
Evaluation of KQML as an

Agent Communication Language ?

James May�eld Yannis Labrou TimFinin

ComputerScienceandElectricalEngineeringDepartment
UniversityofMarylandBaltimoreCounty

BaltimoreMD21228{5398USA

fmayfield,jklabrou,fining@cs.umbc.edu

Abstract. This chapter discusses the desirable features of languages andproto-
cols for communicationamong intelligent informationagents. These desiderata
aredividedintosevencategories: form,content, semantics, implementation,net-
working, environment, and reliability. TheKnowledgeQueryandManipulation
Language (KQML) is a newlanguage and protocol for exchanging information
andknowledge.Thiswork is partof a larger e�ort, theARPAKnowledgeShar-
ingE�ort,whichis aimedatdevelopingtechniquesandmethodologiesforbuild-
inglarge{scale knowledgebases thataresharableandreusable.KQMLis botha
messageformatandamessage{handlingprotocoltosupportrun{timeknowledge
sharingamongagents.KQMLis describedandevaluatedas anagent communi-
cationlanguagerelative tothedesiderata.

Toappearin IntelligentAgentsVolumeII {Proceedingsof the1995Workshopon
AgentTheories, Architectures, andLanguages.M.Wooldridge, J. P.Muller and
M.Tambe(eds).LectureNotes inArti�cial Intelligence,Springer-Verlag,1996.

1 Introduction

The computational environment that is emerging in such programs as the National In-
formation Infrastructure (NII) is highly distributed, heterogeneous, extremely dynamic,
and comprises a large number of autonomous nodes. An information system operating
in such an environment must handle three basic problems:

{ The predominant architecture on the Internet, the client{server model, is too re-
strictive. It is di�cult for current Internet information services to take the initiative
in bringing new, critical material to a user's attention. Some nodes will want to act
as both clients and servers, depending upon with whom they are interacting.

{ Several forms of heterogeneity need to be handled, e.g. di�erent platforms, di�er-
ent data formats, the capabilities of di�erent information services, and the di�erent
standards (CORBA, OpenDoc, LINDA, ISIS, ZIRCON, OLE, etc.) used by those
services.

? ThisworkwassupportedinpartbytheAirForceO�ceofScienti�cResearchundercontract
F49620{92{J{0174,andtheAdvancedResearchProjectsAgencymonitoredunderUSAFcon-
tractsF30602{93{C{0177andF30602{93{C{0028byRomeLaboratory.



Software agent technologies

Scripting languagesAgent communication
languages

Languages for
software agents

Theoretical
frameworks

Models of human
communication

Coordination protocolsAgent languages

KQML

Tcl/Tk
Java
Telescript

CORBA
ILU
OpenDoc
OLE

Fig. 1.Ataxonomyofagent{relatedtechnologies.

{ Many software technologies such as event simulation,applied natural language pro-
cessing, knowledge{based reasoning, advanced information retrieval, speech pro-
cessing, etc. have matured to the point of being ready to participate in and con-
tribute to an NII environment. However, there is a lack of tools and techniques for
constructing intelligent clients and servers or for building agent{based software in
general.

A community of intelligent software agents can address these problems. When we de-
scribe agents as intelligent, we refer to their ability to: communicatewith each other us-
ing an expressive communication language; work together cooperatively to accomplish
complex goals; act on their own initiative; and use local information and knowledge to
manage local resources and handle requests from peer agents. Languages that facilitate
high{level communication are thus an essential component of an intelligent software
agent architecture. Such languages are the focus of this chapter.

2 What is an Agent Communication Language?

A wide variety of systems, languages, frameworks and standards e�orts are associated
with software agents; this is due in part to the vagueness of the term `software agent.' In
this section we attempt to tease apart these approaches, and show how KQML relates
to each of them. Figure 1 shows a taxonomy of technologies important to software
agents. We divide agent technologies into two broad categories: agent languages and
coordination protocols.

The agent languages category comprises all languages that can be used to implement
software agents. Virtually any programming language can be used for software agent
development. One class of languages that has gained much attention lately is the so{
called scripting languages, especially those designed for mobile programs. Languages
like Tcl/Tk, Java, Telescript, etc., o�er the advantage of a level of abstraction that seems



particularly attractive for the development of software agents. We place them under the
agent languages rubric, because they can be used to program software agents. We dis-
tinguish them from agent communication languages though because they are designed
primarily to control processes on a single platform. To the extent that these languages
contain communication primitives tailored to agent development, they are largely con-
cerned with the transportation of a single agent from one machine to another.

