coverage,
susceptibility to failures, non-replenishable energy sources
and communication using wireless links. These characteris-
tics pose numerous problems that have to be solved before
sensor networks become socially viable. Since these devices
are battery-powered, energy efficiency becomes an impor-
tant goal for our algorithms. Their sheer numbers makes
scalability one of the key design issues. Noisy and loss-prone
wireless environments warrants data propagation schemes
that ensure that the utility[6] of the network is not lost.
These challenges, once solved will create a lot of application
areas where they can be applied.

To answer some of these challenges, we will have to experi-
ment with different algorithms and techniques. For this, we
require development environments to design them, explore
architectural alternatives, and simulate their performance.
It is important to evaluate these systems using simulations
as research on the hardware devices is still not mature and
hardware devices are not easily available. Moreover, their
cost makes them prohibitive to purchase in huge numbers
and evaluating on actual devices would be really difficult.
MagicWeaver is an agent-based simulation framework to-
wards this end. It provides abstract models for sensor net-
work tasking and communication, device constraints, net-
work topologies and the physical environment. It also sup-
ports a special class of applications characterized by stream-
ing data-feeds. MagicWeaver illustrates many ways in which
agents paradigm extends it’s flexibility to incorporate team-
work and coordination between sensor agents. In this paper
we discuss MagicWeaver’s underlying design rationale and
provide it’s current implementation status. We also report
on results obtained while performing scalability tests using
the JADE agent platform.

In the context of this framework, we have used the weak no-
tion of agency as defined in [19]. Accordingly, agent-based
systems are characterized by the properties of autonomy, so-
cial ability, reactivity and pro-activeness. Based on this, we
find a sensor is like an agent. Both are designed to operate
without direct involvement of humans or others and have
control over their state, thus exhibiting autonomy. Both
need to communicate and coordinate with their counterparts
to achieve the desired goal, thus exhibiting social ability.
Both are designed to take some action in response to cer-

tain environmental events, thus exhibiting reactivity. Sen-
sors often balance the trade-off between conserving available
resources and sensing events, thus exhibiting pro-activeness.
Further we find that communication and coordination are
two key research aspects, common to both. This high de-
gree of conceptual correlation between sensors and agents
makes the agent paradigm suited for this kind of a frame-
work.

In the next section we survey related research work. In sec-
tion 3, we discuss the design and implementation of Mag-
icWeaver. In section 4 we provide experimental results ob-
tained while performing the scalability tests on the frame-
work. In section 5 we discuss the potential benefits of using
MagicWeaver. Section 6 concludes the paper with the fea-
tures that we plan to implement in future.

2. RELATED WORK

SensorSim[16] is a simulation framework for sensor networks
built by providing extensions to ns2 [9], event-driven net-
work simulator. It provides power usage model and supports
hybrid simulations. SensorSim is not designed for extensi-
bility as much as MagicWeaver is.

SensorWare[4] is a middleware platform providing mobile
code support for dynamic management of a sensor node.
It’s focus is to enable dynamic runtime configuration of sen-
sors whereas MagicWeaver provides a flexible design-time
environment for sensor network simulation.

Our work has been motivated by various hardware and soft-
ware research projects in sensor networks. The Hardware re-
search comprising of WINS project[5], PicoRadio project[18],
Smartdust project and Motes Project[13] helped us in defin-
ing abstract models for sensor device constraints. Study of
various Data Propagation Schemes developed ([7],[8], [12],[2])
gave us concrete ideas for building models for data propa-
gation.

The Telegraph project[15] deals with query processing over
data-feeds that originate from adhoc sensor networks. It
deals with design of query operators and a proxy-based ar-
chitecture for handling huge data streams. In contrast, Mag-
icWeaver supports hierarchical processing of streaming data-
feeds, based on the availability of resources on the data-path.

Software Agents paradigm has been applied to build sim-
ulation frameworks in the past [11, 17] but to the best of
our knowledge, agents paradigm has not been specifically
applied to model and simulate wireless sensor networks.

