A Reactive Service Composition Architecture for Pervasive Computing
Environments

Dipanjan Chakraborty, Filip Perich, Anupam Joshi, Timothy Finin, Yelena Yesha
Department of Computer Science and Electrical Engineering
University of Maryland, Baltimore County
Baltimore, MD 21250

{dchakrl,fpericl,joshi,finin,yeyesha} Qcs.umbc.edu
February 27, 2002

Abstract

Technological advances in semiconductor processing and design as well as wireless networking are leading us
towards the vision of Pervasive Computing. We envision that in the (near) future, devices all around a person,
either embedded as a part of smart spaces, or being carried by other people in the vicinity, will provide an
array of services that she might want to use. Development of customized services by integrating and executing
existing ones has received a lot of attention in the last few years with respect to wired, infrastrutcure based web-
services. However, service discovery and composition in web-based environments is performed in a centralized
manner with the help of a fixed entity. Moreover, wired infrastructure-based service discovery and composition
architectures do not take into consideration factors arising from the possible mobility of the service providers.
In this paper, we present a distributed, de-centralized and fault-tolerant design architecture for reactive service
composition in pervasive environments. The design of the architecture is based on a peer-to-peer model. We
introduce two reactive techniques for service composition in our design. We also present the Anamika system, an
initial implementation of our design architecture. We present experiments to show the functioning of our design
and implementation.

1 Introduction

Service Composition can be defined as the process of creating customized services from existing services by a process
of dynamic discovery, integration and execution of those services in a planned order to satisfy a request from a client.
Research in the area of service discovery[2, 23, 4, 9, 27] and service composition[8, 26, 17, 24, 6, 21] has focused on
trying to leverage the wide array of e-services available over the network to provide customized services to e-customers,
for example planning a business trip for a person. A business trip manager could integrate existing services like a
car rental service, an airline ticket booking service, and a hotel room reserving service to provide the user with a
complete planned business trip. There has been a sharp increase in these types of wired infrastructure-based services
in the last few years. Existing service composition systems [21, 8, 17] broadly address the problems associated
with composing various services that are available over the fixed network infrastructure. They primarily rely on a
centralized composition engine to carry out the discovery, integration and composition of web-based e-services.

However, computing today is becoming increasingly pervasive. We can see advancements in both computational
capabilities of commonly used devices, like cellular phones and handhelds, and their ability to wirelessly communicate
with one another. Sensing and computational capabilities will also increasingly be embedded in engineered artifacts,
from household appliances to roads to even clothes we wear. We envisage that in the near future, these mobile
and embedded devices will also be capable of providing customized information, services and computation platforms
to peers in their vicinity. People will need the cooperation of services available in their resource-rich vicinity to
satisfy their information needs. Wired service composition architectures do not address the problems associated with
composing services in such “pervasive” environments. We explain by digressing a bit into the future.

Philip is traveling in a car with a built-in Global Positioning System (GPS) device and has a IEEE 802.11/Bluetooth-
enabled personal digital assistant (PDA). His colleague in the car, Mark, suddenly falls ill and must be taken to a
hospital immediately. Philip has to find the route to the nearest hospital and the traffic conditions on the road are



really bad. Philip does not want to simply find any route to the hospital, but one that consists of least crowded
highways, roads and streets. This cannot be done by route generation systems presently found in cars.

The traditional infrastructure oriented mobile systems solution to this problem is to ensure that Philip’s PDA
establishes a connection to some central server that can provide directions, maps and some traffic information. One
can assume that Philip’s cellular phone would provide near-continuous connectivity to the Internet, thus allowing
the PDA to pose certain queries to the server and obtain answers so that it can perform the required tasks. The
implicit assumption here is that any arbitrary service we might need will be provided as a packaged, monolithic
entity on the wired side. This assumption is questionable from an economic perspective since the user base for
some services will be very small (sometimes 1 person!). Even if we stick to technical issues only, we believe that
this solution is not the most efficient. One obvious problem is the scalability of the centralized system that handles
service requests. With a large number of wireless devices attempting to connect to it to request different services,
the traffic/route server quickly becomes a bottleneck. Another problem is that dynamic information such as current
traffic conditions is unlikely to be up-to-date on the server. We note that Philip in this scenario does not benefit
from the knowledge that the outer loop of the DC Beltway is “slow” from Silver Spring to the American Legion
Bridge (a stretch of 10-15 miles); however he would benefit immensely from knowledge that a particular portion of
the highway (270-Beltway merge) or some major intersection has suddenly become congested perhaps due to traffic
volume. Yet another problem is the latency of the connection between the PDA and the server since WAN wireless
connections tend to have latencies and disruptions. In a dynamically changing environment, information that takes
too long to reach the PDA might well be useless. If, for example, the PDA instructs Philip to “take exit 33”7 after
he has passed it, that information is stale and useless.