In contrast, agent communication languages are designed speci�cally to describe
and facilitate communication among two or more agents. Three broad sub{categories
may be identi�ed under the label of agent communication languages:models of human
communication, theoretical frameworks, and communication languages for software
agents. Human communication is traditionally modeled in terms of speech act the-
ory [2, 28]. Considerable work has been done (e.g., Cohen andLesveque [5], Singh [32])
to capture the assumptions and conventions of interaction between human agents and
subsequently translate them into workable paradigms for the development of their arti�-
cial counterparts. Often, such work leads to theoretical frameworks for arti�cial agents
with human{like capabilities [6, 31]. Such frameworks attempt to account for all as-
pects of the internal state of an arti�cial autonomous agent, with a particular attention
to how this state changes as the agent interacts (and/or communicates) with the world
or with other agents. Sometimes, as in the case of Agent Oriented Programming [29],
those frameworks may evolve into implemented software systems. In contrast, agent
communication languages (ACL) are concerned strictly with the communication be-
tween such computational entities. An ACL (the sub{category that includes KQML)
is more than a protocol for the exchange of data, because an attitude about what is
exchanged by the agents is also communicated. An ACL may be thought as a commu-
nication protocol (or a collection of protocols) that supports manymessage types.

The other main class of software agent technologies is that of standards and coor-
dination protocols. CORBA, ILU, OpenDoc, OLE, etc., are e�orts that are often pro-
mulgated as solutions to the agent communication problem. Driving such work is the
di�culty of running applications in dynamic, distributed environments. The primary
concern of these technologies is to ensure that applications can exchange data struc-
tures and methods across disparate platforms. Although the results of such standards
e�orts will be useful in the development of software agents, they do not provide com-
plete answers to the problems of agent communication. After all, software agents are
more than collections of data structures and methods on them. Thus, these standards
and protocols are best viewed as a substrate on which agent languages might be built.

3 Desiderata

In this section we identify requirements for agent communication languages. We di-
vide these requirements into seven categories: form, content, semantics, implementa-
tion, networking, environment, and reliability.We believe that an agent communication
language will be valuable to the extent that it meets these requirements. At times, these
requirements may be in con
ict with one another. For example, a language that can be
easily read by people might not be as concise as possible. It is the job of the language
designer to balance these various needs.



Form

A good agent communication language should be declarative, syntactically simple, and
readable by people. It should be concise, yet easy to parse and to generate. To transmit
a statement of the language to another agent, the statement must pass through the bit
stream of the underlying transport mechanism. Thus, the language should be linear or
should be easily translated into a linear stream of characters. Because a communication
language will be integrated into a wide variety of systems, its syntax should be exten-
sible. Finally, the form should be stylistically acceptable to a variety of communities,
possibly through the use of \syntactic sugar."

Content

A communication language should be layered in a way that �ts well with other sys-
tems. In particular, a distinction should be made between the communication language,
which expresses communicative acts, and the content language, which expresses facts
about the domain. Such layering facilitates the successful integration of the language
into applications while providing a conceptual framework for the understanding of the
language.

The language should commit to a well{de�ned set of communicative acts (primi-
tives). Although this set could be extensible, a core set of primitives that captures most
of our intuitions about what constitutes a communicative act irrespective of application
(database, object{oriented system, knowledge base, etc.) will ensure the usability of the
language by a variety of systems. The choice of the core set of primitives also a�ects
the decision of whether to commit to a speci�c content language. A commitment to
a content language allows a more restricted set of communicative acts, because it is
then possible to carry more informationat the content language level. The disadvantage
of commitment to a content language is that all applications must then use the same
content language; this is a heavy constraint.

Semantics

Semantics is an issue that has often been neglected during the design of communication
languages. Such neglect is the direct result of the obscurity that surrounds the purpose
and the desired features of communication languages. Although the semantic descrip-
tion of communication languages and their primitives is often limited to natural lan-
guage descriptions, a well{de�ned semantic description is anything but a luxury. This
is especially true if the communication language is intended for interaction among a di-
verse range of applications. Applications designers should have a shared understanding
of the language, its primitives and the protocols associated with their use, and abide by
that shared understanding.