3. MAGICWEAVER
3.1 Overview

It is a common observation that sensor network consists of
five modular units: sensor tasking, data collection, data dis-
semination, data aggregation and data analysis. There is
a wide spectrum of algorithms that can be applied to re-
alize these modules. To flexibly simulate these heteroge-
neous techniques, a framework is required that provides ab-
stract definitions and models for them. MagicWeaver pro-
vides such a framework.

It deploys a multi-agent system where each software agent
acts as a sensor device. These agents coordinate and com-
municate with each other to pass sensed information back to
the distributed base stations. The framework in itself does
not provide any particular model to be used. The designer
of the sensor network is expected to define his/her own mod-
els and the framework will use these user-defined instances
to simulate the network.

Sensor Networks of considerable size can generate huge data
streams. For such networks, data transmission to the base
station on an as-is basis for storage, processing and analysis
is a problem. To solve this problem, MagicWeaver provides
a hierarchical scheme to do in-network data processing, data
reduction and fusion, based on the availability of resources
at the nodes in the data path.

In addition to providing abstract models and support for
streaming applications, it provides helper components for
carrying out the simulations effectively. These include, Sen-
sorView, a graphical tool for displaying the network topol-
ogy and the condition of each sensor node, DataView, a
graphical tool for displaying the sensed data that is avail-
able for processing and QMView, a quantitative measure of
energies and data transmission statistics at each node in the
network.

3.2 SensorsAs Agents

Use of the agents paradigm extends it’s flexibility to incor-
porate teamwork and coordination between sensor agents.
MagicWeaver illustrates several ways in which it provides
flexibility to the sensor network designers. The object ori-
entation in the language Java, provides flexibility in terms
of code modularity. It helps define abstract models and
clean interfaces for designers to implement their own basic
schemes.

‘We have sensor devices like WINS Sensoria nodes[1] that are
computationally powerful and have large memory. As hard-
ware research progresses, we will have devices with more
powerful processors, large storage capacities and long bat-
tery lives. This will create sensor networks in which sensors
are intelligent, adaptive, dynamically configurable and reac-
tive. They will be able to take intelligent decisions about
occurrence of abnormal conditions. They will be able to al-
ter their functioning mode based on resource availability and
external conditions. Further, they will be able to switch be-
tween tasks when instructed and will be able to take actions
when abnormalities are detected. To realize such sophisti-
cated sensor networks, we need to simulate their behaviour
to carefully understand various engineering trade-offs. Since
these properties have already been studied in the context of
software agents, MagicWeaver leverages this work in it’s ap-
plication to sensor networks.

Teamwork between sensor agents would be important to
answer non-trivial queries. For example, there might be
queries of the form, “Give me average temperature in the
region for the next 1 hour?”. For answering such queries,
sensors would have to team up and exchange information.
MagicWeaver allows such teamwork concepts to be flexibly
built into the sensor agents.

£ MAGICWEAVER MODELS >
(::_ TASK ____:) @'“”"“E@
TEMPERATURE RANDOM
(g_';m Ruwl@ @.USTERINE)
., - -
FLOODING (X,Y)-DISTANCE
4(_ DEVICE :_) H-FLSE-ETﬁIDﬂE
MOTES DATA FORMAT

Figure 1: Abstract Models and Example Instantia-
tions

Sensor would have to coordinate their actions in the network
to conserve energy. For example, we will have sensor net-
works with motion and video sensors for detecting movement
and capturing images of moving objects. When there is no
movement in the region, the video sensor would waste a lot
of battery and bandwidth in sensing and transmitting these
images. However, when the motion sensors detects move-
ments, it will actuate the video sensors to start capturing
and transmitting images. Thus, coordination between sen-
sors would help conserve energy.

We envision that in future, sensor devices will have the ca-
pability to run agents on them and this would help us in
creating actual agent-based sensor systems. Since this is
not a viable alternative presently, MagicWeaver provides an
agent-based simulation framework to experiment with such
advanced agent-oriented techniques.

