
On Agent Domains, Agent
Names and Proxy Agents1

Tim Finin and Anupama Potluri
Computer Science and Electrical Engineering

University of Maryland Baltimore County
Baltimore MD

Chelliah Thirunavukkarasu2

Enterprise Integration Technology
Palo Alto, CA

Don McKay and Robin McEntire
Valley Forge Engineering Center
Loral Government Systems Group

Paoli PA

Abstract

We consider the problem of how agents should be named and what kind of software
infrastructure is necessary in order to locate an agent given only its name. We assume an
agent environment which (1) is dynamic with agents being created and destroyed
frequently; (2) undergoes re-organizations with agent groups and sub-groups forming and
disbanding; and (3) supports agent communication by any of several transport mechanisms
such as TCP/IP, email, http and distributed object systems. This leads us to propose the
establishment of agent domains which are organized into an agent domain hierarchy.
Agent name resolution can be done by agent name servers, analogous to Internet domain
name servers. One of the additional benefits from this approach is that it easily supports
the definition of proxy agents. We sketch how this proposal would impact the KQML
agent communication language and protocol and describe an ongoing implementation of a
generic KQML Agent Name Server and its integration into the KATS framework.

1 This work was supported in part by the DoD, the Air Force Office of Scientific Research under contract
F49620-92-J-0174, and by the Advanced Research Projects Agency monitored under USAF contracts
F30602-93-C-0177 and F30602-93-C-0028 by Rome Laboratory.
2 This work was done while the author was at UMBC.

Introduction

Agents need to talk to other agents. If you are an agent A and there is another
specific agent B that you want to send a message to, how do you manage it? Well, clearly
there is a need for some kind of referential expression that A can use for B and which can
be given to the underlying machinery which will convey the message to B. One solution is
to use an expression that locates the agent with respect to the message transport system.
Examples of such “transport address names” would be a structure which contains an IP
address and a port number, or a URL, or an email address for the TCP/IP, http and SMTP
protocols. This is a common practice in many of our primitive agent systems today.

Another approach allows agents to use one of more symbolic names and to provide some
kind of mechanism by which names can be registered and associated with their appropriate
“transport address name”. This approach is only slightly more sophisticated than the first.
The name registration can be done in any of several ways, such as hand coding the
associations into all of the agents, or broadcasting the associations over the transport
mechanism or assuming the use of “communication facilitator” type agents.

The KQML language and protocol includes special commands (the register and unregister
performatives) by which agents can announce the symbolic names by which they wish to
be known. Special agents (commonly known as “communication facilitators”) traffic in
this knowledge and provide a name registration and resolution service. In the Loral/UMBC
“KQML Agent Technology Software” (KATS) architecture, this name registration and
resolution is handled automatically by a generic router sub-agent attached to each agent.
From the agents perspective, all it has to do is to specify the set of symbolic names it
wished to be known by. The router sub-agent automatically contacts the local “facilitator
agent” 3 to register the agent by its symbolic names.

For example, suppose the agent named A wants to send a query to agent B. It passes a
KQML form like

(ask-one :from A :to B :content ...)

to its router sub-agent (call it r(A)). This router is responsible, among other things, for
resolving the agent name B into an address that can be given to the transport layer for
delivery. In KATS, the router checks it’s cache to see if it knows how to deliver a
message to an agent named “B”. If it does, it ships the message out. If not, it sends a
KQML query to the local agent name server, asking for the address of an agent named “B”.
Upon receiving the information, it adds it to its cache and sends off the message.

There are additional wrinkles, of course, such as how to determine when a cache entry is
stale and needs to be flushed, but this describes the current arrangement.

The Problem

Although this approach works quite well as far as it goes, it just does not go very far. The
problem is that it only supports communication between two agents if they both register
with a common agent name server. There are several possible solutions. All agents could

3 How does it find it? Well, our current implementation assumes an environment variable which points to
it. An alternative convention are possible, such ...

use a single master name server possibly located deep under Cheyenne Mountain. Another
approach is to have the name servers share their registration databases. Still a third, and
more general, technique involves having the name servers use a distributed protocol to
seek out the contact information on non-local agents. We next describe our protocol for
such a distributed agent name resolution scheme.

Distributed agent-name resolution

We propose to organize agents into “agent domains” in much the same way that the Internet
is organized into “host domains”. An “agent domain” can be thought of as a collection of
agents that are associated with a particular set of facilitator-class agents. In particular,
every agent domain must have an “agent domain name server” (or “agent name server” or
ANS for short) running. There may be other facilitator-class agents, such as brokers,
associated with the agent-domain.

ANS1

agents registered with agent name server ANS1

Figure 1 -- a set of agents are associated with an agent name server by
sending it a KQML “register” performative.