The semantics of a communication language should exhibit those properties ex-
pected of the semantics of any other language. It should be grounded in theory, and it
should be unambiguous. It should exhibit canonical form (similarity in meaning should
lead to similarity in representation). Because a communication language is intended
for interaction that extends over time among spatially dispersed applications, location



and time should be carefully addressed by the semantics. Finally, the semantic descrip-
tion should provide a model of communication, which will be useful for performance
modeling, among other things.

Implementation

The implementation should be e�cient, both in terms of speed and bandwidth utiliza-
tion. It should provide a good �t with existing software technology. The interface should
be easy to use; details of the networking layers that lie below the primitive commu-
nicative acts should be hidden from the user. It should be easy to integrate or build
application program interfaces for a wide variety of programming languages, including
procedural languages (e.g., C and Lisp), scripting languages (e.g., Tcl and Perl), object{
oriented languages (e.g., Smalltalk and C++), and logic programming languages (e.g.,
Prolog). Finally, the language should be amenable to partial implementation, because
simple agents may only need to handle a subset of the primitive communicative acts.

Networking

An agent communication language should �t well with modern networking technology.
This is particularly important because some of the communication will be about con-
cepts involving networked communications. The language should support all of the ba-
sic connection types|point{to{point, multicast and broadcast. Both synchronous and
asynchronous connections should be supported. The language should contain a rich
enough set of primitives that it can serve as a substrate upon which higher{level lan-
guages and protocols can be built. Moreover, these higher{level protocols should be
independent of the transport mechanisms (e.g., TCP/IP, email, http, etc.) used.

Environment

The environment in which software agents will be required to work will be distributed,
heterogeneous, and dynamic. To provide a communication channel to the outside world
in such an environment, a communication language must provide tools for coping with
heterogeneity and dynamism. It must support interoperability with other languages and
protocols. It must support knowledge discovery in large networks. Finally, it must be
easily attachable to legacy systems.

Reliability

A communication language must support reliable and secure communication among
agents. Provisions for secure and private exchanges between two agents should be sup-
ported. There should be a way to guarantee authentication of agents. Because neither
agents nor the underlying transport mechanisms are infallible, a communication lan-
guage must be robust to inappropriate or malformed messages. The language should
support reasonable mechanisms for identifying and signaling errors and warnings.



4 The Knowledge Sharing E�ort

The ARPA Knowledge Sharing E�ort (KSE) [23, 26] is a consortium to develop con-
ventions facilitating sharing and reuse of knowledge bases and knowledge{based sys-
tems. Its goal is to de�ne, develop, and test infrastructure and supporting technology,
to enable participants to build larger systems with greater functionality than could be
achieved working alone. The KSE is organized around four working groups, each of
which addresses a complementary problem identi�ed in current knowledge representa-
tion technology: Interlingua; Knowledge Representation System Speci�cation; Shared,
Reusable Knowledge Bases; and External Interfaces.

The Interlingua Group is developing a common language for expressing the con-
tent of a knowledge{base. This group has published a speci�cation document describ-
ing the Knowledge Interchange Formalism or KIF [14], which is based on �rst{order
logic with extensions to support non{monotonic reasoning and de�nitions. KIF pro-
vides both a speci�cation for the syntax of a language, and a speci�cation for its se-
mantics. KIF can be used to support translation from one content language to another,
or as a common content language between two agents that use di�erent native rep-
resentation languages. Information about KIF and associated tools is available from
http://www.cs.umbc.edu/kse/kif/.

The Knowledge Representation System Speci�cation Group (KRSS) focuses on
de�ning commonconstructs within families of representation languages. It has recently
�nished a common speci�cation for terminological representations in the KL{ONE
family.This document and other informationon the KRSS group is available as http:-
//www.cs.umbc.edu/kse/krss/.

The Shared, Reusable Knowledge Bases Group (SRKB) is concerned with facilitat-
ing consensus on the content of sharable knowledge bases, with sub{interests in shared
knowledge for particular topic areas and in topic{independent development tools and
methodologies. It has established a repository for sharable ontologies and tools, which
is available over the Internet as http://www.cs.umbc.edu/kse/srkb/.

The scope of the External Interfaces Group is the run{time interaction between
knowledge{based systems and other modules. Special attention has been given to two
important cases|communication between two knowledge{based systems and com-
munication between a knowledge{based system and a conventional database manage-
ment system [25]. The KQML language is one of the main results to come out of the
external interfaces group of the KSE. General information is available from http:-
//www.cs.umbc.edu/kqml.

