
A Policy Language for a Pervasive Computing Environment�

Lalana Kagal, Tim Finin and Anupam Joshi
Department of Computer Science and Electrical Engineering

University of Maryland Baltimore County
Baltimore, MD 21250

�lkagal1, finin, joshi�@cs.umbc.edu

Abstract

In this paper we describe a policy language designed
for pervasive computing applications that is based on de-
ontic concepts and grounded in a semantic language. The
pervasive computing environments under consideration are
those in which people and devices are mobile and use var-
ious wireless networking technologies to discover and ac-
cess services and devices in their vicinity. Such pervasive
environments lend themselves to policy-based security due
to their extremely dynamic nature. Using policies allows
the security functionality to be modified without changing
the implementation of the entities involved. However, along
with being extremely dynamic these environments also tend
to span several domains and be made up of entities of var-
ied capabilities. A policy language for environments of this
sort needs to be very expressive but lightweight and easily
extensible. We demonstrate the feasibility of our policy lan-
guage in pervasive environments through a prototype used
as part of a secure pervasive system.

1. Introduction

Policies guide the behavior of entities within the policy
domain and have been used extensively in security, man-
agement and even network routing. Policy-based security
is often used in systems where flexibility is required as
users, services and access rights change frequently. As
computationally enabled devices (laptops, phones, PDAs,
and even household appliances) become more common-
place and short range wireless connectivity improves, there
is a increased need for more automated security in the re-
sulting pervasive environments formed by mobile users ac-
cessing these resources and other services and information
using handheld devices. These environments will be popu-

�This research was supported in part by Hewlett-Packard Labs, Palo
Alto and by DARPA contract F30602-97-1-0215.

lated by a large number of wirelessly networked heteroge-
neous users, services and semi-automated entities of varied
capabilities making it necessary to ensure that all these dif-
ferent entities behave appropriately. Towards this end, we
believe that policy based security will be the most effective
as it will be possible to modify how different entities act
without modifying their internal mechanism.

Policies generally require application specific informa-
tion to reason over, forcing researchers to create policy lan-
guages that are bound to the domains for which they were
developed. This prevents policy languages from being flex-
ible or being applicable across domains. In order to enable
entities in pervasive computing systems, which consist of
different domains and systems, to understand and interpret
policies correctly, we propose that they be represented in
a semantic language like RDF-S [4], DAML+OIL [8] or
OWL [6]. We believe that using a semantic language al-
lows different systems to share a model of policies, roles
and other attributes [3, 12].

In this paper, we describe the specification of our pol-
icy language, Rei1. Rei is based on deontic concepts
[17, 18, 27] and includes constructs for rights, prohibitions,
obligations and dispensations (deferred obligations). The
language consists of a few simple constructs that are ex-
tremely flexible and allows different kinds of policies (se-
curity, privacy, management, conversation etc.) to be spec-
ified. The policy language is not tied to any specific appli-
cation and permits domain specific information to be added
without modification. As our policy language is geared to-
wards environments that consist of several domains we be-
lieve that there is a potential for policy conflicts. The lan-
guage includes two constructs for specifying meta-policies
that are invoked to resolve conflicts; setting the modality
preference (negative over positive or vice versa) or stating

1Rei, pronounced ray, is a Japanese ’Kanji’ character which means
’universal’ or ’essence’. It was chosen to indicate the universal applica-
bility of the policy language, as its flexibility and versatility allow a large
variety of policies, including security, conversation and management, to be
specified.

the priority between policies. For example, it is possible to
say that in case of conflict the Federal policy always over-
rides the State policy.

In pervasive environments, describing comprehensive
policies may be time consuming, if at all possible. We be-
lieve that policies should be as simple as possible and con-
trol should be decentralized, that is authorization should be
possible by more than just a few key entities. Rei models
speech acts like delegation, revocation, request and cancel
that allow policies to be less exhaustive and allow for de-
centralized security control.

Due to the large number of entities in the environment,
it may not be possible to identify them accurately or even
pre-determine the users of each service. Therefore we sug-
gest developing policies associated with properties of enti-
ties instead of identities [11, 13]. These properties are estab-
lished by proving them from an entity’s credentials, beliefs
of other entities and the appropriate security policies.

The paper is structured as follows: The discussion about
the specification of the language in Section 2 includes the
policy constructs, the action specifications and the repre-
sentation of domain specific information. Following this, in
Section 3 we describe the types of possible conflicts and the
meta policies that can be used to resolve them. As delega-
tion management is very important in the environments we
work with, in Section 4 we present our approach to dele-
gation and discuss the types of delegation Rei covers. The
implementation details of the policy engine associated with
Rei are covered in Section 5. In Section 6 we talk about a
prototype of a secure pervasive system that we developed to
test the feasibility of the policy language. After discussing
related background work, we state the contributions of our
research in Section 8. Finally in Section 9 we summarize
our work and describe future research directions.

2. Structure of Policy Language

Our policy language is modeled on deontic concepts of
rights, prohibitions, obligations and dispensations [10]. We
believe that most policies can be expressed as what an entity
(user, agent, service, etc.) can/cannot and should/should not
do in terms of actions, services, conversations etc., making
our language capable of describing a large variety of poli-
cies ranging from security policies to conversation and be-
havior policies. Rei is implemented in a logic language,
namely Prolog [24]. We have also developed ontologies
that enables the policy engine to interpret a subset of RDF-S
policies.

The Rei policy language includes certain domain inde-
pendent ontologies and accepts domain dependent ontolo-
gies. The former includes concepts for permissions, obli-
gations, actions, speech acts, operators etc. The latter is a
set of ontologies, shared by the entities in the system, which

define domain classes (person, file, deleteAFile, readBook)
and properties associated with the classes (age, num-pages,
email).

Though the execution of actions is outside the policy en-
gine, the policy language includes a representation of ac-
tions that allows more contextual information to be captured
and allows for greater understanding of the action and its
parameters. It similarly permits domain dependent infor-
mation to be added.