Consider an alternate approach. The neighborhood of Philip’s car is information-rich because of presence of
devices in vehicles around it, and the vehicles themselves are continuously engaging in conversations with their
neighbors thus obtaining (and perhaps storing) useful information. Philip’s PDA might try to obtain the necessary
information about the shortest route to the nearby hospital that has the minimum traffic by using the information
and computation sources available in its ad-hoc neighborhood. It decides that in order to satisfy the goal, it needs
to compose the services of a dynamic traffic information service provider, a road map service provider and a route
calculating service provider. First, the PDA determines its current location by connecting to the car’s built-in GPS
device. It then discovers the presence of a Road Map Atlas CD-ROM at the neighboring car, provides it with the
(current location) and (any hospital) as the end points, and asks for several alternate routes. Once it knows which
roads it could use, it discovers current traffic condition information from cars traveling in the opposite direction.
This information, along with the location and map information, is given as input to an on-board route calculating
service in a nearby high-end BMW to finally obtain the best route to the nearest hospital.

Let us consider a simpler example, without the complications induced by high motion rates of the participating
entities. Bob is chatting with his friends at his university’s student union when his cell phone beeps indicating that
he has received an email. Bob reads the email from his cell phone and finds that the email contains an attachment
that the sender has urged him to read as soon as possible. Unfortunately the attachment is in MS Word, which Bob
can neither download nor open using his cell phone. Bob looks around for a computer terminal but cannot locate
one in the vicinity. In such situations, the traditional solution would be to have a proxy service on the wired Internet
that would convert the attachment and stream it to Bob’s cell phone either as text or as voice (see for instance the
transcoding proposed by IBM’s Content Adaptation Framework). For reasons discussed earlier in this section, we
envision an alternate scenario where Bob might be able to use existing services in his vicinity.

Suppose one of his friends has a visor with 802.11b springboard module and another friend has an Bluetooth-
enabled iPagq. Bob uses the network connection (service) provided by the visor to download the file. The file then
can be sent over to the pocket-word viewer (service) on iPaq over Bluetooth to let Bob view it. Suppose that Bob’s
friend does not have an iPaq, but one of the people sitting on a nearby table has a Bluetooth-enabled laptop that has
Word (or at least a word viewer). The owner of the laptop is busy working and would not want an arbitrary window
popping up on his monitor which would allow bob to come and look at his attachment. Bob’s Bluetooth-enabled
cell phone discovers that there is a Bluetooth-enabled HP Postscript printer on the next floor. Bob’s cell phone
uses the “Internet” service on the visor to download the file, gets the word file converted to postscript by the “word
processing” service on the laptop and has it printed out. Thus we see that by intelligently discovering and integrating
the functionalities of different services in the vicinity in a dynamic manner, we are able to satisfy an user’s request.

Service Composition systems for the pervasive computing environments exemplified above need a different design
approach than those developed for wired services. This is because many of the assumptions of standard composition
architectures of wired services are no longer valid in such dynamic environments. Service Composition architectures
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Figure 1: Ad-hoc Service Composition Environment

in wired infrastructure assumes the existence of a centralized composition entity that carries out the discovery,
integration and execution of services distributed over the web. They also need a tighter coupling with the underlying
network layers. For instance, Bluetooth service discovery protocol is limited to discovering services within a single
radio hop. A blind use of Bluetooth SDP[27] would lead to a restriction of “vicinity” in ad-hoc environments that
is counterintuitive. The vicinity should involve devices that are in geographical proximity even though they are
multiple hops away in network terms because of the nature of the underlying ad-hoc network.

We have designed a distributed architecture to perform service composition in pervasive computing environments.
Central to our system is the concept of a distributed broker that can execute at any node in the environment. An
individual broker handles each composite service request, thus making the design of the system immune to central
point of failure. A broker may be selected based on various parameters such as resource capability, geometric topology
of the nodes and proximity of the node to the services that are required to compose a particular request. Current
prototype of our system has been implemented over Bluetooth.

The rest of the paper is organized as follows: In section 2 we discuss the present state-of-the-art research in the
field of service composition. In section 3 we present our design of a distributed architecture for service discovery and
composition. In section 4 we present the Anamika reactive service composition system: our initial implementation
of the design framework. We conclude in section 5.

2 Related Work

Service discovery and composition is an important and active area of research [7, 11] and has been studied widely
in the context of web-services. Research in this area has forked along three main branches: service process model
description languages, service discovery platforms and service composition architectures.

Service description languages like Web Services Development Language (WSDL) [1], Web Services Flow Language
(WSFL) [19] and DARPA Agent Markup Language for services(DAML-S) [13] have been developed to describe web
services in a flexible manner. The Web Services Description Language (WSDL) by W3C [1] is an XML format for
describing network services as a set of endpoints operating on document-oriented or procedure-oriented messages.
The Web Services Flow Language (WSFL) [19] designed by IBM is an XML-based flow and usage specification for web
service composition. The DAML project by DARPA and the W3C focuses on standardizing DAML as the language
to use to describe information available on any data source, in order that the information may be understood and
used by any class of computers, without human intervention. We have used DAML-S to encode composite services
in our work.