Agent domains will be organized into a hierarchy. Agents will register with an ANS, as
shown in figure one. An ANS, being an agent itself, will register with a “parent ANS”,
resulting in a hierarchy, as shown in Figure Two. Each agent will have one or more local
names. An agent can also be referred to by its “domain qualified name”. For example,
consider the agent-domain hierarchy in Figure Three.

ANS2ANS1 ANS3

ANS4

ANS5

Figure 2 -- Agent name servers are organized into a hierarchy through the
registration process.

One possibility we might consider is just to “piggy-back” on the existing Internet host
structure. For example, why not refer to the agent “colossus” running on the machine

“cujo.cs.umbc.edu” as “colossus@cujo.cs.umbc.edu” and assume a standard port for
KQML speaking agents. This idea is attractive in that it makes efficient use of a well
thought out and implemented architecture. However, there are several problems which
argue against this. The primary difficulty is that we do not want to tie KQML and agent
communication in general to a single transport mechanism. Current research groups are
using a variety of mechanisms to carry KQML messages -- TCP/IP, SMTP, CORBA
objects, and HTTP. We would like to continue to keep KQML flexible in this regard. A
consequence of this is that we need a general mechanism for naming agents that is
independent of the transport mechanism.

What should agent names look like?

We propose a naming scheme similar to the one used for hosts on the Internet. Every agent
will have one or more local names optionally followed by a domain qualifier. A local name
can be any non-zero length sequence of characters chosen from the character set

{a-z,A-Z,0-1,-,_,.,+,#}

A domain qualifier begins with the character “.” and consists of one or more agent domain
names separated with a “.” character. Thus a fully qualified agent name has the structure:

<local name> . <domain1>.<domain2>.<domain3>...<domainN>.

The following would all be valid names for an agent with the local name “colossus”
registered in the “umbc.edu.” agent domain (and assuming that it is in turn registered in the
“edu.” domain which is in the top-level “.” domain.)4

colossus
colossus.umbc
colossus.umbc.edu.

Furthermore, we propose a correspondence between the names of agent domains and agent
domain servers. Thus in the above example, agent colossus is registered with the ANS
with local name umbc which is registered with the ANS with local name edu which is
registered with the global ANS. Thus, the fully qualified name of an agent could be
defined by its local name followed by a “.” followed by the fully qualified name of its
official agent name server.

There are obvious alternatives to the syntax we are proposing which would model agent
names after email addresses (e.g., colossus@umbc.edu) or URLs (e.g.,
kqml://umbc.edu/colossus). There are several arguments against using either of these
existing formats. One argument that applies to both is that we would like to avoid
confusion about what a particular address means, e.g., is it the name of an agent, a
reference to a document, or a reference to a mailbox. One might think that such a
confusion could be a feature rather than a bug, since each of these might be a very
reasonable way to think of and interact with an agent. However, there is clarity to be
gained by separating the concept of a abstract reference to an agent that is independent of
communication channel and a reference to an agent that implies a means of communication.
The email style address has an advantage of using a special character (the @) to separate the
“local name” from the “host name”. When standards for SMTP were being developed, this

4 An alternate is possible, such as one based on URLs. For example, we might choose to represent an
agent using “agent://<domain>.<domain>...<domain>/<local name>“ as in the example
“agent://umbc.edu.kqml/colossus”.

was quite useful since it provided a mechanism to support gateways between email systems
that used very different protocols5.

How agent names are resolved

The process of resolving a name is similar to the one used for the Internet DNS. One
difference is that agent with a given name can have many addresses -- one for each
transport mechanism that it can use. Thus, the agent_address is a function from agent
names and agent transport types to transport addresses. We assume that an agent can be
referred to using its fully qualified name6 or any non-ambiguous abbreviation.

Suppose agent A1 wants to resolve the fully qualified name N2 into an address for transport
type T2. The process starts when A1 asks its agent name server.7 The query is passed up
the hierarchy of agent name servers as long as the address is not known and N2, is not
recognized as being the name of some descendant. If an agent name server gets the query
and knows the address, the process stops and a response is sent to A1. If the root of the
agent domain hierarchy is reached and the address was not found, the process fails and an
appropriate error message is sent to A1. If an agent name server recognizes that N2 is the
name of some descendant, it is passed down to the appropriate immediate child agent name
server. This process continues until we find an agent name server that knows the address
or we recognize that we can go no further. In this latter case, the process fails and an
appropriate error message is sent to A1.

Resolving partially qualified agent names follows a very similar process. There are a
number of details that must be decided on in standardizing this name resolution protocol --
i.e., whether answers are sent directly back to the agent initiating the query or passed back
through the hierarchy and cached along the way. These details should only effect the
performance of the name resolution process.