Rei includes three types of constructs: (i) policy objects,
(ii) meta policies and (iii)speech acts. (i) The policy ob-
jects represent rights, obligations, prohibitions and dispen-
sations. The has policy construct allows these objects to
be associated with different entities creating policy rules.
This allows for reuse of policy objects. For example, the
same right to read a certain file could be associated with
different entities in different policy domains. (ii) The pol-
icy language contains meta-policy specifications for conflict
resolution. These include constructs for specifying prece-
dence of modality and priority of policies. (iii) Rei models
four speech acts that can be used within the system to mod-
ify policies dynamically: delegate, revoke, cancel and re-
quest. In order to make correct policy decisions, we assume
the presence of a monitoring service that sends all relevant
speech acts to the policy engine. Associated with the pol-
icy language is the policy engine that interprets and reasons
over the policies, speech acts and domain information to
make decisions about users rights and obligations.

2.1. Policy Objects

The core of the policy language is the set of constructs
that describe the concepts of rights, prohibitions, obliga-
tions, and dispensations. These constructs denoted by Poli-
cyObject are represented as

- PolicyObject(Action, Conditions)
where, Action is a domain dependent action and Condi-

tions are constraints on the actor, action and environment.
A policy object defines a commonly occurring right, obli-
gation, prohibition and dispensation. For example, the right
to print to a certain printer, the obligation to brew a fresh
pot of coffee when the coffee pot is empty, etc.

In order to associate a policy object with an entity, the
has construct is used.

- has(Subject, PolicyObject)
where, Subject can either be a URI identifying an entity

or a variable, allowing all entities who satisfy the conditions
to be associated with the policy object to possess the policy
object. A policy consists of several has rules.

Rei allows role based or group based policies to be
defined by using has with a variable and specifying the
role or group, which are domain dependent, as part of the
condition of the policy object. In this way, policies can

be individual, role, group - based, or any combination of
the three. This mechanism is different from existing policy
languages, which include special constructs for role/group
based rights/obligations [5, 15].

There are four kinds of policy objects: (i) Rights, (ii)
Prohibitions, (iii) Obligations, and (iv) Dispensations.

� Rights are permissions that an entity has. The posses-
sion of a right allows the entity to perform the associ-
ated action.

An entity, abc, can perform an action, actionABC if
and only if at least one of the following conditions are
true

– has(abc, right(actionABC, Conditions)) and abc
satisfies Conditions

– has(Variable2, right(actionABC, Conditions)),
abc binds to Variable and satisfies Conditions

Example 1. A rule that states that all employees of
’UMBC’ can perform printAction1 is represented as

has(Variable, right(printAction1, (employee(Variable,
’UMBC’))))

In this policy rule, printAction1 is an action and em-
ployee is a condition.

� Prohibitions are negative authorizations implying that
an entity cannot perform the action.

An entity, abc, is prohibited from performing action-
ABC if and only if at least one of the following condi-
tions is true

– has(abc, prohibition(actionABC, Conditions))
and abc satisfies Conditions

– has(Variable, prohibition(actionABC, Condi-
tions)) and abc satisfies Conditions

Example 2. A rule that states that students of ’UMBC’
are prohibited from using the faculty printer is speci-
fied as

has(Variable, prohibition(useFacultyPrinter, (stu-
dent(Variable,’UMBC’))))

useFacultyPrinter is an action and student(Variable,
’UMBC’) is a condition that an entity must satisfy in
order to possess the prohibition.

2In prolog, any word starting with an uppercase letter is assumed to be
a variable. All constants start with a lowercase letter.

� Obligations are actions that an entity must perform and
are usually triggered when a certain set of conditions
are true.

An entity, abc, is obliged to perform actionABC if and
only if one of the following conditions are true

– has(abc, obligation(actionABC, Conditions))
and abc satisfies Conditions

– has(Variable, obligation(actionABC, Condi-
tions)) and abc satisfies Conditions

Example 3. A policy rule specifying that all employees
of ’ABC’ should display their badges while at work is
represented as

has(Variable, obliged(displayBadge, (em-
ployee(X,’ABC’), atWork(X))))

displayBadge is an action and employee(X, ’ABC’ and
atWork(X) are a domain dependent condition.

There are additional parameters associated with Obli-
gation for better processing of the policy object; Met-
Effects and NotMetEffects [20]. The subject can de-
cide whether to complete the obligation by comparing
the effects of meeting the obligation (MetEffects) and
the effects of not meeting the obligation (NotMetEf-
fects). However, this reasoning is not part of the policy
engine and is left to the individual subject. The pol-
icy engine learns of the environment including actions
being performed, relevant speech acts, and other con-
textual information from the monitoring service. Us-
ing this information, the policy engine is able to infer
which obligations were fulfilled and which obligations
still need to be fulfilled.

� Dispensations are actions that an entity is no longer
required to perform. They act as waivers for existing
obligations.

An entity, abc, is no longer obliged to perform an ac-
tion, actionABC if and only if

– has(abc, obligation(actionABC, OConditions))
and if abc satisfies OConditions

– has(abc, dispensation(actionABC, DCondi-
tions)) and if abc satisfies DConditions.
OR

– has(Variable, obligation(actionABC, OCondi-
tions)) and if abc satisfies OConditions

– has(Variable, dispensation(actionABC, DCondi-
tions)) and if abc satisfies DConditions.

Example 4. John is no longer required to pay alimony
to his wife after she re-marries.

has(john, dispensation(payAlimony, wife(john, X), re-
married(X)))

2.2. Action Specifications

The policy language suggests a representation of actions
that allows for greater understanding of the action and its
parameters. Actions can be represented as a tuple with the
following parameters

- action(ActionName, TargetObjects, Pre-Conditions,
Effects)

where, ActionName is the identifier or URI of the action,
TargetObjects is a list of objects on which the action is
performed, Pre-Conditions are the conditions that need to
be true before the action can be performed and Effects are
the results of the action being performed. Preconditions
reflect the context in which the action can be performed
and Effects are used to infer the state of the environment
after the action is performed.