Service Discovery Architectures like Jini [4], Salutation and Salutation-lite [2], UPnP [25], Service Location
Protocol [14], have been developed over the past few years to efficiently discover wired infrastructure based services
from wired as well as wireless platforms. However, most of these service discovery infrastructures have a central lookup



server type architecture for service registration and discovery. Service matching mechanism used is also restricted to
unique identifiers, attribute, interface-based matching or XML-based static string matching. The Bluetooth Service
Discovery protocol [27] is a peer-to-peer service discovery protocol that can be used over ad-hoc environments.
However the service matching in Bluetooth is very rudimentary and based on unique identifiers. Our prior work in
this area includes developing a Jini-based framework for flexible service discovery [9] where service matching can
be done using semantic reasoning features provided by DAML-S. We also enhanced the Bluetooth service discovery
protocol to include service description-based reasoning [5] using Prolog. Service discovery in pervasive computing
environments also need to have a robust and flexible way of discovering services following a peer-to-peer model.

Most of the research in realizing service composition systems for web-based services have a centralized architecture
for service integration and execution management. eFlow [8] and CMI [26] are service composition engines based on
the centralized model of service management. A central composition engine composes and monitors composite service
executions. Service Discovery models used in these engines are also lookup-server based. These engines are targeted
toward fixed infrastructure type services and particularly suitable for long drawn complex e-commerce transactions.
Service Composition in ad-hoc environments need a distributed and decentralized approach. The Ninja Service
Composition architecture [17] is a scalable architecture that supports multiple service integration based on input-
output matching of services. Central to the architecture is the automatic path creation service. The APC service
creates the graph of operator space, decides on a logical path, finds out physical services to execute the components
and even monitors the system for faults. The architecture handles central point of failure by replicating services on
multiple workstations. However the important distinction between Ninja and our work is that in our architecture,
service composition is based on a peer-to-peer model and and there is no distinction between clients and composition
managers. The architecture is geared to take maximum advantage of currently available platforms. Sheng, Ngu et. al
[6] have developed a framework for declarative web services composition using statecharts[15] and communities where
a composition is executed in a decentralized way. In their composition framework, different states of a particular
request are assigned to different coordinators and the coordinators invoke the wrapper service for a particular state
whenever all the preconditions to execute that particular state has been met. The execution of a composite service is
distributed in this manner.However, the coordinators of a particular composite service are preassigned and statically
determined. In dynamic environments, we have to accomodate the availability /unavailability of these coordinators
and take into account factors that decide whether a particular participating platform can be a coordinator or not.
Our prior work [24] in the field of service composition centers on enabling ubiquitous access to all sorts of information
from a mobile device. We developed an agent-based middleware platform for mobile information access by integrating
the functionalities of multiple infrastructure-based services to provide information to a mobile user. Our middleware
platform took into account mobility related issues like disconnections, bandwidth and resource constraints on mobile
devices while trying to process a composite query from the device. Service Composition is also related to workflow
management [20, 22] and teamwork related theories, agent-based business management [16, 29, 28, 10]. However,
the usual assumptions about resource availability and reliability do not work in pervasive computing and ad-hoc
environments.

3 System Architecture and Design Principles

In this section, we describe a general layered architecture that enables service composition in pervasive computing
environments described earlier. The architecture is targeted for an environment where different heterogeneous devices
with varying capabilities exist in the vicinity of one another. Figure 1 depicts such an environment. The devices are
connected to others in their vicinity with the help of short-range ad-hoc connections. Many of devices are mobile,
have a short “switched-on” time and hence are unreliable. Each device has one or more services that it can export
to other users. We consider that the request for a composite service would originate at one such device.

Our architecture introduces two distributed reactive techniques to carry out service composition in purely ad-
hoc environments. It also specifies techniques that the service discovery layer utilizes to carry out efficient scalable
service discovery. Reactive service composition refers to the type of composition that is executed only upon request.
Our composition architecture primarily deals with the discovery, integration and execution of the components of a
composite request. The problem of splitting a task into sub-tasks is complex and goes into the domain of planning [12]
in AT which is outside the scope of our present work. Current implementation of our architecture assumes that the
process model of the composite task would be provided to it. It is a straightforward exercise to plug in an external
planning system into the design that will provide the system with a process model of execution for a composite
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Figure 2: General Architecture for ad-hoc service composition

service. We aim to study the various factors affecting the platform efficiency, the different mobility scenarios in
which each composition technique can be best used and utilized, the primary differences between these two platforms
in terms of efficiency, adaptability to the changing environment, response time and throughput. Figure 2 depicts
the different layers and modules in the architecture. A client is a device from where the service composition request
originates. A broker is a device that coordinates the different components to calculate the result. Some devices
might have connectivity to the fixed wired infrastructure and hence be able to act as proxy for wired services. The
architecture consists of five distinct layers that help in the composition of services.