5 The KQML Language

Knowledge Query and Manipulation Language (KQML) is a language that is designed
to support interaction among intelligent software agents. It was developed by the ARPA{
supported Knowledge Sharing E�ort and independently implemented by several re-
search groups. It has been successfully used to implement a variety of information sys-
tems using di�erent software architectures.

Communication takes place on several levels. The content of a message is only a
part of the communication. Locating and engaging the attention of another agent with



which an agent wishes to communicate is a part of the process. Packaging a message in
a way that makes clear the purpose of an agent's communication is another.

When using KQML, a software agent transmits content messages, composed in a
language of its own choice, wrapped inside of a KQML message. The content message
can be expressed in any representation language, and can be written in either ASCII
strings or one of many binary notations (e.g. network{independent XDR representa-
tions). KQML implementations ignore the content portion of a message except to rec-
ognize where it begins and ends.

The syntax of KQML is based on a balanced{parenthesis list. The initial element of
the list is the performative; the remaining elements are the performative's arguments as
keyword/value pairs. Because the language is relatively simple, the actual syntax is not
signi�cant and can be changed if necessary in the future. The syntax reveals the roots
of the initial implementations, which were done in Common Lisp; it has proven to be
quite 
exible.

KQML is expected to be supported by a software substrate that makes it possible for
agents to locate one another in a distributed environment.Most current implementations
come with custom environments of this type; these are commonly based on helper pro-
grams called facilitators (`facilitators' refers to a family of agents that provide services,
such as name servers, brokers, authenticators, etc.). These environments are not a part
of the KQML speci�cation; they are not standardized, and most of the current KQML
environments will evolve to use one or more of the emerging commercial frameworks,
such as OMG's CORBA or Microsoft's OLE2.

The KQML language simpli�es its implementationby allowingKQMLmessages to
carry arbitrary useful information, such as the names and addresses of the sending and
receiving agents, a unique message identi�er, and notations by any intervening agents.
There are also optional features of the KQML language that contain descriptions of
the content: its language, the ontology it assumes, and more general descriptions, such
as a descriptor naming a topic within the ontology. These optional features make it
possible for supporting environments to analyze, route and deliver messages based on
their content, despite the inaccessibility of that content.

The form of these message parts may vary, depending on the transport mechanism
used to carry the KQML messages. In implementations that use TCP streams as the
transport mechanism, they appear as �elds in the body of the message. In an earlier
version of KQML, these �elds were kept in reserved locations in an outer wrapper of
the message to emphasize their di�erence from other �elds. In other transport mecha-
nisms the syntax and content of these messages may di�er. For example, in the email
implementation of KQML, these �elds are embedded in KQML mail headers.

The set of performatives forms the core of the language. It determines the kinds
of interactions one can have with a KQML{speaking agent. The primary functions of
the performatives are to identify the protocol to be used to deliver the message, and to
supply a speech act that the sender attaches to the content. The performative signi�es
that the content is an assertion, a query, a command, or any other mutually agreed upon
speech act. It also describes how the sender would like any reply to be delivered (i.e.,
what protocol will be followed).

Conceptually, a KQML message consists of a performative, its associated argu-



ments (which include the real content of the message), and a set of optional transport
arguments (which describe the content and perhaps the sender and receiver). For exam-
ple, a message representing a query about the price of a share of IBM stock might be
encoded as:

(ask-one
:content (PRICE IBM ?price)
:receiver stock-server
:language LPROLOG
:ontology NYSE-TICKS)

In this message, the KQML performative is ask{one, the content is (PRICE IBM ?price),
the ontology assumed by the query is identi�ed by the tokenNYSE{TICKS, the receiver
of the message is to be a server identi�ed as stock{server and the query is written in a
language called LPROLOG. A similar query could be conveyed using standard Prolog
as the content language in a form that requests the set of all answers as:

(ask-all
:content "price(ibm, [Price, Time])"
:receiver stock-server
:language standard_prolog
:ontology NYSE-TICKS)

The original message asks for a single reply; this second request message asks for a set
of answers as a reply. If we prefer each response to be sent separately instead of as a
single large collection, we can use the stream-all performative (to save space, we will
no longer repeat �elds that are identical to those in the above examples):

(stream-all
;;?VL is a large set of symbols
:content (PRICE ?VL ?price))