Example 5. The action of printing a page on printerHP
can be represented as

action(printOnePageHP, [printerHP], (containsCar-
tridge(printerHP),availablePaper(printerHP, X), X � 1),
availablePaper(printerHP, X-1))

2.2.1. Action Operators
Though we would like the policy language to be as sim-
ple as possible, certain additional constructs are required to
create complex action descriptions. For example, there is a
difference between John having the permission to perform
action A followed by B, and John having the permission
to perform A and the permission to perform B. We tried to
model these operators using the existing action specifica-
tions but were unable to come up with a satisfactory result
forcing the additional complexity.

The policy language includes four action operators that
allow various kinds of complex actions to be specified; se-
quence, non-deterministic, once, and repetition [7].

� Sequence : If A and B are actions, seq(A,B) denotes
that action B must only be performed after action A or
that action A and B must be performed in sequence.

� Non-deterministic : If A and B are actions, nond(A,B)
denotes a choice between A and B implying either A
or B can be performed, but not both.

� Repetition : If A is an action, repetition(A) denotes that
A can be executed several times.

� Once : If A is an action, once(A) denotes that A can
only be performed once.

Example 6. Consider a right associated with John. John
has the right to either perform action printBW followed by
repeated executions of printColor or perform action faxBW

once. He only has the right while he is a lab member of
’AI’.

has(john, right(nond(seq(printBW, repeti-
tion(printColor)), once(faxBW)), lab-member(john,’AI’))).

2.3. Speech Acts

As Rei is geared towards highly distributed and large en-
vironments, it includes a representation of speech acts that
are used to decentralize control. The policy language cur-
rently includes specifications for four speech acts that affect
the policy objects of the communicating entities: (i) delega-
tion, (ii) request, (iii) cancel, and (iv) revocation. These
speech acts are also governed by policies and entities can
only use a certain speech act if they have the right to it.
Consider for example, John may have the right to send a re-
quest to Joan but not a delegate or a cancel. The structure
of the speech acts allows for natural nesting of speech acts
with policy objects. For example, it is possible to request
a dispensation or cancel a request. The policy engine cur-
rently implements a certain subset of these nested speech
acts namely delegation of rights and actions, requesting of
rights and actions, cancellation of requests, and revoking of
any types of rights including the right to delegate.

� Delegation : A delegation allows an entity to give a
right to another entity or group of entities. A delega-
tion, if valid, causes a Right to be created. Only an
entity with the Right to delegate can make a valid del-
egation. A delegator always retains the right to revoke
the delegated right.

A delegation can be represented as

- delegateSpeechAct(Sender, Receiver, right(Action,
Condition)) and Receiver satisfies Conditions ��

has(Receiver,right(Action, Condition))

Example 7. Assuming that John has the right to dele-
gate, he delegates to Mark the right to print on the lab
printer as long as he is working on the same project as
John.

delegateSpeechAct(john, mark,
right(printLabPrinter,(project(john, SomeProject),
project(mark, SomeProject))))

action(printLabprinter, [laserPrinter123],
queue(laserPrinter123,0), queue(laserPrinter123,
1))

� Request : There are two kinds of requests; a request
for an action and a request for a right. The former, if
accepted, causes an obligation on the part of the re-
ceiver. A request for a right, if valid and accepted,
causes the receiver to delegate the right to the sender.

Root of Rei
ontology

Propositions
(Time validity)

Entity
(Name,Location,

Affliation,Owner)
Action

Rules
(Assoc Policy)

Permission Prohibition

Obligation

Agent Object

Delegation

Request

Revocation Cancel

Domain Action
(Name,Target, PreCond,Effects)

Speech Acts
(From, To, Policy Object)

Dispensation

Conditions
(ConditionValue)

Meta-Policy

Or-Condition

And-Condition

Not-Condition

Policy
(Creator, meta data, Set

of Rules)

Policy Object
(Action, Condition, Commitment)Overrides

Modality

Policy
Overrides

Rule
Overrides

Positive
Modality

Negative
Modality

Policy Rules
(Actor, Conditions, Policy

Object)

Figure 1. Rei Policy Language Ontology

However, the delegation allows the sender the permis-
sion to perform the action only if the receiver has the
right to delegate.

– requestSpeechAct(Sender, Receiver, Action) ��
disagree
requestSpeechAct(Sender, Receiver, Action) ��
has(Receiver, obligation(Action, Condition))

– requestSpeechAct(Sender, Receiver, right(Action,
Condition)) �� disagree
request(Sender, Receiver, right(Action, Condi-
tion)) ��
delegateSpeechAct(Receiver,Sender,
right(Action, XCondition))

� Revoke : Revocation is the removal of a right and acts
as a prohibition. A revocation is allowed in two cases;
an entity can revoke those rights to which it has the
right to revoke or those rights that it has itself dele-
gated.

revokeSpeechAct(Sender, Receiver, right(Action, Con-
dition))�� revocation(Receiver, right(Action, Condi-
tion)) and Sender no longer has the right to perform
Action

� Cancel : An entity can cancel any request it has sent,
and this nullifies any obligation or delegation caused
by the request.