3.1 System Components

Network Layer: The Network Layer forms the lowest layer in the architecture and encapsulates networking
protocols that provide wireless/ad-hoc connectivity to peer devices in the vicinity. For example, we may consider
the network layer to provide TCP /IP connectivity over a Bluetooth radio frequency network or over Ad-Hoc WLAN
(802.11) networks. For our initial implementation of the architecture, we have chosen a connect-transmit-disconnect
mode of network connectivity between peer devices utilizing the RFCOMM [27] protocol over Bluetooth network.

Service Discovery Layer: The service discovery layer is required for the proper functioning of the composition
platform. There is a direct dependence of the success of the composition techniques on the underlying service
discovery mechanisms. This layer encompasses the protocol used to discover the different services that are available
in the vicinity of a mobile device. Our design of the service discovery mechanism is primarily based on the following
principles:

1. Peer-to-peer service discovery: In an ad-hoc environment, services are discovered by directly contacting the
device where the services are actually residing. We do not employ central lookup-server based service discovery
and maintenance. Each device has a Service Manager where the local services register their information. Service
Managers receive requests from remote Service Managers and send back replies based on a match.

2. Dynamic caching of neighboring service descriptions: Service Managers maintain a cache of descriptions of
services that they have discovered in the course of their operation. Services are purged from the cache by using
a combination of least-recently-used and incremental aging policies. Service descriptions of discovered services
are cached on every device in this environment, which increases the overall efficiency of service discovery.



3. Semantic description-based service matching: The service discovery mechanism has support for semantic service
matching using descriptions of services in DAML+OIL[18]. We used DAML+OIL to describe services since
the language is being standardized by World Wide Web Consortium to represent metadata of any information
or resource on the Internet. The service discovery mechanism is able to reason with the description of services
and provide high flexibility in the matching mechanism. Apart from this, the service discovery protocol also
incorporates Interface-based, attribute-based and unique identifier based service matching capabilities. These
service discovery mechanisms combined together increases the efficiency of the service discovery layer to dis-
cover heterogeneous services in the environment. The service discovery mechanism also provides a means and
knowledge for a client to invoke the discovered service.

4. Service Request Routing and propagation control: Service Managers have the ability to forward service requests
to neighbors and handle duplicate service requests. Service Managers also control the number of devices that
are not in its radio range to which it sends service requests. This prevents flooding the network with service
requests.

Service Composition Layer: This layer is responsible for carrying out the process of managing the discovery
and integration of services to yield a composite service. The process model of the composite service is supplied as
input to this layer. In our current implementation, we have used the ‘compositeprocess’ definition of DAML-S to
describe a process model.

Both the reactive techniques that we have designed are decentralized, immune to central point of failure and take
maximum advantage of the mobility of the nodes, topology of the environment and currently available resources in the
vicinity. Both these techniques carry out a broker arbitration that decides the platform that takes the responsibility
of becoming a broker for a certain request. Thus, each request may be assigned a different broker platform. The
broker arbitration and delegation module and the techniques employed within it thus play a vital role in making this
architecture fundamentally different from the techniques used in static ‘wired’ service composition. We describe the
two techniques in detail in sections 3.2 and 3.3.

Service Execution Layer: The Service Execution Layer is responsible for carrying out the execution of the
different services. Prior to this, the service composition layer provides a feasible order in which the services can be
composed and also provides location and invocation information of the service(s). There are various ways in which
the execution layer might optimize the cost of executing a certain composite service. As an example, the execution
layer might want to optimize the bandwidth required to transfer data over the wireless links between different services
and hence execute the services in an order that minimizes the bandwidth utilization. Since the mobile devices are
assumed to be of limited strength in terms of memory and processor capability, several run-time optimizations, as
far as load distribution is concerned, are possible. The service execution layer implements the functionality to carry
out such optimizations. This layer has a module called the “Fault Recovery Module”, which is responsible to guard
against node failures and service unavailability. We explain the fault-tolerant techniques in section 3.2 and 3.3.
The Service Execution Layer and the Service Composition Layer are tightly coupled with each other due to their
dependence on each other.

Application Layer: The application layer embodies any software layer that utilizes our service composition plat-
form. The application layer encompasses different GUI facilities to display the result of a composed service and
provides the functionality to initiate a request for a composite service.

3.2 Dynamic Broker Selection Technique

This approach centers on a procedure of dynamically selecting a device to be a broker for a single request in the
environment. In the following section, we describe three distinct features of the Dynamic Broker Selection Technique.

Broker Arbitration and Delegation: When a request for service composition arrives at the service composition
module in a mobile device it finalizes a platform that is going to carry out the composition and monitor the execution.
Once the platform has been chosen, the device is informed of its responsibility. The mobile device acting as the broker
is responsible for the whole composition process for a certain request. The selection of the broker platform may be
dependent on several parameters: power of the platform (battery power left), number of services in the immediate



vicinity, stability of the platform, etc. The brokerage arbitration might make the originator of the request to be
the broker for that particular composition. We intend to implement a distributed algorithm that can perform the
required arbitration based on the different parameters. Each request thus may be assigned a separate broker. This
makes the architecture immune to central point of failure and the judicious choice of brokerage platform has the
potential of distributing the load appropriately within the different devices. This avoids the problem of swamping
the central composition entity by numerous requests. It may appear that the requesting source could easily act as the
broker of that request thus pre-emptying any need for such arbitration; however, the architecture would then become
unable to take a full advantage of other resource-rich platforms from where the broker functionality could have been
performed more efficiently with respect to services in the near vicinity and topology of the ad-hoc environment.