3.3 General PurposeModels

Based on the modular units mentioned earlier, MagicWeaver
provides abstract models for sensor tasking, data collection
and data dissemination. All these models were derived by
observing the hardware characteristics and limitations of
sensor devices, the type of sensing they do and way the
they communicate within a network.

The abstract models currently provided by MagicWeaver in-
clude the device constraint model, data propagation defi-
nition model, sensor task and tasking model, environmen-
tal model, cache model, energy consumption model, loca-
tion model, base station data model and network topology
model. Figure-1 gives the various models supported by the
MagicWeaver.

The device constraint model defines the hardware limita-
tions of sensors. Memory, processing power and battery
life are the typical constraints that are modelled. The data

DPOL

Libraries | Planner

DATAFLOW

SIL
DCL

Figure 2: Data Processor for Streaming Applica-
tions

propagation definition model provides means to define data
routing schemes. The sensor task and tasking model de-
fines attributes and execution policies associated with the
tasks. The environmental model incorporates definitions to
generate external data events. It is designed to simulate the
actual physical environment that the sensors are expected
to sense.

The cache model provides an abstract definition of the caching
strategy used by sensor nodes. The energy consumption
model provides quantitative measures for energy consumed
by different sensor actions. The location model provides
means to associate location information for sensor nodes.
The base station data model defines a format for publish-
ing data. It is used to interface external applications with
the sensor network. The network topology model provides a
means to define node-to-node connectivity within the sensor
network.

The sensor network designer is expected to define specific
instances of these models for the environment that he is
trying to simulate. MagicWeaver uses these user-defined
instantiations to simulate the behaviour of the network.

3.4 Support for StreamingApplications

A large sensor network can generate huge streams of data.
Persistent storage of those streams can be extremely costly.
Moreover, the wireless network will not be able to handle
such huge streams, data transmission will drain the sensor’s
energy and it might not be possible to do real-time data
processing at the computational resource.

To address these problems in streaming environments, Mag-
icWeaver provides support for in-network data processing,
data reduction and data fusion. It is based on resource-based
hierarchical processing of data as it travels through the net-
work. Each node in the network does data reduction or
data transformation based on the available resources. This
scheme leverages the resources encountered on the data path
in reducing data streams.

INTROSPECTOR

CONTROLLER

DEVICE CONSTRAINT LAYER (DCL)

10

AGENT PLATFORM

DP: Data Processor
DPDL: Data Propagation Definition Layer
STL: Sensor Tasking Layer

Figure 3: Sensor Node Architecture

For example, when there is a fire in the building, the fire-
man would like to know the heat distribution in the different
floors. Computing the heat distribution requires solving par-
tial differential equations and this is highly processor inten-
sive. The sensors sense the temperature and can do a local
coordination to transmit only the representative values of
the sensed data-set. The fireman’s PDA, upon receiving the
data, will compute the distribution parameters and correla-
tion matrix and transmit it to the cluster of resource-rich
machines. They compute the heat distribution in the build-
ing and send it to the fireman. This scenario illustrates how
each device in the data-path does data transformation based
on resource availability. It helps in reducing data streams,
while ensuring that the utility of the data is not lost.

To realize the above scenario, MagicWeaver simulates a net-
work of heterogeneous nodes. A specific instance of the en-
vironment model is used to generate events at a high data
rate. The data is processed at the individual nodes by the
data processor component. It consists of three modules. The
Library, that stores processing routines that can be applied
to the data. The Planner, that specifies the plan for data
processing and maintains resource requirements for different
data processing steps. The Dataflow, that links the planner
with the library for carrying out the data transformation and
record the resources consumed during the process. Figure-2
provides the representation of the data processor compo-
nent.

3.5 Agent Components

The three prime components in the MagicWeaver framework
are the sensor agent, the environmental agent and the net-
work topology agent. The helper components include the
logger agent and the base station agent.

3.5.1 Sensor Agent

Figure-3 shows the design of a sensor agent. It has a layered
architecture with each layer working under the constraints

imposed by some of the models. The agent platform hides
all the low level transport details from the sensor agent. The
device constraint layer(DCL) imposes resource restrictions,
based on which all sensor agent actions are taken.