Taking names seriously
.
Agents should take names seriously. What we mean by this is that application agents
should always refer to other agents by their names, and not the underlying transport
addresses, if known.8 Agents should leave the resolution of these names into transport
addresses up to specialized agents (e.g., agent name servers) and sub-agents (e.g.,
routers). Adapting this convention will directly support the concept of a proxy agent , the
use of logical agent services, and other important notions. We will discuss the concept of a
proxy agent in more detail and sketch how it can be easily implemented by adopting a few
simple conventions for agent name servers.

5 In the 1980’s it was very common to see complicated email addresses that might involve several
intervening gateways, such as foo@quux%bar@umbc.edu. For the most part, the necessity for these has
gone away.
6 i.e., its local name followed by a dot followed by the fully qualified name of its agent name server.
7 How does an agent know the address of its agent name server? Since the process has to ground out
somewhere, we assume that an agent knows at least the address of its agent name server upon creation or
can access it via some standard environment variable, as is done in the KATS framework.
8 Of course, some agents, such as agent name servers, will know transport addresses and some agent
components (such as a router sub-agent) will have to know and use transport addresses. Moreover, we
would expect a such sub-agents to remember the transport address for a given agent name and to use it for
an extended session.

Proxy agents and their protocols

A proxy agent is an agent that handles all of the incoming and outgoing messages
(perhaps with respect to a particular transport mechanism) for another agent. A simple
proxy mechanism can be used to provide a number of services:

• firewall gateways -- agents which are behind a security firewall and use a proxy
agent to communication to agents outside the firewall.

• protocol gateways -- An agent which is unable to send or receive messages via a
particular transport mechanism (e.g., email) can still communicate with agents who
only use that mechanism by having a proxy agent to mediate between two transport
mechanisms.

• message processing -- The proxy can provide a processing service, such as
logging incoming or outgoing messages, without altering the stream.

• filtering and annotating -- The proxy can alter the stream by filtering out certain
incoming messages, blocking outgoing messages to particular destinations,
annotating incoming messages, etc.

• agent composition -- A proxy agent facility allows one to develop a notion of
“agent composition” similar to functional composition.

As an example, suppose we have two agents A and B, both of which use the agent name
server F. A has proxy agent p(A) and B has proxy agent p(B). Suppose A wants to send a
message to B. The following events take place:

1. A hands off the message to its router subagent r(A).
2. r(A) asks F for B's address.
3. f gives r(A) the address of p(A), A's proxy.
4. r(A) delivers the message to p(A) but the :TO field equals b.
5. p(A), knowing that it is a proxy for a (possibly among others) and noticing that it

has received a message from a with the :TO field of B, understands that the
message is not really intended for it, and asks its router r(p(A)) to deliver it to B.

6. r(p(A)) asks F for the B's address.
7. F gives r(p(A)) the address of p(B) -- B's proxy).
8. r(p(A)) delivers the message to p(B) with the :TO field equals B.
9. p(B), knowing that it is a proxy for B (possibly among others) and noticing that the

:TO field is B, understands that the message is not really intended for it, and asks
its router r(p(B)) to deliver it to B.

10. r(p(B)) asks F for the address of B.
11. F recognizes that p(B)) is B's proxy so it gives p(B) the real address of B.

 a

r(a)

 p(a)

r(p(a))

 f

r(f)

 b

r(b)

 p(b)

r(p(b))

Figure 3 -- A conversation among five agents and their sub-agents.

This example demonstrates the use of proxy agents for both outgoing messages and
messages. The proxy agents may do some additional processing of the messages they get,
of course, like logging or traffic analysis, etc. The scenario above is the worst case in that
it assumes all of the router subagent caches are empty. Subsequent communications would
find the caches filled, so the agent name server would not have to be involved.

Implementing the concept of a proxy agent is rather trivial once we have agent name servers
and agents who contact agents by name rather than by transport address. First, if an agent
P is willing to serve as a proxy agent, it has to be able to provide some of the functionality
that an agent name server does. Second, if A wishes to use P as a proxy for transport
mechanism T, it must (1) get permission from ask P for this and (2) unregister with A’s
agent name server for transport T (if it was so registered). Third, P should register with
A’s agent name server in A’s name for transport T. Good design dictates that all of the
agents involved should also explicitly “know” that P is acting as A’s proxy with respect to
messages carried by transport mechanism T.9

Changes to KQML and standard utility agents

This naming scheme will not require any major changes to KQML such as the addition of
new performatives or new parameters. It will have an impact on the form of the register
performative and on the standard agent ontology and on the protocols used by standard
utility agents such as an agent name server and a router. This, in turn, will effect the
protocols that all agents who use these standard utility agents follow.