The stream-all performative asks that a set of answers be turned into a stream of
replies. To exert control over this set of reply messages, the standby performative can
be wrapped around the preceding message:

(standby
:content (stream-all

:content (PRICE ?VL ?price)))

The standby performative expects a KQML expression as its content. It requests that
the agent receiving the request hold the stream of messages and release them one at a
time; the sending agent requests a reply with the next performative. The exchange of
next/reply messages can continue until the stream is depleted or until the sending agent
sends either a discard message (i.e. discard all remaining replies) or a rest message
(i.e. send all of the remaining replies now). This combination is so useful that it can be
abbreviated:



Category Name

Basic query evaluate, ask{if, ask{about, ask{one, ask{all
Multi{response query stream{about, stream{all, eos
Response reply, sorry
Generic informational tell, achieve, cancel, untell, unachieve
Generator standby, ready, next, rest, discard, generator
Capability{de�nition advertise, subscribe, monitor, import, export
Networking register, unregister, forward, broadcast, route

Table 1. KQMLhas about twodozen reservedperformative names,which fall intoseven

basiccategories.

(generate
:content (PRICE ?VL ?price)))

A di�erent set of answers to the same query can be obtained (from a suitable server)
with the query:

(subscribe
:content (stream-all

:content (PRICE IBM ?price)))

This performative requests all future changes to the answer to the query (i.e. it requests
that a stream of messages be generated to re
ect changes in the trading price of IBM
stock). An abbreviation for subscribe/stream combination is known a monitor:

(monitor
:content (PRICE IBM ?price)))

Although KQML de�nes a set of reserved performatives, it is neither a minimal
required set nor a closed one. AKQML agentmay choose to handle only a few (perhaps
one or two) performatives. The set is extensible; a community of agents may choose
to use additional performatives if they agree on their interpretation and the protocol
associated with each. However, an implementation that chooses to implement one of
the reserved performatives must implement it in the standard way.

Some of the reserved performatives are shown in Table 1. In addition to standard
communicationperformatives such as ask, tell, deny, delete, andmore protocol{oriented
performatives such as subscribe, KQML contains performatives related to the non{
protocol aspects of pragmatics, such as advertise (which announces what kinds of asyn-
chronous messages an agent is willing to handle) and recruit (which can be used to �nd
suitable agents to respond to particular types of messages). For example, the server in
the above example might have earlier announced:

(advertise
:ontology NYSE-TICKS



:language LPROLOG
:content (monitor

:content (PRICE ?x ?y)))

This is roughly equivalent to announcing that it is a stock ticker and invitingmonitor re-
quests concerning stock prices. This advertise message is what justi�es the subscriber's
sending the monitormessage.

6 How KQML Stacks Up

In this section, we evaluate the KQML language as it stands today, relative to our
desiderata for agent communication languages.

Form

The only primitives of the language, the performatives, convey the communicative act
and the actions to be taken as a result. Thus the form of KQML should be deemed to
be declarative. The default format for a KQML message is a linear stream of characters
with a Lisp{like syntax. Although this formatting is irrelevant to the function of the
language, it makes messages easy to read, easy to parse, and easy to convert to other
formats. The inclusion of named parameter{value pairs has several advantages: optional
parameters need not be included; KQML messages are easily converted to an object{
oriented or frame{based representation; and extensions using additional parameters are
easily added. On the negative side, some potential users �nd Lisp{like syntax to be
undesirable.

Content

The KQML language can be viewed as being divided into three layers: the content
layer, the message layer and the communication layer. KQML messages are oblivious
to the content they carry. Although in current implementations of the language there is
no support for non{ASCII content, there is nothing in the language that would prevent
such support. The language o�ers a minimum set of performatives that covers a basic
repertoire of communicative acts. They constitute the message layer of the language and
are to be interpreted as speech acts. Although there is no \right" necessary and su�cient
set of communicative acts, KQML designers tried to �nd the middle ground between
two extremes: 1) providing a small set of primitives thereby requiring overloading at
the content level; and 2) providing an extensive set of acts, where inevitably acts will
overlap one another and/or embody �ne distinctions. The communication layer encodes
in the message a set of features that describe lower{level communication parameters
(such as the identity of the sender and recipient, and a unique identi�er associated with
the communication).