The data propagation definition layer(DPDL) embodies the
data propagation definition model and the cache model. The
message passing primitives are drawn from the underlying
agent platform. Moreover, it uses the services of the network
topology agent to establish node-to-node connectivity.The
sensor tasking layer(STL) embodies the task and tasking
policy model. The agent performs sensing actions based on
the definitions provided by these two models.

Controller is analogous to the microcontroller present in the
hardware device. It coordinates the actions of the sensor
agent and takes dynamic decisions to switch between node
states(active and parked) and switch between sensing tasks
based on the tasking policy. The introspector monitors the
internal state of the sensor agent and updates the logger
agent.

3.5.2 Network Topology Agent

The network topology agent embodies the location model
and the clustering model. It is responsible for assigning
unique locations to the sensor agents in the network and
running a clustering algorithm to find out agent’s neighbour
connectivity.

3.5.3 Environmental Agent

The environmental agent embodies the environment model.
It simulates the actual physical environment, regularly gen-
erating events for the sensor agents to sense. It is configured
for generating events of different types based on the policy
definition.

3.5.4 Base Sation Agent

The base station agent expects data to be published to it
by the sensor agents, in the format specified by the base
station data model. It provides a graphical tool, DataView
for displaying the data gathered by the sensors from the
network.

355 Logger Agent

The logger agent receives messages about the internal state
of the sensor agents. It provides a graphical tool, Sen-
sorView, to display the network graph and reflect the state
data for the sensor agents. The QMView tool in it, provides
simulation data in a suitable format for analysis.

MagicWeaver provides a centralized architecture for network
topology management and maintaining a view of the sen-
sor network. The centralized architecture does not impose
any limitation on the framework, as the organization of the
network topology is done only once, during startup. The
dynamic reconfiguration of the network topology would be
handled by the nodes themselves and does not require sup-
port from a central network topology agent. The commu-
nication and coordination between sensor agents follows a
completely distributed architecture. In essence, a sensor net-
work is modelled as a multi-agent system in which agents are
communicating and coordinating with each other to achieve

the desired goal. With this architecture, it would be very
flexible to test the performance of different algorithms per-
taining to different facets of sensor networks.

MagicWeaver has been implemented using Java for model
definitions and Java Agent Development Environment[3] as
the underlying agent platform. It exposes an object-oriented
application programming interface that the sensor network
designers can use to incorporate their models into the run-
time system. XML is used for all policy definitions and inter-
agent communication. JADE is a FIPA compliant agent de-
velopment platform that hides all the low level transport de-
tails from the agent programmer. The cooperatively sched-
uled behaviour-oriented paradigm of JADE greatly helps in
modelling autonomous actions of the sensor agents.

3.6 Runtime Environment

To illustrate the use of MagicWeaver, we have created spe-
cific instances of various models required by it. The sensor is
modelled as a Berkeley Motes[13] device. The snippet below
shows a sample device configuration.

<?xml version=’’1.0’’ encoding=’’UTF-8’’7>
<sensordeviceprofile>
<devicename>Motes</devicename>
<devicetype>Wireless Sensor</devicetype>
<memory>
<primary>
<maxmemory>512</maxmemory>
<memoryunit>B</memoryunit>
</primary>
<secondary></secondary>
</memory>
<cpu>
<cputype>AMD Processor</cputype>
<cpuspeed>20</cpuspeed>
<cpuspeedunit>MHz</cpuspeedunit>
</cpu>
<battery>
<batterytype>Ni-CD</batterytype>
<batterymaxenergy>30</batterymaxenergy>
<batteryenergyunit>Joules</batteryenergyunit>
</battery>
<networksupport>
<wireless>
<communicationrange>10</communicationrange>
<commrangeunit>feet</commrangeunit>
<bandwidth>19.2</bandwidth>
<bandwidthunit>Kbps</bandwidthunit>
<tranceiverpower>
<receiving>0.0135</receiving>
<transmitting>0.036</transmitting>
<id1e>0.000015</id1le>
</tranceiverpower>
<amplifierpower>
<receiving>0.0</receiving>
<transmitting>0.0</transmitting>
<idle>0.0</idle>
</amplifierpower>
</wireless>
</networksupport>
</sensordeviceprofile>