– cancelSpeechAct(Sender, Receiver, Action) AND
has(Receiver, obligation(Action, true)) ��

has(Receiver, dispensation(Action, Condition))

– cancelSpeechAct(Sender, Receiver, right(Action,
X)) �� Sender no longer has the right to per-
form Action

2.4. Domain Specific Information

The Rei policy engine accepts information about enti-
ties and their properties in any semantic language that can
be converted into triples of the form Subject, Predicate, Ob-
ject). It understands class hierarchies and interprets any cor-
rect instance of our ontology or any subclasses. All seman-
tic information is stored and reasoned over in triples. Fig-
ure 1 illustrates the ontology we are developing to express
policies in RDF-S [4]. The RDF-S ontology is available
at http://daml.umbc.edu/ontologies/policy/ and is being de-
veloped as a part of a larger ontology of security, trust and
privacy concepts. As an example, consider a security pol-
icy being developed for a database application. Database
related actions like creating/viewing/deleting/updating a ta-
ble, adding/deleting/modifying a record, and creating dif-
ferent views will be instances or subclasses of our Domain
Action. The databases, tables, and users of the system will
be represented as classes under Entity. The policy itself will
be specified as a set of both policy rules and meta-policy
rules.

2.5. Conditions

As it is not always possible to identify entities in perva-
sive systems, along with allowing identity based policies,
Rei also permits policies to be based on properties of the
action, targets, subjects and other environmental factors like
time and place. The policy languages permits complex con-
ditions to be built from these properties and supports the
following operators;

� AND : A complex condition made of two conditions
associated with an AND, will be true only when both
conditions are true.

For example, (employee(X, ’UMBC’), lab-member(X,
’AI’)) will only be true if both conditions are true

� OR : A complex condition made of two conditions as-
sociated with an OR, will be true only when one of the
conditions is true

� NOT : A complex condition consisting of
not(ComplexCondition) is true when Complex-
Condition is cannot be proved.

Example 8. As an example, consider a complex con-
straint made of application dependent conditions, which is
when the agent is a lab member of ’AI’ or if the agent is not
a group member of ’IR’.

(lab-member(X, ’AI’); not(group-member(X, ’IR’)))

However, Rei requires a semantic rule language that in-
cludes the unification of variables as provided by Prolog.
After studying the existing semantic languages like RDF-S,
DAML+OIL, OWL and rule based languages like RuleML
[2], we found that this is currently not supported. We are
currently looking into the feasibility of using a language
which is a combination of Prolog and a semantic language
to represent conditions. Our prolog engine currently accepts
conditions as combinations of triples and prolog predicates.

3. Conflicts and Conflict Resolution

Due to the nature of a pervasive environment, we expect
that there will be several policies applicable to every do-
main which could lead to potential conflicts. For example,
in one policy Mary has the obligation to write the report
and another policy prohibits Mary from writing the same
report. Conflicts occur if policies overlap in subject, target
and action but the policy objects are different.

Based on Moffett and Sloman [19] we identify two kinds
of conflicts

� Conflict of modality : These conflicts occur when
an entity is authorized to perform (Right) and forbid-
den from performing (Prohibition) a certain action on a
certain set of targets or is both required to (Obligation)
and waived from (Dispensation) performing a certain
action on a certain set of targets. This includes Rights,
Prohibitions, Obligations and Dispensations caused by
speech acts.

� Conflict of Obligation and Prohibition : These con-
flicts occur when an entity is required to perform (Obli-
gation) and forbidden from performing (Prohibition) a
certain action on a certain set of targets. However, in
Rei an entity must have the right to perform an action

before performing it, which causes the conflict to re-
duce to a conflict between a Prohibition and a Right.

In order to resolve conflicts, Rei includes meta-policies
that are policies about how policies themselves are inter-
preted and how conflicts are resolved at run-time. While
reasoning over a security decision, if the policy engine
comes across two opposing policy objects for the entities
under consideration, it declares a conflict and tries to find
the most appropriate meta policy to resolve the conflict.
Meta policies in our system regulate conflicting policies in
two ways; (i) priorities and (ii) precedence relations [16].

3.1. Priorities

Priorities can be specified between named policy rules or
even entire policies. For example, it is possible to state that
the school policy overrides the department policy in case
of conflict. It is also possible to set priorities between any
two rules. If there is a rule, A1, giving Mark the right to
print and a rule, B1, prohibiting Mark from printing. By
using overrides(A1, B1), A1 is given priority over B1. The
conflict between the two rules is resolved at run-time giving
Mark the right to print. The same construct is used to spec-
ify priorities between policies. It is also possible to specify
whether priorities between policies should be evaluated be-
fore or after priorities between conflicting policy rules.

3.2. Precedence

It is possible to specify which modality holds precedence
over the other in the meta-policies. The policy maker can
associate a certain precedence for a set of actions or a set
of entities satisfying certain conditions. The constructs to
be used are metaRuleAction, metaRuleAgent and metaRule.
If negative modality holds, prohibitions hold over rights
and dispensations are stronger than obligations for the
set of entities that fulfill the associated conditions of the
meta-policy construct, for positive modality it is the reverse.

The three kinds of meta rules:

� metaRuleAction(ActionConditions, positive/negative) :
This allows the modality precedence to be set for a set
of actions that satisfy the action conditions.

� metaRuleAgent(ConditionOnAgent, positive/negative)
: This allows the modality precedence to be set for a
set of entities that satisfy the conditions.

� metaRule(Policy, positive/negative) : This is the
default precedence that can be set for a policy.

Example 9. A meta policy that specifies that for any
conflict regarding policies for employees of ABC, negative
modality holds precedence is defined as

metaRuleAgent(employee(X, ’ABC’), negative-modality)

There exists a partial ordering among the meta-policies
as well and this ordering can be manipulated for every
policy. The default ordering is: the meta rules associated
with actions have the highest priority, followed by meta
rules about subjects and if there are no rules associated
with the action or the subject, then the default meta rule is
considered.

4. Delegation Management

Delegation is important in highly dynamic and widely
distributed systems because it allows the policy to be rela-
tively simple and allows the rights of entities to be config-
ured dynamically. A policy for all printers in a lab could be
defined so that managers have the right to delegate the right
to print and the right to re-delegate this right to any em-
ployee of the company. However, if any employee that they
delegate to, misbehaves in any way, the system will hold the
associated manager responsible. This forces the managers
to be careful with their delegations, while at the same time
allowing the rights on the printers to propagate.