An agent name server will have to store more information about the agents that are
registered with it and will have to handle some additional performatives. When an agent
registers with an agent name server, it should provide a set of symbolic names it will
respond to and a set of transport type/address pairs. Authentication information may be
provided as described in (Thirunavukkarasu, Finin and Mayfield 95). A standard agent
name server must handle requests to register and unregister from agents as well as various
kinds of queries against its registration database.10

In reaching a consensus on the precise details of how to add these changes to KQML we
will have to choose what aspects are expressed by adding to or modifying the basic
components of KQML (i.e., performatives and parameters and their semantics) and which
are expressed by extending the common “agent ontology” that is assumed by KQML.11

Conclusions

We have discussed the problem developing a global naming scheme for software agents
and how such names can be resolved into usable addresses. We have assumed an agent
environment which (1) is dynamic with agents being created and destroyed frequently; (2)
undergoes re-organizations with agent groups and sub-groups forming and disbanding; and
(3) supports agent communication by any of several transport mechanisms such as TCP/IP,
email, http and distributed object systems. We proposed the use of agent domains which

9 This will allow the agents to recognize, for example, that messages delivered to P’s address but addressed
to A were not sent, delivered or addressed in error.
10 A careful specification of the requirements for an agent name server would include the performatives
register, unregister, ask-one, ask-all, stream, subscribe and deny.
11 This ontology is only now being articulated by defining it using the Ontolingua language.

are organized into an agent domain hierarchy. Agent name resolution will be done agent
name server agents which use a distributed protocol similar to that used by Internet domain
name servers. This approach supports the definition of proxy agents which have a variety
of uses. We have briefly discussed how this proposal would impact the KQML agent
communication language and protocol and describe an ongoing implementation of a generic
KQML Agent Name Server and its integration into the KATS framework.

Acknowledgements

This work has been the result of very fruitful collaborations with a number of colleagues
with whom we have worked on KQML and other aspects of the Knowledge Sharing
Effort. We wish to specifically thank and acknowledge James Mayfield, Richard Fritzson,
Charles Nicholas, and R. Scott Cost.

Bibliography

Paul Albitz & Cricket Liu, DNS and BIND, O'Reilly, 1992, ISBN:1-56592-010-4.

Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire. KQML: an information and
knowledge exchange protocol. In International Conference on Building and Sharing of
Very Large-Scale Knowledge Bases, December 1993. A version of this paper will appear
in Kazuhiro Fuchi and Toshio Yokoi (Ed.), “Knowledge Building and Knowledge
Sharing”, Ohmsha and IOS Press, 1994. An online copy can be obtained from
“http://www.cs.umbc.edu/kqml/papers/kbks.ps”.

Tim Finin, Don McKay, Rich Fritzson, and Robin McEntire. The KQML information and
knowledge exchange protocol. In Third International Conference on Information and
Knowledge Management, November 1994.

Rich Fritzson, Tim Finin, Don McKay and Robin McEntire. KQML - A Language and
Protocol for Knowledge and Information Exchange, 13th International Distributed Artificial
Intelligence Workshop, July 28-30, 1994. Seattle WA.

Tim Finin, Yannis Labrou, and James Mayfield, KQML as an agent communication
language, invited chapter in Jeff Bradshaw (Ed.), ``Software Agents’’, MIT Press,
Cambridge, to appear, (1995).

Mark R. Horton, What is a domain?, available on-line as
<http://www.dns.net/dnsrd/docs/domain.ps>.

Yannis Labrou and Tim Finin. A semantics approach for KQML—a general purpose
communication language for software agents. In Third International Conference on
Information and Knowledge Management, November 1994. Available on-line as
http://www.cs.umbc.edu/kqml/papers/kqml-semantics.ps.

R. Patil, R. Fikes, P. Patel-Schneider, D. McKay, T. Finin, T. Gruber, and R. Neches.
The DARPA knowledge sharing effort: Progress report. In B. Nebel, C. Rich, and W.
Swartout, editors, Principles of Knowledge Representation and Reasoning: Proc.\ of the
Third International Conference (KR’92), San Mateo, CA, November 1992. Morgan
Kaufmann.

R. Neches, R. Fikes, T. Finin, T. Gruber, R. Patil, T. Senator, and W. Swartout.
Enabling technology for knowledge sharing. AI Magazine, 12(3):36--56, Fall 1991.

James Mayfield, Yannis Labrou and Tim Finin. Evaluation of KQML as an Agent
Communication Language, the IJCAI-95 Workshop on Agent Theories, Architectures, and
Languages.