Flooding and Gossipping represent the underlying data prop-
agation schemes. In Flooding, sensor nodes sends the data-
item to all its neighbours, which in turn does the same ac-
tion. In Gossipping, the sensor node sends the data-item to
only one of its neighbours, chosen randomly.

The simulation is divided into two phases. During the first
phase, each sensor agent contacts the network topology agent
for location and neighbor connectivity information. The net-
work topology agent generates neighbor information using
a distance-based clustering algorithm. Randomly it flags
some sensor nodes as having base station connectivity and
assigns the environmental agents to be polled.

During the second phase, the sensors start sensing based
on the tasking policy. The sensing action is simulated as a
message send and receive between the sensor agent and the
environmental agent. When the sensor senses some event,
the event data-item is stored in the cache. Periodically it
sends out these sensed values based on the underlying data
propagation scheme. The cache follows the caching strat-
egy outlined in the cache model instance. To maintain in-
formation about the network and sensor agent states, the
introspector component in each of the sensor agents sends
internal state messages to the logger agent.

3.7 Application Areas

MagicWeaver simulation framework will be useful in simu-
lating different aspects of Sensor Networks. The designer
could potentially compare the performance of different data
propagation schemes like Flooding, Gossipping, SPIN and
Direction Diffusion. The framework allows investigation of
varying sensor network lifetimes based on different sensing
strategies, data transmission, device constraints and cache
optimizations. The coupling between these aspects can also
be studied to determine the optimum configuration for a
particular deployment of sensor network.

For example, to compare the performance of MagicWeaver
with ns-2, we are simulating the following sensor environ-
ment. A network of sensors is deployed in a building. Each
sensor has the capability to sense temperature and pressure.
They are configured to use either Flooding or Gossipping
as the underlying data-propagation scheme. The frequency
of sensing and data transmission is externally configurable.
Each sensor device is modelled as a Berkeley Mote. We have
used a simple distance based clustering algorithm to deter-
mine the neighbor connectivity in the network. A subset
of nodes in the network are configured to have base station
connectivity.

During a fire(detected by abnormal increase in tempera-
tures), the sensors become active and start sending their
sensed data values using multi-hop routing. When the node
receives a data-item, it either forwards it to its neighbors
or sends it to the base-station(if it has that connectivity).
The DataView monitoring tool displays all the information
received and displays the number of active agents sending in-
formation to it. Intermittently, the introspector component
in each of the sensor agents sends internal state messages to
the Logger Agent. Vital pieces of information include, the
energy levels, bytes sent, bytes received and its neighbour
list. SensorView graphical tool displays a graph view of the
network and displays this state information.

This kind of a network setup would help determine the tem-
perature and pressure readings in different regions of the
building and the internal state information would be useful
in finding out the lifetime of the sensor network. An obvious

enhancement to this scenario would be introducing failures
in the network. The snippet below shows an example of the
tasking policy used in the simulation.

<?xml version=’’1.0’’ encoding=’’UTF-8’’7>
<taskingpolicy>
<task>
<taskname>Temperature</taskname)
<taskclass>TemperatureSensorTask</taskclass>
<taskschedule>
<frequency>30000</frequency>
<unit>milliseconds</unit>
</taskschedule>
<access_mode>PUSH</access_mode>
</task>
<task>
<taskname>Pressure</taskname>
<taskclass>PressureSensorTask</taskclass>
<taskschedule>
<frequency>45000</frequency>
<unit>milliseconds</unit>
</taskschedule>
<access_mode>PUSH</access_mode>
</task>
</taskingpolicy>

4. EXPERIMENT AL ANALYSIS

4.1 Overview

To have wide geographical coverage and to provide resiliency
from node failures, sensors are deployed in large numbers in
the network. Further, this will generate high network traffic.
This requires it’s simulation frameworks to be scalable both
in terms of number of devices that can be simulated and the
data traffic that can be handled.