Service Integration and Execution: The assigned broker’s first job is to discover the services from its vicinity.
The broker progressively increases its search “radius”, a number of devices that it can reach by asking other devices
in its radio range to forward service request, to discover all of the different services necessary for the composition.
The broker returns failure when it fails to discover all of the required services. Service discovery and integration
is followed by service execution. The execution layer has the capability of making many run-time optimizations to
minimize the cost of the request. Depending on the ordering of the services and their inter-dependence, the execution
layer might decide to execute some services in parallel or might decide to re-orient the ordering, provided the initial
set of constraints on the ordering of the services is maintained.

Fault Recovery: Faults in ad-hoc environment may occur due to a service failure, due to a sudden unavailability
of the selected broker platform, or due to network partition. The standard solution to this problem is to make the
requester to initiate a new request for every composite service. This is very inefficient and not applicable in our
environment due the relatively high occurrence probability of the above failures. The fault-tolerance module in the
architecture employs check pointing to guard against such faults. The broker for a particular request sends back
checkpoints and the state of the request to the client of the request after a subtask is complete. The client keeps a
cache of this partial result obtained so far. If the broker platform fails, the source node detects the unavailability of
updates. It then starts the fault-recovery process. The source of the request reconstructs the query that is still left
unsolved by the broker. This request is now treated as a different service composition request in the environment.
This technique uses a greedy-type approach in hoarding as much information as is obtainable from the partially
executed query. If a network partition prevents the updates from being propagated to the source node, the source
node employs either a random-retransmit or binary exponential back-off technique to probe the current broker for
updates, and fails after a fixed number of unsuccessful attempts. If a node currently acting as the broker of a request
fails, then the architecture adapts itself to select other brokers dynamically.

3.3 Distributed Brokering Technique

The key idea in this approach is to distribute the brokering of a particular request to different entities in the system
by determining their ‘suitability’ to execute a part of the composite request. A composite service may be considered
as a combination of n servers (n>=1), denoted as S1, S2, ... Sn. In the following section we explain the basic features
employed by this approach.

Broker Arbitration: This module performs the simple functionality of selecting the broker of the initial set of
services required to execute a complex transaction. The client (request originator) decides on the first broker who
becomes in charge of the composite service. The criteria for broker selection may be similar to the criteria used for
dynamic broker selection mechanism. However, in this technique, more emphasis is placed on certain attributes like,
the vicinity of services required ‘immediately’ with respect to the services that may be required after the composition
has advanced certain steps. For example if the composed service consists of executing four services, S1 to S4, and
if S1 and S2 are currently available in the vicinity of the requester, the requester will try to compose and execute
them first. It will discover a platform which can potentially do this limited composition and execution. The service
S3 and S4 might be available multiple hops away. However, the primary concern of this approach is to utilize the
resources in the immediate vicinity. A single broker is not responsible for performing the whole composition. Rather,
it completes only ‘as much’ as it can.
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Service Integration and Execution: The broker is responsible for composing the services S1 to Sn. The broker
decides on a service search “radius”. The composition is carried out among services discovered within this radius.

Suppose a broker determines that it has services S1 to Si available in its vicinity(within radius r). It goes ahead
and carries out the partial integration and execution. It performs out two actions:

1. It informs the requester (source node) about the ‘current state’ of the execution.

2. It uses the ‘Broker Arbitration’ Module to select another broker which has the ability to carry out a subset or
whole of the remaining composition. The current broker delegates the brokerage of the remaining composition
to that particular broker/device. In this manner, the composition hops from one node to another till the final
result is obtained. Then the current broker returns the final answer of the composition to the client.

Fault Recovery: Multiple brokers take part in composing a particular request. We use source-monitored fault-
tolerance to detect faults. Current broker of a composition request sends back checkpoints to the source that contain
the partial execution reply. However, in this technique, the partial information would be propagated from different
broker platforms. Each broker platform keeps track of the source of the request and the source also keeps track of
the current broker. If the client node does not obtain the information after reasonable number of pursuits, it issues
a new service composition request with the subset of the composition that is still to be completed. Both techniques
assume that the client issuing the request is available (switched-on) all the time. This is a valid assumption to make
in this context since it is very natural for a client making the request to keep the mobile device switched on at that
time.

4 Implementation and Experiments

In our initial implementation of the design architecture, we have developed a reactive service composition system
called Anamika. The individual components of the Anamika system existing in participating mobile devices are
described in Figure 3. Current prototype of the architecture has been implemented over Bluetooth [27]. Composition
knowledge is described using DAML-S[13] in terms of subset of individual services that might be able to satisfy a
composite request. Service discovery is done in a peer-to-peer manner using semantic description of services using
DAML-S and our light-weight reasoning engine present on participating devices. Anamika implements dynamic
broker selection mechanism and decides the best platform to carry out the composition based on a combination of
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the processor power of the platform and number of services that the platform has. We explain the details of the
different components of the system in the following sections.

