Keys to Successful
IA-64 Software
Development

Mike Martell - staff software Engineer
David I\/Iackay - Applications Analysis Leader
Software Performance Lab

Intel Corporation

February 15-17, 2000

—-Intel
Developer

Fmrun’hJ
Spring 2000




Agenda:
Key IA-64 Software Issues

e Do | Need IA-647
e Coding for Portability

e Coding for Performance and
Maintainability

e Mixing I1A-32 and IA-64
e Planning for an Optimal Product

—Intel
Developer

FO rum_'J




Need |IA-64 Yet?

e \Want More Performance?

—|A-64 removes performance bottlenecks
—|A-64 is a parallel/scalable architecture

e Need More Than 2 or 3 Gigabytes?
— Technology exponential (feeds on itself)
— Data space growing at ~.7 bits/yr
— Hard to anticipate market 5 years out

Start 1A-64 Development Now

—Intel
Developer

FO rum—




Coding for Portability

e Abstract the OS API
— Extra layer to encapsulate OS calls

e Use a Unified Data Model

— Polymorphic types to support 32 and 64 bit
pProcessors

e Minimize Processor Dependencies
— Minimize Assembly (use intrinsics)

OS and Processor Independent
—Intel :
Developer Coding Is Easy o

FO rum—




Old Hat:
Abstract the OS’ API

e If you support Unix and NT, you probably
already do this

e C++ and OOP have taught us how

e Some APIs already standard: OpenGL

Your App
1/0 Object

st

Developer
FO rurjr_"!'__J




The New Challenge:
Abstracting the Data Model

e Not harder, but perhaps new

e Single source for 32 and 64 bit
processors very desirable:
—Termed Unified Data Model (UDM)

e OS vendors have done it, now It’s your
turn

—Intel
Developer

FO I’LJIT'!'J




—Intel

Developer

Terms to Know

e Code Clean

— Revising source code to be compilable in both 64-bit and
32-bit environments.

e Polymorphic

— One data item having a different type to different
users/viewers. A key source of code-clean problems.

e “Data Bloat”
— Increase in size of data in 64-bit applications.

e Cardinality
— The range of numbers a data item can count.

Topics that could previously be
Ignored in the 32-bit world

FO rum—




Windows & UNIX Use
Different Data Models

e OS vendors tried hard to minimize changes
Windows chose P64, Unix chose LP64

64
32 [

® |f using | ong, you must change it to
maintain platform independence!

— Suggestion: Replace with new type defined in a
<compatible.h> file.

—Intel
Developer See IDF Tracks: Porting to

F.‘::‘_'.’“m.'J Monterey*/Linux* on |A-64

Third party marks are properties of their owners




Use ANSI Types for
Platform Independence

e ANSI* types with universal meaning on
Unix, Win32, Win64:
— New polymorphic integer: intptr_t
— Old polymorphic cardinal type: size t
— Good old 32 bit integers: int
e Try to avolid OS dependent types:
—INT_PTR, SIZE_T, (Windows only types)

ﬁé’l}%mper Reference: ANSI C99 Specification
Forum-] (ISO/IEC 9899:1999)




Code Cleaning Steps

e Switch to the Unified Data Model
— use polymorphic types
e Perform required API tweaks
— typically, small number of semantic changes

(can be automated)

e Compile with code clean switch to catch
problems

— pointer truncations, etc. Not easily automated

Single Source Code for |A-64 / I1A-32
—Intel

Devglupir See IDF Sessions: Porting to Intel
Sering 2000 Win64*/Montery*/Linux* on I1A-64 M




Use a Portability
Header File

[* portatyp.h */
#i f defined(_W N32)
../l stuff related to Wn32
. #if defined(_WIN64)
#1 ncl ude <portatyp.h> ../l Wn32 without Wn64 (regular W n32)
#else /*is _WING64 also */
[ J Used by a/l yOUF ../l 'Wn64 variant of Wn32
_ #endif /* _WING4 ? */

source files #elif defined(__unix) || ...

.../l various UNI Xes

Wl’ite yOUF source #else /[* some other OS */

#error Unhandled OS;

using these standard-  |eteandsmeriys
inspired types vend

Enhance Portability & Readability

—Intel
Developer
Fo rum'_J




Processor Dependencies

e Use significant architectural features
for performance

.. but

e Use pragmas, macros, and intrinsics
to minimize platform dependencies

e Rely on the compiler as much as
possible

—Intel
Developer

FO rum—




Processor Dependencies
(continued)

e SIMD Instructions
— Use intrinsics, encapsulate in a class

e Rely on the compiler for:

— Loop unrolling

—Vectorizing
— Proper insertion of prefetch intrinsics

—Intel
Developer

FO rum_'J




Coding for Performance
and Maintainability

e Modular programming (using DLLs, classes,
and small functions) promotes
maintainability!

e |A-64 promotes modular programming
without the performance loss!