MagicWeaver is built on top of JADE, leveraging it’s mes-
saging and deployment infrastructure. JADE consists of a
Main Container or the Platform that provides mandatory
FIPA[10] compliant services and peripheral containers that
are connected with the platform. Both the platform and the
main containers are capable of hosting agents. The under-
lying messaging infrastructure in JADE has three types of
messaging. Two agents within the same container exchange
messages using events. Two agents in different containers
exchange messages using Java RMI and two agents in differ-

ent platforms communicate using protocols like HTTP /IIOP.

The number of sensor devices that can be simulated by
the framework depends on the footprint imposed by sensor-
specific behaviour of these agents and the agent platform.
The network traffic that is handled by the framework de-
pends on the capability of the underlying message transport
protocol. To investigate the constraints imposed by the un-
derlying agent platform, we carried out scalability tests on
the platform and report the results here.

4.2 Test-Bed

In these experiments we are investigating two issues. Given
a fixed number of messages per minute, per agent, how many
agents can a system support? Secondly, given a fixed num-
ber of agents, what is the message complexity that the sys-
tem handles reasonably, beyond which substantial message
losses are encountered or the system breaks.

Hosts Messaging Stable | Unstable | Breakdown
1 Inter-Container 500 750 1000
1 Intra-Container 750 1000 1500
3 Inter-Container | 1000 1250 1500
3 Intra-Container | 1500 2000 2500

Table 1: Maximum Agents Threshold

We used two configurations, one in which all agents are de-
ployed on a single host and the other in which all agents are
equally distributed on three hosts. We restricted the number
of hosts to three, as our goal is to make MagicWeaver scal-
able using the least number of hosts. These hosts were a part
of the beowulf cluster. Each node in the cluster has a Pen-
tium IIT 598 MHz dual processor and 1 GB memory. The
nodes ran Linux 2.4.7-10 and were connected using dual-
bonded 100 Mbit ethernet links.

The simulation of agents in our tests was based on JADE de-
ployment architecture. Each peripheral container was con-
figured to host 50 agents and these were distributed equally
across the available hosts. To ensure that messages are sent
uniformly during the time period (one minute intervals), a
clock skew was introduced during the startup of agents. We
configured each sensor agent to have 4 neighbours, to which
it sends messages whenever it senses events. Forwarding of
data messages was disabled to keep the number of messages
sent bound to the theoretical message complexity.

The experiments were carried out for intra-container and
inter-container messaging. The threshold values obtained
were categorized into three states, Stable, Unstable and
Breakdown. In the stable state, atleast 95% of the agents
in the system are active and the message loss is less than
5%. In an unstable state the number of active agents ranges
between 90% and 95% and the message loss is between 5%
and 15%. The breakdown state is reached when the num-
ber of active agents are less than 90% or the message loss
is greater than 15%. To determine these boundary values,
we carried out initial stress tests. These tests revealed that
the system within the given boundary conditions, tends to
remain in the same state with no performance degradation.
For the purpose of this simulation, an Active Agent is one
that is sensing and reporting data according to the config-
ured specifications.

4.3 Maximum AgentsThreshold

Each sensor was configured to generate a sensor event once
per minute and this was sent to it’s 4 neighbours. This fre-
quency was carefully chosen to ensure that the network is
not overwhelmed with messages as the number of agents in-
creases. Each simulation was allowed to run for 20 minutes.
The total number of active agents and messages sent and
received by the them were accumulated for analysis and av-
eraged to get the final thresholds. The performance of the
system was evaluated, by monitoring the number of agents
that were active during the simulation and by comparing
the actual messages sent and received with the theoretical
bounds.