Network Manager: The Network Manager implements the API required for higher layers to reliably communicate
to neighboring peers over Bluetooth. Efficient implementation of the design architecture necessitate the network
layer to have support for broadcasting. However, broadcasting in Bluetooth is restricted to messages used for device
discovery. In order to exchange application level messages, a device must first establish a link-level connection
with its peers. In addition, every communicating device must either be a master or slave thus making multiple
simultaneous links between two devices impossible. We have used the connect-transmit-disconnect mode of sending
Anamika messages between peers. We implemented the networking level API over RFCOMM [27] protocol. We used
segmentation and reassembly of packets each of 64 bytes size to prevent large chunks of data overflowing the receiver
buffer in a Bluetooth peer. The Network Manager provides APIs for clients to connect to other peer devices in the
vicinity as well as APIs for devices to listen for incoming messages and send acknowledgments or replies back to the
sender. We implemented the Network Manager by using IBM’s BlueDrekar transport driver [3] and protocol stack
for Linux kernel 2.4.2-2.

Service Discovery Manager: Service Discovery Manager provides the functionality to local Composition Man-
ager to discover services in Bluetooth peers. Services are described using DAML-S based on inputs, outputs, func-
tionality classification, functional similarity to other services and invocation mechanisms. The service description also
incorporates platform specific information like processor type, speed etc. We developed this ontology by extending
the ontology developed in the DReggie [9] system, a Jini-based semantic service discovery framework. The ontology
can be obtained from http://daml.umbc.edu/ontologies/dreggie-ont.daml. A request for service discovery also
follows the same ontology and the discovery mechanism uses light-weight semantic matching of service descriptions
to discover matching or ‘nearly’ matching services. We have modified the light-weight reasoner in the DReggie sys-
tem [9] to reason with the service descriptions. The service discovery mechanism returns description of the service
discovered, invocation information and other platform specific details (like processor power, memory availability)
to the requesting device. We show an example of the information that the semantic service discovery mechanism
obtains for a a printer service.

<?xml version="1.0" 7>

<rdf :RDF

xmlns:rdf ="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs ="http://www.w3.o0rg/2000/01/rdf-schema#"
xmlns:daml ="http://daml.org/2001/03/daml+oil#"

xmlns ="http://daml.umbc.edu/ontologies/dreggie-ont#"

>

<Component>



<Description>
<ServiceName>Filedownloader</ServiceName>
<ServiceAlias>Internet</ServiceAlias>
<ServiceAlias>WLAN</ServiceAlias>
<Input>
<ServiceInputType>Loginname</ServiceInputType>
</Input>
<Input>
<ServiceInputType>Password</ServiceInputType>
</Input>
<Qutput>
<ServiceOutputType>File</ServiceOutputType>
</Output>
</Description>
<0therInfo>/root/Anamika/source/services/Filedownloader-cache.daml</0therInfo>
<InvokeCommand>/root/Anamika/source/serviceExecs/Filedownloader/downloader</InvokeCommand>
<Speed>
<AmountUnit>
<Amount>800</Amount>
<Unit>Mhz</Unit>
</AmountUnit>
</Speed>
</Component>
</rdf :RDF>

The local Service Discovery Manager maintains a cache of these descriptions to increase the efficiency of future
requests that are looking for the same service. The cache is purged by using a combination of least-recently-used and
aging policies. The current prototype of the Service Discovery Manager does not do service request routing, thus
limiting the propagation of service requests to one hop. However, caching of service descriptions provides capability
to discover services which are 2 hops away.

Service Composition Manager: The Service Composition Manager is the principal component that is respon-
sible for service composition and management. Peer Service Composition Managers collaborate with each other to
implement different techniques of service composition as discussed in section 3. The current implementation of the
Composition Manager supports the “Dynamic Broker Selection Technique” for service composition. The Compo-
sition Manager receives a request from the Application Layer. It uses the Request Processor module to parse a
composite service description. The Request Processor module consults the Composition Knowledge base to find
out suitable sets of services that might be combined to provide an answer to the query. Request Processor returns
multiple process models to carry out a particular composite service. The Composition Knowledge base has been
modeled in DAML-S. Below we give an example of the decomposition of a generic query to view a certain URI or a
file (in case the client machine does not have the capability to do so) by using the resources of the vicinity:

<rdf :RDF
xmlns:rdf= "http://wuw.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:rdfs= "http://www.w3.0rg/2000/01/rdf-schema#"
xmlns:daml= "http://www.daml.org/2001/03/daml+oil#"
xmlns:process="&DamlProcess;#"