The Rei policy language defines three types of inter-
related rights associated with each action, out of which the
last two give certain delegation rights.

� Right to execute : Possessing this right allows the
agent to perform the action.

has(Agent, right(Action, Condition))

where Action is the action and Condition are the con-
ditions on execution

� Right to delegate execution : If an agent possesses the
right to delegate the execution of an action, it can dele-
gate to other entities the right to perform the action but
the agent cannot perform the action itself.

NOT has(Agent, right(Action, ECondition))

has(Agent, right(Action1, Condition1))

where, Condition1 are the conditions on the Agent

Action1 is delegate(right(Action, Condition))

This right gives the possessor the right to delegate the
previous right, the right to execute.

� Right to delegate delegation right : The agent can del-
egate to another agent or a group of entities the right
to further delegate the right to perform the action and
delegate this delegation right as well. Though at this

point the right should have been divided into right to
delegate the right to execution and the right to delegate
the right to delegation, we decided to combine them as
we expect that the conditions on every right will take
care of the propagation of the delegation. This right
gives the possessor the right to delegate the previous
right, the right to delegate execution and the right to
delegate the delegation itself.

NOT has(Agent, right(Action, ECondition))

has(Agent, right(Action1, Condition1))

where, Condition1 are the conditions on the delegator,
Agent

Action1 is delegate(right(Action2, Condition2))

Condition2 are the conditions on the delegatee

Action 2 is delegate(right(Action, Condition))

These three rights force conditions on the executor of
the action, the delegator of the action and whom the right
can be delegated to. An agent has the right to a certain
action (including speech acts) if it possesses the right or
if it has been delegated the right. It should satisfy the
conditions associated with the innermost right of execution
of every delegation in the chain. Each delegator should
satisfy the condition on the delegation of the delegation
before it in the chain and the delegatee conditions of all
previous delegations. If any entity fails any delegator
condition, the delegations from that point on are invalid.
The policy engine ensures that circular delegations are not
allowed, i.e., an entity cannot delegate a right to itself or to
another entity who delegates it back to the delegator or to a
previous delegator in the delegation chain.

Example 10. This example demonstrates the working of
cascaded delegations.

� Amy has the right to delegate the right to execute
printOnePageHP and she delegates this right to Tim.
Tim can only execute printOnePageHP if he satis-
fies both the condition associated with the speech act
(employee(tim, ’UMBC’) and the condition associ-
ated with Amy’s delegation right (group-member(X,
Group)).
has(amy, right(amy, delegate(right(X, print, group-
member(X,Group))), employee(amy, ’UMBC’)))
delegateSpeechAct(amy, tim, right(tim, print, em-
ployee(tim, ’UMBC’)))

� John has the right to delegate the right to delegate
the right to execute printOnePageHP and he delegates
this right to Tim. Tim can delegate as long as he is
satisfies group-member(X, Group) from John’s right
to delegate and employee(tim, ’UMBC’) from the

delegation. However, John’s right and the delegation
also place conditions on whom Tim can delegate to,
in this case to lab members of ’AI’ and employees of
’UMBC’.
has(amy, right(john, delegate(right(X, dele-
gate(right(Y, print,lab-member(Y, ’AI’))), group-
member(X,Group))),employee(john,’UMBC’)))
delegateSpeechAct(john, tim, right(tim,
delegate(right(Y, delegate(right(Z, print,
employee(Z,’UMBC’))), employee(Y,
’UMBC’))),employee(tim, ’UMBC’)))

� Tim delegates to Jane the right to delegate the right
to execute printOnePageHP. Jane must satisfy the
conditions associated with the earlier delegations
and rights in the delegation chain in order to be able
to delegate the right to printOnePageHP and the
delegation will only be valid if the entity she delegates
to satisfy all the associated conditions as well.
delegateSpeechAct(tim, jane, right(jane,
delegate(right(X, print, group-member(X,
Group))),(employee(jane, ’UMBC’), time-
now(morning))))

4.1. Delegation Types

We identify two types of delegation, while-delegations
and when-delegations. A while-delegation forces all
following delegators to satisfy its conditions in order to be
true. Whereas a when-delegation requires the immediate
delegator to satisfy its conditions only at the time of
the delegation and not after. For example, consider a
when-delegation giving Jane the right to delegate when
she’s an employee. All the delegations that Jane made
while she was an employee hold even after she leaves. On
the other hand, a similar while-delegation will fail once the
delegator leaves the company. The while delegation is the
default delegation type.

Example 11. The following represents the example de-
scribed above

� When-Delegation

delegateWhenSpeech(mark, matthew, right(Action,
Condition)) , Matthew satisfies Condition ��

has(Matthew, right(Action, Condition)

Matthew no longer satisfies Condition ��

has(Matthew, right(Action, Condition)

� While-Delegation or Default Delegation

delegateSpeech(mark, matthew, right(Action, Condi-
tion)), Matthew satisfies Condition �� has(Matthew,
right(Action, Condition)

Matthew does not satisfy condition �� NOT
has(Matthew, right(Action, Condition)

5. Policy Engine

We have developed a policy engine that reasons over
policies described in the Rei policy language and uses the
policies, meta-policies and domain knowledge to make se-
curity decisions about access rights and obligations. Along
with policies in Prolog, the policy engine also accepts poli-
cies in RDF-S that are based on the existing Rei ontology.
The policy engine is developed in Java and uses Prolog as a
reasoning engine. It currently has a commandline interface
and a Java interface. We envision that the policy engine
will be used as a security module by an application along
the similar lines as our application, Vigil - a security frame-
work for pervasive environments.

6. Application : Pervasive Environment

In the ubiquitous computing paradigm, information and
services are accessible virtually anywhere and at any time
via any device - phones, PDAs, laptops or even watches
[22, 29]. The SmartSpace scenario is the first step towards
realizing this vision. Smart homes and offices consist of in-
telligent services that are accessible to users via handheld
devices connected over short range wireless links. The ser-
vices will be integrated seamlessly into the environment that
the user is familiar with, enabling easy and automatic us-
age. This is the vision that guides our research on the Vigil
system. We define a SmartSpace as a dynamic environ-
ment that provides an infrastructure for providing services
to mobile users via some short range wireless communica-
tion link.