Semantics

KQML semantics is still an open issue. For now there are only natural language de-
scriptions of the intended meaning of the performatives and their use (i.e., protocols).
An approach that emphasizes the speech act 
avor of the communicative acts is a thread
of ongoing research [18, 33, 6].

Labrou and Finin [18] have proposed a speci�c framework for KQML that de�nes
cognitive states for agents and uses them to describe the performative and associated
preconditions, postconditions and satis�ability conditions for felicitous use. In addi-
tion, conversation policies are provided in the form of dialogue grammars specifying
additional constraints for coherent discourse.

Implementation

There are currently a number of KQML software suites that have been implemented and
are in use.2 These implemented systems di�er in how they measure up to our imple-
mentation desiderata. However, taken as a group, it does appear that implementations
are possible that can do well with respect to each of our criteria.

Both the Lockheed KAPI system and the Loral/UMBC KATS suite, for example,
provide a content{independent message router and a facilitator. Facilitators are special-
ized KQML agents that maintain information about other agents in their domain, and
about those agents' query{answering capabilities (existing versions of facilitators sup-
ply only simple registration services). The application must provide a handler function
for each performative that is to be processed by the application.

In general, it is not necessary that an application be able to handle all performa-
tives, since not all KQML{speaking applications will be equally powerful. Creating a
KQML{speaking interface to an existing application is a matter of providing the appro-
priate handler functions.

The e�ciency of KQML communication has been investigated. Various compres-
sion enhancements have been added that cut communication costs by reducing message
size, and by eliminating a substantial fraction of symbol lookup and string duplica-
tion [11].

Networking

KQMLdoes address most of the networking desiderata and provides, we believe, a good
�t with current networking technology. KQML has been designed to work withmultiple
transport mechanisms, and implementations have been done that use TCP/IP, SMTP
(email), HTTP and CORBA objects to carry messages. KQML agents can be addressed
using symbolic names, which are resolved into transport{level addresses by agent name
servers. KQMLmessages can be sent point{to{point;multicasting and broadcasting are
possible in any of the transport mechanisms through the use of facilitator class agents.

2 TheseincludeKATS(LoralandUMBC),KAPI(Lockheed,EITandStanford),Magenta(Stan-
ford),COOL(UniversityofToronto),andLogicWare(CrystalizInc.).Detailsonthesesystems
canbe foundathttp://www.cs.umbc.edu/kqml/software/.



KQML allows both synchronous/asynchronous interactions and blocking/non{blocking
message sending on behalf of an application, through assignment of appropriate values
for those parameters in a KQML message. We have found the basic primitives to be
su�cient to create agents that o�er network{oriented services, such as name servers,
proxy agents and brokers. Although some work has been done to build higher{level
protocols on top of KQML [3, 4, 17], this remains as a rich area to be explored.

Environment

KQML can use any transport protocol as its transport mechanism(HTTP, SMTP, TCP/IP
etc.). Since KQML messages are oblivious to content, there are no restrictions on the
content language (beyond the obvious requirement that a handler can be written to pro-
cess the content of each type of performative). Interoperability with other communi-
cation languages remains to be addressed as such languages appear. One such attempt
has been made by Davis, whose Agent{K [8] attempts to join KQML with Shoham's
Agent Oriented Programming [29]. The existence of facilitators in the KQML environ-
ment can provide the means for knowledge discovery in large networks, especially if
facilitators can cooperate with other knowledge discovery applications available in the
World Wide Web.

Reliability

Since KQML speaking agents might be imperfect, there are performatives (error and
sorry) that can be used to respond to messages that an application cannot process or
comprehend; this provides a crude way for an agent to respond to ill{formed, inappro-
priate or unwanted incoming messages. A more general approach being considered is
the development of an ontology of warnings, errors and infelicities that would be appro-
priate for agents and agent communications languages. Terms in this ontology could be
used in the :content �eld of the rudimentary error and sorry performatives to describe
the problem encountered.

The issues of security and authentication are only beginning to be addressed by
the KQML community. A security architecture model [34] based on data encryption
techniques has been proposed for KQML. In tune with KQML's asynchronous nature,
the model expects a secure message to be self authenticating and does not support any
challenge/response mechanism to authenticate a message after it has been delivered.
The architecture supports two security models, basic and enhanced. The basic security
model supports sender authentication, message integrity and data privacy. The enhanced
security model additionally supports non{repudiation of origin (proof of sending) and
protection from message replay attacks. The enhanced security model also supports
frequent change of encryption keys to guard against cipher attacks.