>

<daml:class rdf:ID="ViewFileComposite">
<rdfs:subClass0f rdf:resource="&DamlProcess;#CompositeProcess" />
<rdfs:subClass0f>
<daml:Restriction>
<daml:onProperty rdf:resource="&DamlProcess;#composed0f" />
<daml:one0f rdf:parseType='"daml:collection">
<daml:Class>
<daml:intersection0f rdf:parseType="daml:collection">
<daml:Class rdf:about="process:Sequence" />
<daml:Restriction>
<daml:onProperty rdf:resource="&DamlProcess;#components" />
<daml:toClass>
<daml:Class>
<daml:listOfInstances0f rdf:parseType='"daml:collection">
<daml:Class rdf:about="#Filedownloader" />
<daml:Class rdf:about="#Printer" />
</daml:1list0fInstances0f>
</daml:Class>
</daml:toClass>
</daml:Restriction>
</daml:intersectionQf>
</daml:Class>
<daml:Class>

10



Lrootld localhost Userlntertacel# java UL
Calling Anamika, .

Anamika tlzing Composition Khnowledge to get services to zatiszfy the reguest., .

Framika : Mumber of services needed for the compozition:2

Arnamika tTrying to dizcover and execute the services imnmediately, .

Framika t Trying to discover devices in the wicinity

Doing Inguiry now ,, please wait .,

SIPManager 1 Trying to dizcowver services in devicelD O using DAML+OIL serwvice descriptions

MetworkManager tWaiting to estakblish a RFCOM cormection, ...

MetworkMansger ; EFCOM conmect ion has been opened

MetworkManager :RFCOM closed successfully

Arnamika t Discovered a Filedownloader service in the vicinity on device 0
Arnamika tExecut ing the service,

MetworkManager tlaiting to establiskh & RFCOM connection, ...

MetworkManager: EFCOM connection haz been opened

MetworkManager :RFCOM clozed successfully

Framika t Discovery and execution of one service done.....proceeding to the next service
Arnamika t Trying to discover devices in the wvicinity

Doing Inguiry now .. please wait .

SIPManager t Trying to discover services in devicelIll O using DAML+0IL =service descriptions

MetworkMansger thaiting to establish & RFCOM connection, ...
MetworkManager: FEFCOM connection has been opened

MetworkMansger :RFCOM clozed successfully

Arnamika t Discovered a Printer service in the wvicinity on dewvice 0
Arnamika tExecuting the service,

MetworkManager thaiting to estakblish a RFCOM cormection, ...
MetworkManager : FFCOM conmection has been opened

ietworkﬂanager:RFEDH clo=zed =uccessfully

Figure 5: Log of activities performed by Anamika system at client for Experiment 1.

</daml:Class>
</daml:one0f>
</daml:Restriction>
</rdfs:subClass0f>
</daml:class>
</rdf :RDF>

When a request for a composite service comes to the composition engine, it takes help of the underlying semantic
service discovery mechanism to obtain information about the availability of the necessary services in the vicinity.
Note that some of the required services might be locally present on the device itself. The composition engine decides
on the best available platform to carry out the composition based on number of services local to that platform that
would be utilized by this composition request and its processor power. Currently we carry out a broker arbitration
between the platforms that has at least one service that is participating in the current composition. The Client
Composition Manager decides on a Composition Manager that is going to perform the task based on the number
of usable services that device has for the composite request. This information is obtained during service discovery.
Each request in this environment may potentially be assigned a separate platform to carry out the composition. We
have implemented two different techniques to carry out the discovery and execution of services that take into account
high mobility and short stability of services in highly dynamic environments. In environments where the services can
be expected to be available for a longer duration (e.g., a group meeting in a conference room), the discovery of all
the component services is performed first, followed by execution. In highly mobile environments, discovery followed
by execution may fail due to the high service presence instability. The service may become unavailable after it was
discovered and before the execution request has been sent to the device. The composition in such environments
is carried out by discovering and executing services in a sequential manner. Faults occur when the Composition
Manager is executing a particular process model and a particular service in that model becomes unavailable. The
Composition Manager adapts to these faults as well as the changing environment by trying out multiple different
process models to execute a particular composite service.

Experiments: We carried out various experiments to validate the proper functioning of the Anamika Reactive
Service Composition system and test different features of the “Dynamic Broker Selection Technique”. In our exper-
imental setup, services reside on different laptops. These services are registered to the local composition managers
residing on the machines. Bluetooth modules provided by Ericsson and IBM’s BlueDrekar software stack [3] and
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[rootBlocalhost UserInterfacel# java UL

Calling Ananika,,

Anamika tlbzing Compozition Knowledge to get services to satisfy the reguest,,

Anamika tHunber of services nesded for the compozition:?