We have designed and implemented Vigil, a security
framework, which provides access control to services in
SmartSpaces [14, 26]. Within a confined space, the client
can access services provided by the nearest Vigil System via
some short-range wireless technology. Vigil acts as an ac-
tive proxy by executing services on behalf of any client that
requests them. This minimizes the resource consumption
on the client and also avoids having the services installed
on each client that wishes to use them, which is a blessing
for most resource-poor mobile clients.

Vigil consists of five functional components: (i) Com-
munication Managers, (ii) Service Managers, (iii) Certifi-
cate Managers, (iv) Security Agents, and (v) Clients. Com-
munication Managers handle communication between var-
ious entities in the system. The Communication Manager
is flexible and allows any medium to be used for commu-
nication, but for implementation purposes, we have used
Infrared, CDPD[25] and Bluetooth[1]. Users and services

Vigil

Vigil

Vigil

Request for
permission +
ID cert

Delegation
to John

Vigil

Request
+ ID cert

FAX

Printer

Lamp

Coffee machine

John’s PDA

Susan’s laptop

What
rights does
John have ?

Service request

Response

Interface to
accessible
services

Service request/
Service response

Delegation request
Delegation response

Request for Service Access/
Response

Security Agent

Figure 2. Overview of the Vigil system. There are several SmartSpaces in an organization. In every
SmartSpace, a user uses the Vigil framework to gain access to services in that Space. A user can
also request permission from another user to access a Service. Though Vigil has been conceptually
shown as a central system, it is actually made up of distributed components.

are treated equally as Clients. All clients communicate via
a language based on Extensible Markup Language(XML)
[28]. All communication is encrypted via Public Key In-
frastructure (PKI). Vigil does not assume that the end points
are computationally robust and instead relies on a simplified
PKI. The entities in the Vigil system enjoy non-repudiation,
authentication, and protection from replay attacks vis-à-vis
the simplified PKI. The Certificate Manager is responsible
for generating x.509 version 3 digital certificates for each
entity in the Vigil system and for responding to certificate
validation queries from Service Managers. Service Man-
agers are responsible for client and service management.
The Security Agents provide access control for Services.
Finally, users and services are treated equally as Clients.

Our infrastructure is designed to minimize the load on
portable devices and provide a media independent infras-
tructure and communication protocol for the provision of
services. Vigil, in addition to solving the issue of control-
ling access to services in a SmartSpace, also accommodates
users that are foreign entities, that is entities that are not
known to the system in advance. In many conventional sys-
tems, access rights are static; agents are not able to request
permission to access a Service to which they are not pre-
authorized. The Vigil architecture allows agents to ask for
permission and other agents to actually delegate rights that
they have. This extends the security policy in a secure man-
ner, as only agents that have the permission to delegate, can
actually delegate.

A pervasive system is divided into SmartSpaces, and

each SmartSpace in controlled by a Service Manager. The
Service Manager acts as broker, matching client requests
to registered services. A Service Manager uses one or
more Security Agents to maintain security. The Security
Agent enforces the security policy of the organization or
SmartSpace and interprets the policy to provide controlled
access to Services. There is a global policy associated
with the organization and a local policy associated with a
SmartSpace. All security agents in the organization will en-
force the global policy and will additionally enforce a local
policy, which is specific to the Space. Vigil uses a sub-
set of the Rei constructs to specify policies which include
rules for role assignment, access control (rights and pro-
hibitions), delegation and revocation. The Security Agent
stores Rei policies, meta-policies and contextual informa-
tion in a knowledge base and makes security decisions by
reasoning over this information.

Figure 2 illustrates the working of the Vigil system. A
Service Manager on receiving a request for a service asks
the Security Agent whether the request is valid. The Secu-
rity Agent replies with a positive or negative response de-
pending on the security policy. Based on this response, the
Service Manager allows or denies the clients request.

When a user needs to access a service that it does not
have the right to access, it requests another user, who has
the right for the permission to access the Service. If the en-
tity requested has the permission to delegate the access to
the Service, the entity sends a delegation message to the Se-
curity Agent and the requester. The Security Agent checks

the roles of the delegator and the delegatee and ensures that
the delegator has the right to delegate, and that the delega-
tion follows the security policy. It then adds the permission
for the Client to access the Service, but sets a very short pe-
riod of validity for the permission. Once this period is over,
The Security Agent has to reprocess the delegation. This
is very useful incase of revoked certificates, delegations or
rights. If any one entity in the delegation chain loses the per-
mission, then it is propagated down the chain very quickly,
till everyone in the chain after the entity loses the ability.

7. Background

According to Sloman, policies define a relationship be-
tween subjects and targets [23]. Policy domains are groups
on which the policy applies. Policies affect behavior of ob-
jects in domains. Sloman believes that it is important to rep-
resent and interpret policy information. He classifies poli-
cies into authorization and obligation and states that there
are two kinds of constraints on policies; temporal, and pa-
rameter value. In contrast, Rei handles authorizations, pro-
hibitions, obligations and dispensation policy rules and al-
lows policies to be split into actions, constraints and policy
objects. Rei also allows constraints to be domain dependent
and external to the policy specifications.