7 Conclusion

A good agent communication language has many needs, some of which are in compe-
tition. KQML is a new communication language that addresses many (although not all)



of these needs. The development of KQML has been marked by an e�ort to balance
the theoretical requirements for a sound and complete framework against the technical
demands for e�cient, easy{to{use implementations.

The inevitable compromise between the two may not result in a communication
language that suits everyone, but we believe that KQML will prove useful in a wide
range of intelligent software agent architectures. Additional information about KQML,
including papers, language speci�cations, access to APIs, information on email discus-
sion lists, etc., can be found at http://www.cs.umbc.edu/kqml/.

References

1. ARPAKnowledgeSharingInitiative. Speci�cationoftheKQMLagent{communicationlan-
guage. ARPAKnowledge Sharing Initiative, External Interfaces WorkingGroupworking
paper. Available as http://www.cs.umbc.edu/kqml/papers/kqml-spec.ps,
December1992.

2. J. L. Austin. HowTo DoThingsWithWords. Harvard University Press, second edition,
1962,1975.

3. M. Barbuceanu andM. S. Fox. COOL: a language for describing coordination in multi-
agentsystems. InProceedingsoftheFirstInternationalConferenceonMulti-agentsystems,
pages17{24.AAAI/MITPress,1995.

4. M. Barbuceanu and M. S. Fox. The architecture of an agent building shell. In
M.Wooldridge, J. P. M�uller, and M. Tambe, editors, Intelligent Agents Volume II|
Proceedingsofthe1995WorkshoponAgentTheories,Architectures,andLanguages(ATAL{
95),LectureNotes inArti�cial Intelligence.Springer{Verlag,1996. (Inthisvolume).

5. Philip R.CohenandH.J.Levesque. Intention is choicewithcommitment. Arti�cial Intelli-
gence, 42(2{3):213{361,1990.

6. Philip R. Cohen andH.J. Levesque. Communicative actions for arti�cial agents. In Pro-
ceedings of theInternationalConferenceonMulti{AgentSystems.AAAIPress,June1995.

7. SunComputers. TheJAVAlanguage:awhitepaper. 1994.
8. WintonDavies. Agent{K: An integration of AOPandKQML. Available as http://www.-

csd.abdn.ac.uk/~wdavies/Publications/CIKM94/agentk.html,1994.
9. TimFinin, Yannis Labrou, and JamesMay�eld. KQML as an agent communication lan-

guage. InJe�eryM.Bradshaw,editor,SoftwareAgents.MITPress,1995.
10. Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire. KQML: An infor-

mation and knowledge exchange protocol. In International Conference on Build-
ing and Sharing of Very Large{Scale Knowledge Bases, December 1993. A ver-
sion of this paper will appear in Kazuhiro Fuchi and Toshio Yokoi (Eds.), Knowl-
edge Building and Knowledge Sharing, Ohmsha and IOS Press, 1994. Available as
http://www.cs.umbc.edu/kqml/papers/kbks.ps.

11. Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire. The KQML information
andknowledge exchange protocol. In Third International Conference on Information and
KnowledgeManagement,November1994.

12. TimFinin,CharlesNicholas, andYelenaYesha,editors. InformationandKnowledgeMan-
agement: Expanding theDe�nitionofDatabase. LectureNotes in Computer Science 752.
Springer{Verlag,1993. (ISBN3{540{57419{0).

13. MichaelGenesereth. Anagent{basedapproach to software interoperability. TechnicalRe-
portLogic{91{6,LogicGroup,CSD,StanfordUniversity,February1993.



14. MichaelGeneserethandRichardFikes. Knowledge InterchangeFormat, version3.0refer-
ence manual. Technical report, Computer Science Department, Stanford University, June
1992.

15. Robert S.Gray. agentTcl:a transportable agent system. InProceedings of theACMCIKM
Intelligent InformationAgentsWorkshop,December1995.

16. Daniel R.Kuokka, James G.McGuire,JayC.Weber,JayM.Tenenbaum,Thomas R.Gru-
ber, andGregoryR.Olsen. SHADE:Technology for knowledge{based collaborative engi-
neering. InProceedingsof theAAAIWorkshoponAI inCollaborativeDesign,1993.

17. K. Kuwabara. AgenTalk: coordination protocol description for multi-agent systems. In
ProceedingsoftheFirstInternationalConferenceonMulti-agentsystems.AAAI/MITPress,
1995.