Doing Inguiry now ., please wait ,,

SOPManager ¢+ Trying to discover services in devicelD O using DAML+0IL service descriptions
Het.workManager tWaiting to establish a RFCOM connection,.,,

HetuorkManager: RFCOM connection has been opened

Het.workManager RFCOM closed successfully

Anamika + Discovered a Filedownloader service in the vicinity on device :0

SOPManager ¢+ Trying to discover services in devicelD O using DAML+0IL service descriptions
Het.workManager tWaiting to establish a RFCOM connection,.,,

Het.workManager s RFCOM connection has heen opened

Het.workManager RFCOM closed successfully

Anamika ¢ Discovered a Printer service in the vicinity on device :0

Ananika ¢ Services have heen discovered,, carrying out broker arbitration to decide the broke
Anamika tAzsigned Broker Platform 3 0

Anamika ¢ Sending the composition request to the chosen broker platform,,

Het.workManager tWaiting to establish a RFCOM connection,.,,
Het.workManager: RFCOM Wiy haz heen opened
Het.workManager RFCOM closed successfully

ﬁnamika ¢ Reply ohtained,,

Figure 6: Log of activities performed by Anamika system at client for Experiment 2.

transport driver are used by the Network Manager to communicate between devices. Some of the laptops also have
802.11b connectivity to the Internet. Every Anamika system displays a graphic user interface for clients to access
composite services formed by the services available in the vicinity. Figure 4 shows the user interactions with the
Anamika system to view a file by composing services available in the vicinity.

There is no central “Broker service” in the system and all the participating systems are liable to be brokers.
We carried out experiments to test the proper functioning of the different mechanisms for service composition and
under different states of the ad-hoc environment. The composite request we used was to “view an attachment” using
services available in the vicinity. The Client Composition Manager determines that viewing a file (the attachment is
saved in a file at the server) can be only done when there is an “Internet Service” that can download the file from
the location along with a “printer service” that can print a postscript file.

Experiment 1: In this experiment, we make the request originator the composition manager for that composite
request. The Client Composition Manager carries out the discovery followed by the immediate execution of the
corresponding service in the sequence prescribed by the Request Processor. We present a snapshot of the system
activity in figure 5. We observe in the log that the Composition Manager at the client tries to determine what
services can be combined to satisfy the user request. It then initiates device discovery followed by peer-to-peer
semantic service discovery to all the devices in its vicinity. The Composition Manager aggressively executes a service
immediately after it is discovered. In this case, it executes the “Filedownloader” service. It then proceeds on to
search for a printer service. It discovers a printer service and sends the file to the printer and prints a user-friendly
message to the user interface (Figure 4). We also observe the connect-transmit-disconnect mechanism used by the
Network Manager over RFCOMM to transmit service discovery and execution related Anamika messages. If a printer
service is unavailable, the Composition Manager will return to consult the Composition knowledge (via the Request
Processor) about other alternate services that can be used (for example a word processor) to let the user view the
content of the file.

Experiment 2: We carry out this experiment for the same request. However, this time we enable the “Dynamic
Broker Selection Technique”. We also move the “Filedownloader” and the “Printer” service to the same machine. The
Client Composition Manager performs the discovery of all the required services first. Client Composition Manager
now carries out a broker arbitration to decide the broker platform based on the number of services residing on a
platform and its CPU power. The algorithm processes the service descriptions to extract out the resource details
(CPU power and CPU type) and runs in linear time with respect to number of components/services required for
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a composite request. Since both the services are residing on a remote device, the brokerage is transferred to the
platform and the composite request is sent to the remote Composition Manager. The remote Composition Manager
carries out the composition locally since both the services are locally available. We show the activity log of the client
Composition Manager in Figure 6.

We also carried out several experiments to test the fault-tolerance of the system with respect to service and
network unavailability. We carried out experiments where the “Printer” service shuts itself down after it has already
been discovered by a composition manager to execute a composite request. The composition manager executing
the composite request appropriately detects this and tries to execute the “view an attachment” request using other
available services (an word processor in this case). However, due to space limitations we are unable to present those
results.

5 Conclusions

In this paper, we have introduced a novel design approach for service composition in pervasive computing envi-
ronments. Our architecture for service discovery and composition is distributed, decentralized and fault-tolerant
to service and network unavailability. Service Discovery is done in a peer-to-peer mode rather than a centralized
mode, and service descriptions are cached for scalability. We use a combination of least-recently-used and aging
policies for cache replacement. We introduce two reactive techniques, “Dynamic Brokerage Selection” mechanism
and “Distributed Brokerage technique” to accomplish service composition in dynamic environments. Our approach
enables any device participating in the composition to act as the broker, making the design immune to single point of
failure. We use a source-monitored fault-tolerance mechanism using checkpoints and rollbacks to the last completed
service. This enables us to gracefully recover from commonly expected failures such as disconnection in a mobile
environment.

We have also presented the Anamika system, an initial implementation of our design architecture. Anamika has
been implemented over Bluetooth using RFCOMM as the network layer. Current implementation of Anamika models
composite processes using DAML-S and other services are described using an extension of the DReggie ontology.
Anamika supports peer-to-peer based semantic service discovery and matching, and implements “Dynamic Brokerage
selection” mechanism, where we use processor speed and number of local services needed for a particular composite
request to decide a broker platform for a composite request. We have presented experimental validation of the
working of our system. Our future work includes implementing the “Distributed Brokerage” mechanism in Anamika,
perform assessment of the different mechanisms with respect to factors like mobility of the environment, availability
rate of the services.
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