Ponder [5] allows general security policies to be speci-
fied. The authors of Ponder define a policy as a set of rules
that defines a choice in the behavior of a system. Ponder is
a declarative, object oriented language for specifying secu-
rity and management policies. It allows policy types to be
defined to which any policy element can be passed to create
a specific instance. This seems to be a useful ability and,
in fact, Rei allows this to be done automatically. Rei al-
lows types of policy objects to be defined and allows them
to be linked dynamically to subjects. Ponder allows defini-
tion of positive and negative authorization policies (access
control), information filtering (transforming requested in-
formation into a suitable format), delegation positive and
negative. Ponder includes a very simple notion of dele-
gation, which we believe is very important in distributed
systems. Rei supports different kinds of delegation and in-
cludes mechanisms to control delegation propagation. Pon-
der describes meta policies as policies about policies, which
is similar to the way Rei views them. Ponder provides a
Group construct for group related policies and a Role con-
struct for role policies. However, Rei does not distinguish
between role based, group based and individual policies, al-
lowing them to be described using the same set of constructs
leading to simpler policies and more uniformity.

Lupu classifies conflicts into modality conflicts and ap-
plication specific conflicts [16]. Modality conflicts arise
when two or more policies with opposite modalities refer
to the same subjects. Application specific conflicts refers

to the consistency of what is contained in the policy and
external criteria, e.g., the same manager cannot authorize
payments and sign the payment checks. Lupu suggests a
couple of ways of resolving modality conflicts; deciding a
default priority, assigning explicit priorities to rules, finding
the distance between the policy and the managed object to
name a few. Rei accepts Lupu’s definition of modality con-
flicts but does not use the suggested mechanisms. Rei pro-
vides a construct for specifying the modality which holds
precedence for sets of agents and actions grouped by cer-
tain conditions. Rei also allows priorities to be assigned to
policy rules and policies.

Most policy languages provide a certain set of constructs
in some sort of a programming language. However, there
has been some work in representing policies in logic [9, 30].
Woo and Lam [30] propose the use of default logic for au-
thorization policies. Their access control decisions are not
always conclusive and the work does not include conflict
resolution mechanisms. Jajodia et al. describe the specifi-
cations of a language based on stratified logic that tries to
support different access control policies [9]. Their Autho-
rization Specification Language (ASL) allows users to not
only specify authorization policies, but also specify the way
the decisions over these policies are made. The language
supports objects, on which actions are carried out, and sub-
jects, which can be users, groups and roles. ASL depends
heavily on the authors’ understanding and interpretation of
groups and roles, whereas in Rei, these concepts belong en-
tirely to the domain in which it is being used, and can be
interpreted as required by the domain. ASL defines an au-
thorization policy as a 4-tuple consisting of an object, user,
role set and an action. This language, though a step in the
right direction, is complicated because it consists of a large
set of interdependent rules that the user has to fully under-
stand in order to use, and is not as expressive as Rei. ASL
does not make provisions for domain dependent informa-
tion and insists on only a specific set of conditions. Rei can
be used to specify role based, group based and individual
policies with the same constructs using certain user defined
conditions. ASL does include conflict resolution but ex-
pects a set of rules (in terms of its predicates) to be defined
for every access. Conflict resolution is more straightforward
in Rei through its two mechanisms of modality precedence
and priority specification. For example, in Rei it is possi-
ble to state that for all possible actions on colors printers
in a certain lab, permissions should hold precedence over
prohibitions.

8. Contributions

Rei is a flexible and expressive policy language that is
based on deontic concepts and which can be used to de-
scribe several kinds of policies. For example, consider se-

curity policies. Security policies restrict access to certain
resources in an organization. Rei can be used to create ac-
tions on the resources and to describe role based rights and
prohibitions for the users in the organization. On the other
hand, management policies define the role of an individ-
ual in terms of his duties and rights, which map directly
into obligations and rights in Rei. Conversation policies are
very important in semi autonomous environments [21] like
pervasive environments. The order in which speech acts
occur is called a conversation. By specifying what speech
acts an agent can use under certain conditions (rights), and
by specifying what speech acts an agent should use (obliga-
tion) under certain conditions (could include the speech acts
just received), a policy for conversations can be specified in
Rei. Other policies can similarly be described in terms of
deontic principles making Rei versatile.

A specification is correct if it is both consistent and com-
plete [9]. Though Rei allows inconsistent or incomplete
specifications to be described, its policy engine is correct.
Rei’s policy engine is consistent because every request is
either allowed or denied but not both. This is due to the
structure of the meta policies, which resolves conflicts forc-
ing the engine to come to either a positive or negative deci-
sion. The policy engine is complete because every request
has a result.

Rei is composed of domain dependent information and
domain independent information. Rei allows policy mak-
ers to use application specific information that Rei has no
prior knowledge of but can still reason over while making
decisions.

Rei allows types of policy objects to be specified. For ex-
ample, all the rights on a certain resource, prohibition from
printing to any color printers on the fifth floor, and the right
to delete all the files belonging to your colleague.

As mentioned earlier, the same structures of Rei allow
individual policies as well as group and role based policies
to be specified making it uniform.

The languages in our bibliography did not take delega-
tion into consideration. However, we believe that it is re-
quired in distributed, dynamic systems and should be in-
cluded in the policy specifications. Rei’s policy engine
includes strong delegation management making it useful
for dynamic systems, consisting of transient resources and
users, and distributed systems, in which creating compre-
hensive policies may be time consuming. Rei includes two
kinds of delegation and provides a standard way of control-
ling and propagating access rights through delegation.

9. Future Work and Conclusion

In this paper we described the specifications of our pol-
icy language, Rei, that we designed and developed for dis-
tributed, dynamic environments like pervasive systems. Rei

is based on deontic concepts which allows policies of dif-
ferent types to be specified in terms of rights, obligations,
dispensations, and prohibitions. We are currently working
on identifying a deontic logic that Rei is most closely re-
lated to.

Our policy engine is under development and currently
supports almost all the expressivity provided by the policy
language. The engine supports action operators for Rights
and the support for the other policy objects is currently un-
der development. However, it currently does not handle all
the nesting capable by speech acts like requesting a dispen-
sation. The policy language accepts RDFS representations
of entities and properties based on the Rei ontology but as
mentioned earlier we are working on representing condi-
tions in semantic languages. Though conflicts are detected
and resolved at run-time, we believe pre-determining policy
conflicts also has several practical uses. We are investigat-
ing a feasible solution for statically detecting conflicts in
Rei policies. Our future work will also include developing
DAML+OIL and/or OWL ontologies.