Table-1 provides the results obtained through the simula-

tion for both inter-container and intra-container messaging.
The agents were increased in the system in multiples of 250.
A single host setup with inter-container messaging was sta-
ble with 500 agents. With 750 agents, the number of ac-
tive agents decreased and message losses increased. At 1000
agents, only 12% of them were active. With intra-container
messaging, there was a 50% increase in the number of agents
supported by the system in different states. The 3-host
setup with 1250 agents went into the unstable state as it
experienced both messages losses and decline in agents that
were active. With 1500 agents using inter-container messag-
ing, only 16% of the agents were active. With 2000 agents,
the system went into an unstable state and there was a com-
plete failure with 2500 agents.

In the unstable state, containers got disconnected from the
platform. This led to the execution of a connection recov-
ery phase in which additional messages were sent, posing
additional message overhead on the platform.

We find that intra-container messaging provides support for
greater number of agents(50%) in the system as compared
to inter-container messaging. During the simulations we ob-
served that the minimum amount of memory available on
the hosts was 400MB. This clearly indicates that perfor-
mance degradation is happening due to the increasing num-
ber of messages in the system. Thus, both the number of
agents and the number of messages are important parame-
ters in testing the scalability of the system.

4.4 MessageComplexity Threshold

Based on the results of the previous experiment, we carried
out this test with 300 and 600 agents in the system for both
intra-container and inter-container messaging. The goal was
to find the threshold values for the number of messages that
the underlying platform and containers can support. The
messages were increased by a factor of 4 messages per agent
per minute. Table-2 and Table-3 summarizes the results
obtained during the simulations. In these tables, values for
the stable, unstable and breakdown state are expressed as
per agent per minute.

From the results, we find that increasing the number of mes-
sages decreases the number of active agents in the system
and increases the messages losses, taking the system from
stable to breakdown state. As the number of hosts increases,
the number of messages that are handled also increases.
Again in this case, intra-container messaging performs bet-
ter than inter-container messaging. Further, as the number
of agent increases, the system is able to support lesser mes-
sages per agent per minute, though the total messages per
minute is more.

In this experiment also, we found that the nodes had enough
memory available(minimum 400MB) during the simulations.
Hence the real bottleneck is created due to the large number
of messages passed in the system. In the burst mode (mes-
sages are sent at the same time), the system performance
degrades much faster.

5. DISCUSSION

Our implementation demonstrates the flexibility for incor-
porating various models in the simulations. Sensor network

Hosts | Agents | Stable | Unstable | Breakdown
1 300 12 16 24
1 600 8 12 16
3 300 16 24 40
3 600 12 16 20
Table 2: Message Complexity Thresholds with

Inter-Container Messaging

Hosts | Agents | Stable | Unstable | Breakdown
1 300 16 14 40
1 600 12 16 20
3 300 24 32 40
3 600 16 20 24
Table 3: Message Complexity Thresholds with

Intra-Container Messaging

designers can try different combinations of schemes to get
the most optimal performance for their algorithms. The
framework acts as a runtime environment linking various
models to simulate the network. Traditional network simu-
lators provide complex models for users to adapt in order to
simulate their environment. MagicWeaver leaves this com-
plexity to the designer.

Based on the results obtained through the simulations, Mag-
icWeaver will be able to provide a robust runtime environ-
ment configuration for sensor agents. It will be able to cre-
ate an optimized deployment of agents for the clustering
policy specified by the user. The thresholds for the number
of agents and message complexity supported by the JADE
platform are encouraging. This, coupled with the message
transmission optimizations by MagicWeaver, would enable
it to simulate large sensor networks with huge data streams.
To counteract some of the scalability limitations imposed by
the underlying agent platform, we would be modifying the
platform to include just the components neccessary for the
MagicWeaver framework. Some of the components that are
not required include Security modules, mobile code support
modules and communication modules like Corba IIOP and
Java RMI.

An agent-oriented approach to building such a framework
provides a foundation for incorporating agent theories like
Teamwork and Coordination between sensor agents. It would
be difficult to include such principles in an Object-Oriented
approach for building such simulation tools.