—Intel
Developer

FO I’LJIT'!'J




Special Support for
Modular Programming

e Hardware:

— Register Stack Engine (minimize stack frame save/restore)
— |lots of registers (schedule more operations)

e Software:

— Interprocedural Compiler Optimizations (IPO):

— |let the compiler see more code
— Profile Guided Compiler Optimizations (PGO):

— drive IPO decisions with real performance data
— High Level Optimizations (HLO):

—Intel — loop unrolling, vectorization, prefetch, blocking
Developer
Forum-! Intel




New Compiler Usage Model

e |A-64 offers more opportunity for compiler
optimizations

|IA-32 Model

|A-64 Model

—Intel
Developer

FO rum—




Software Pipelining Is A
BIG Performance Deal

e Dynamic memory (pointers) allows SW to
support wide range of HW configurations!

e Disambiguate pointers with:
— restrict keyword (loop level control, now in ANSI C)
— #pragma optimize(“a”) (function level control)
— No aliasing flag (Oa, file level control)

Help the Compiler Pipeline your Loops

—Intel
Developer

FO I’LJIT'!'J




Using To Allow
Software Pipelining

void VSquare
( double* pX, double* pY,intn)
{for (inti=0; i<n; i++ ) pX[i]=pY[i]* pY[i];}

Use when you know pX and pY
point to distinct objects (i.e., do not
overlap).

—Intel
Developer

FO rum—




Software Pipelining (SWP)

some examples

e SSL Kernel Loop (3 cycle, 9 stage)

26 cycle inner loop Without SWP
With SWP

e MemCopy (1 cycle, 3 stage)
3cycleloop Without SWP
With SWP

Compiler Can Do This For You
—Intel

Developer
Fo rum_'_J

Intel
Labs




Software Pipelining (SWP)

some more examples

e Vector Scale (1 cycle, 18 stage)

18 cycle inner loop Without SWP
With SWP

e Dot Product (1 cycle, 10 stage)

10 cycle inner loop  Without SWP
With SWP

Compiler Can Do This For You
—Intel

Developer
Fo rum_'_J

Intel

Labs




Interprocedural
Optimization — IPO

Compiler looks at entire program:

e Inlining, partial inlining
— HW promotes greater benefits from

e Interprocedural constant propagation
e Circumvent legacy calling convention

e Enables data layout
— petter data alignment and d-cache hits

e Dead call, partial dead call removal

—Intel
Developer

FO rum_'J




Profile Guided
Optimization — PGO

Drive the compilation process with real
performance data:

e Code layout for i-cache

e Static and dynamic profile information

e Improve usage of Resister Stack Engine

e Tune usage of predication and speculation!
e Improve branch prediction

e Inline frequently used functions only

—Intel
Developer

FO rum_'J




Using IPO and PGO

e Availlable now on [A-32

e Greater Iimpact Iis available on |IA-64

e \/ery synergistic optimizations
—Plan to use PGO and IPO together

e Plan to utilize in build and QA cycle

—Intel
Developer See IDF Session: Optimizing I1A-64

Forum-! Software Performance




PGO/IPO Speedups

1.75

1.50

1.25
B Normal (Ox)

. Speedup on IA-32

Speedup on |A-64

i (projected)

0.50

0.25

0

\Y/[OF2\D Compile Rate SPECIint95
Part Regen Rate (icl self-compile)

Developer PGO/IPO Benefits
Forum— Much Greater on |1A64




Mixing |IA-64 and |A-32

e Use standard IPC between IA-64 and
A-32 processes (further details in
packup slide)

e May be useful for dealing with 3™ party
dependencies

—Intel
Developer

FO rum—




Mgt Planning for |A-64

e Start UDM practices Now!
— Don’t wait for |A -64 release

e QA stress tests much harder/longer:

— Fatter machines, bigger datasets, longer runs

— New level of functionality testing (never had a 5
GB assembly to test)

— Plan to allow PGO — dual build cycle

e Delivery plans
— New binary (new CD? Or coexist with IA-327?)
—Intel

Developer
Fo rum'_J

Intel
Labs




For More Information

Intel |A-64 information:

e Primary portal:
e “|A -64 Application Developer’'s Guide,” Literature #245188  -00
e |IA-64 Computer Based Tutorials

Other IA-64 Information:

e IDF Tracks: Porting to Win64*/Monterey*/Linux* on IA  -64
e Unified Data Model Rationale:

—Intel
Developer
Fo rum'_J




What I1s an Intel®

Application Solution
Center (ASC)?

ASC Is a premier technical center that offers
software developers consultation services,

tools, and support for server and workstation
applications performance-tuning and porting
assistance on current and future Intel®
Architecture -based systems.

—Intel
Developer

FO I’LJIT'!'J




ASC Strategic Importance
for |IA-64

e ASCs provide critical to
customers during transition to 1A-64

e ASCs provide to SDVs for customers
to execute, debug IA-64 software

e ASCs offer software developers a
with leading applications built to take
advantage of all IA-64 robust features

—Intel
Developer

FO rum_'J




Call to Action

using a Unified Data Model
a plan to address key issues

through an |A-64
Application Solution Center

—Intel
Developer

FO rum—




Intel
Developer

Forum
Spring 2000




—Intel
Developer

FO rum—




COM or RPC for Mixed
Binary Communication on
Win64

e Use COM or RPC (which COM is built on) for
Interprocess communications

e Move IA-32 DLLs to another process

e Easy to do. Can be automated.
e Use only when RPC overhead is well amortized

RPC
- >
COM

el Ref: Search for “64 -bit and 32 -bit Processes” in
Developer MSDN/Platform SDK/Win64 Programming
Forum— Preview