10. Acknowledgements

We would like to thank Dr. Bernard Burg, the Agents for
Mobility Research group and Dr. Alan Karp at HP Labs,
Palo Alto for their support and insightful comments. We
would also like to thank Dr. Reed Letsinger. Without his
invaluable suggestions and encouragement this work would
not have been possible.

References

[1] The Official Bluetooth Website. http://www.bluetooth.com.
[2] H. Boley, B. Grosof, S. Tabet, and G. Wagner. RuleML.

http://www.dfki.uni-kl.de/ruleml/indtd0.8.html, 2001.
[3] J. Bradshaw, A. Uszok, R.Jeffers, N.Suri, P. Hayes,

M. Burstein, A. Acquisti, B. Benyo, M. Breedy, M. Car-
valho, D. Diller, M. Johnson, S. Kulkarni, J. Lott, M. Sier-
huis, and R. V. Hoof. Representation and Reasoning for
DAML-Based Policy and Domain Services in KAoS and
Nomads. Under review, 2002.

[4] D. Brickley and R. Guha. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema. W3C Working Draft 30 April
2002, http://www.w3.org/TR/rdf-schema/, 2002.

[5] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The pon-
der policy specification language. In The Policy Workshop
2001, Bristol U.K. Springer-Verlag, LNCS 1995, Jan 2001.

[6] M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Hor-
rocks, D. L. McGuinness, P. F. Patel-Schneider, and L. A.
Stein. Web Ontology Language (OWL) Reference Version
1.0. http://www.w3.org/TR/2002/WD-owl-ref-20021112/,
2002.

[7] D. Harel. First-Order Dynamic Logic. New York: Springer-
Verlag, 1979.

[8] Horrocks, van Harmelen, Patel-Schneider, Berners-
Lee, Brickley, Connolly, Dean, Decker, Fensel,
Fikes, Hayes, Heflin, Hendler, Lassila, McGuinness,
and Stein. DAML+OIL Language Specifications.
http://www.daml.org, 2002.

[9] S. Jajodia, P. Samarati, and V. S. Subrahmanian. A Logical
Language for Expressing Authorizations. In IEEE Sympo-
sium on Security and Privacy. Oakland, CA, 1997.

[10] L. Kagal. Rei : A Policy Language for the Me-Centric
Project. HP Labs Technical Report, 2002.

[11] L. Kagal, T. Finin, and A. Joshi. Trust based security for per-
vasive computing enviroments. In IEEE Communications,
December 2001, 2001.

[12] L. Kagal, T. Finin, and A. Joshi. Developing Secure Agent
Systems Using Delegation Based Trust Management. In Se-
curity of Mobile MultiAgent Systems (SEMAS 02) held at
Autonomous Agents and MultiAgent Systems (AAMAS 02),
2002.

[13] L. Kagal, T. Finin, and Y. Peng. A Framework for Dis-
tributed Trust Management. In Proceedings of IJCAI-01
Workshop on Autonomy, Delegation and Control, 2001.

[14] L. Kagal, J. Undercoffer, F. Perich, A. Joshi, and T. Finin. A
Security Architecture Based on Trust Management for Per-
vasive Computing Systems. In Proceedings of Grace Hop-
per Celebration of Women in Computing 2002, 2002.

[15] E. Lupu and M. Sloman. A Policy Based Role Object Model.
In Proceedings EDOC’97, IEEE Computer Society Press.,
1997.

[16] E. C. Lupu and M. Sloman. Conflicts in policy-based dis-
tributed systems management. IEEE Transactions on Soft-
ware Engineering, 25(6):852–869, November/December
1999.

[17] E. Mally. The Basic Laws of Ought: Elements of the Logic
of Willing. 1926.

[18] Meyer and Roel. Deontic logic: A concise overview. In
Deontic Logic in Computer Science, pp. 3-16, Chichester:
John Wiley and Sons, 1993.

[19] J. Moffett and M. Sloman. Policy conflict analysis in dis-
tributed systems management. Journal of Organizational
Computing, 1993.

[20] Morciniec, Salle, and Monahan. Towards Regulating Elec-
tronic Communities with Contracts. Technical report, HP
Labs, 2001.

[21] L. R. Phillips and H. E. Link. The role of conversation policy
in carrying out agent conversations. Issues in Agent Commu-
nication 2000: 132-143, 2000.

[22] M. Satyanarayanan. Pervasive Computing: Vision and Chal-
lenges. IEEE Communications, 2001.

[23] M. Sloman. Policy driven management for distributed sys-
tems. Journal of Network and Systems Management, 2:333,
1994.

[24] Swedish Institute of Computer Science. SICStus Prolog.
http://www.sics.se/ sicstus/, 2001.

[25] M. Taylor, W. Waung, and M. Banan. Internetwork Mobil-
ity: The CDPD Approach. Prentice Hall Professional Tech-
nical Reference, 1999.

[26] J. Undercoffer, F. Perich, A. Cedilnik, L. Kagal, A. Joshi,
and T. Finin. A Secure Infrastructure for Service Discovery
and Management in Pervasive Computing. To be published

in ACM MONET : The Journal of Special Issues on Mobility
of Systems, Users, Data and Computing, 2003.

[27] G. H. von Wright. A note on deontic logic and derived obli-
gation. In Mind, 1956.

[28] W3C. Extensible Markup Language.
http://www.w3c.org/XML/.

[29] M. Weiser. The Computer for the Twenty-First Century. Sci-
entific American, pp. 94-10, September 1991, 1991.

[30] T. Woo and S. Lam. Authorizations in distributed systems:
A new approach. Journal of Computer Security, 2(2-3):107–
136, 1993.