18. Yannis Labrou and Tim Finin. A semantics approach for KQML|a general pur-
pose communication language for software agents. In Third International Confer-
ence on Information and Knowledge Management, November 1994. Available as
http://www.cs.umbc.edu/kqml/papers/kqml-semantics.ps.

19. JamesMay�eld, Yannis Labrou, andTimFinin. Desiderata for agent communication lan-
guages. InProceedings of the 1995AAAI SpringSymposiumon InformationGathering in
DistributedEnvironments,March1995.

20. JohnMcCarthy. elephant2000:a programminglanguagebasedonspeechacts.
21. James G.McGuire,Daniel R.Kuokka,JayC.Weber,JayM.Tenenbaum,Thomas R.Gru-

ber, andGregoryR. Olsen. SHADE: Technology for knowledge{based collaborative en-
gineering. Journal of Concurrent Engineering: Applications and Research (CERA), 1(2),
September1993.

22. M.Tenenbaum,J. Weber, andT. Gruber. Enterprise integration:Lessons fromSHADEand
PACT. InC. Petrie,editor,Enterprise IntegrationModeling.MITPress,1993.

23. R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, andW. Swartout. Enabling
technologyforknowledgesharing.AIMagazine,12(3):36{56,Fall1991.

24. Je�Y-CPanandJayM.Tenenbaum. Anintelligentagent frameworkforenterprise integra-
tion. IEEETransactionsonSystems,ManandCybernetics,21(6),December1991. (Special
IssueonDistributedAI).

25. Jon Pastor, Don McKay, and Tim Finin. View{concepts: Knowledge{based access to
databases. InProceedingsof theFirst InternationalConferenceonInformationandKnowl-
edgeManagement,October1992.

26. R. Patil, R. Fikes,P. Patel-Schneider,D.McKay,T. Finin,T. Gruber, andR. Neches. The
DARPAknowledge sharing e�ort: Progress report. InPrinciples of KnowledgeRepresen-
tationandReasoning:Proceedings of theThirdInternationalConference,November 1992.
Availableashttp://www.cs.umbc.edu/kqml/papers/kr92.ps.

27. TImRitchey. Java!NewRidersPublishing,1995.
28. John R.Searle. SpeechActs:AnEssay in thePhilosophyofLanguage. CambridgeUniver-

sityPress,1969.
29. YoavShoham. Agent{orientedprogramming.Arti�cialIntelligence,60:51{92,1993.
30. CandyL.Sidner. Anarti�cialdiscourse language forcollaborativenegotiation. InProceed-

ingsof the1994NationalConferenceonArti�cial Intelligence(AAAI{94),August1994.
31. M. P. Singh. Semantical considerations on some primitives for agent speci�cation.

In M.Wooldridge, J. P. M�uller, and M.Tambe, editors, Intelligent Agents Volume II|
Proceedingsofthe1995WorkshoponAgentTheories,Architectures,andLanguages(ATAL{
95),LectureNotes inArti�cial Intelligence.Springer{Verlag,1996. (Inthis volume).

32. M.P.Singh. Towardsa formaltheoryofcommunicationformultiagentsystems. InProceed-
ingsof theInternationalJointConferenceonArti�cial Intelligence(IJCAI '91),1991.



33. IraA. Smith andPhilipR.Cohen. Towarda semantics for a speech act based agent com-
munications language. In Proceedings of the ACMCIKMIntelligent Information Agents
Workshop,December1995.

34. ChelliahThirunavukkarasu, TimFinin, and JamesMay�eld. Secret agents|asecurity ar-
chitecture fortheKQMLagentcommunicationlanguage. InProceedingsoftheACMCIKM
Intelligent InformationAgentsWorkshop,December1995.

35. JamesWhite. Mobile agents. In Je�eryM.Bradshaw, editor,SoftwareAgents.MITPress,
1995.

36. GioWiederhold,PeterWegner,andStefanoCeri. Towardmegaprogramming.Communica-
tions of theACM, 33(11):89{99,November1992.

37. DarrellWoelk. Developing InfoSleuth agents usingRosette: an agent based language. In
Proceedingsof theACMCIKMIntelligent InformationAgentsWorkshop,December1995.

ThisarticlewasprocessedusingtheLATEXmacropackagewithLLNCSstyle