6. CONCLUSION

In this paper, we have described MagicWeaver, an agent-
based simulation framework for wireless sensor networks.
The key feature of MagicWeaver is flexibility, both in terms
of incorporating user-defined models and agent-based prop-
erties like teamwork, adaptiveness and intelligence in sen-
SorS.

We are working on simulating the performance of hierarchi-
cal data processing scheme for streaming applications. The
goal is to compare sensor network lifetime under this scheme
with the one in which all the processing is done at the cen-
tral node. To demonstrate the correctness of the quantative

measures provided by the framework, we are comparing it’s
performance with ns-2 and Sensorsim.

On the modelling side, MagicWeaver is to be extended to
provide support for querying the sensor network. Specifi-
cally we are looking at query routing and dynamic team-
work formation between sensor agents to answer queries.
The framework supports Directed Diffusion as one of the
underlying data routing schemes.

7.
(1]

[2]

3]

[9]
[10]

[11]

[12]

[13]

REFERENCES

G. Asada, M. Dong, T. Lin, F. Newberg, G. Pottie,
W. Kaiser, and H. Marcy. Wireless integrated network
sensors:low power systems on the chip. Proceedings of
the 1998 European Solid State Circuits Conference.

M. Bawa and M. Anant. Locating objects over a
wireless sensor networks.

F. Bellifemine, A. Poggi, and G. Rimassa. Developing
multi agent systems with a fipa-compliant agent
framework. In Software - Practice And Ezperience,
number 31, pages 103-128, 2001.

A. Boulis, A. Savvides, and M. Srivastava.
Sensorware: A middleware supporting mobile
distributed computing for sensor networks.

K. Bult, A. Burstein, D. Chang, M. Dong, and

W. Kaiser. Wireless integrated microsensors. In
Proceedings of Conference on Sensor s and Systems
(Sensors Ezpo). Anaheim, CA, USA, pages 33-38.

J. Byers and G. Nasser. Utility-based decision-making
in wireless sensor networks. Technical Report
2000-014, 1 2000.

D. Estrin, L. Girod, G. Pottie, and M. Shrivastava.
Instrumenting the world with wireless sensor
networks. In International Conference on Acoustics,
Speech and Signal Processing ICASSP 2001, 2001.

D. Estrin, R. Govindan, and C. Intanagonewawat.
Directed diffusion, a scalable and robust
communication paradigm for sensor networks. In
International Conference on Mobile Computing and
Networking, pages 56—67, august 2000.

K. Fall and K. Varadhan. Ns notes and
documentation. http://mach.cs.berkeley.edu.

FIPA. The foundation for intelligent physical agents.
http://www fipa.org.

S. Giroux, P. Marcenac, S. Calderoni, D. Grosser, and
J. Grasso. A report of a case study with agents in
simulation, 1996.

W. R. Heinzelman, J. Kulik, and H. Balakrishnan.

Adaptive protocols for information dissemination in
wireless sensor networks. In Mobile Computing and
Networking, pages 174-185, 1999.

J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and
K. Pister. System architecture directions for
networked sensors.

[14]

[15]

[16]

[17]

18]

[19]

J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next
century challenges: Mobile networking for ”smart
dust”. pages 271-278.

S. Madden and M. J. Franklin. Fjording the stream:
An architecture for queries over streaming sensor
data. In ICDE, 2002.

S. Park, A. Savvides, and M. B. Srivastava. Sensorsim:
A simulation framework for sensor networks. In The
Third ACM International Workshop on Modeling,
Analysis and Simulation of Wireless and Mobile
Systems, 2000.

S. G. Pierre. Modelling and simulating self-organised
critical systems.

J. Rabaey, J. Ammer, J. da Silva Jr., and D. Patel.
Picoradio: Ad-hoc wireless networking of ubiquitous
low-energy sensor/monitor nodes. In Proceedings of
the IEEE Computer Society Annual Workshop on
VLSI (WVLSI’00).

M. Wooldridge and N. R. Jennings. Intelligent agents:
Theory and practice. The Knowledge Engineering
Review, 10(2):115-152, 1995.

