
IA-64 Application Instruction Set Architecture Guide

Revision 1.0



HP/Intel

IA-64 Application ISA Guide 1.0

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WAR-
RANTY OF MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR ANY PARTICULAR PURPOSE, OR
ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR SAMPLE.

Information in this document is provided in connection with Intel/Hewlett-Packard products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel/Hewlett-Packard's Terms and Conditions of Sale for such products, Intel/Hewlett-Packard assumes no liability what-
soever, and Intel/Hewlett-Packard disclaims any express or implied warranty, relating to sale and/or use of Intel/Hewlett-
Packard products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringe-
ment of any patent, copyright or other intellectual property right. Intel/Hewlett-Packard products are not intended for use
in medical, life saving, or life sustaining applications. 

Intel/Hewlett-Packard may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined."
Intel/Hewlett-Packard reserves these for future definition and shall have no responsibility whatsoever for conflicts or
incompatibilities arising from future changes to them.

IA-64 processors may contain design defects or errors known as errata which may cause the product to deviate from pub-
lished specifications. Current characterized errata are available on request.

Copyright © Intel Corporation / Hewlett-Packard Company, 1999

*Third-party brands and names are the property of their respective owners.



HP/Intel Table of Contents iii

IA-64 Application ISA Guide 1.0

Table of Contents

1 About the IA-64 Application ISA Guide   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-1
1.1 Overview of IA-64 Application Instruction Set Architecture (ISA) Guide.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-1
1.2 Terminology.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 1-1

2 Introduction to the IA-64 Processor Architecture  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-1
2.1 IA-64 Operating Environments .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-1
2.2 Instruction Set Transition Model Overview.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-2
2.3 PA-RISC Compatibility .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-2
2.4 IA-64 Instruction Set Features   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-2
2.5 Instruction Level Parallelism  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-3
2.6 Compiler to Processor Communication .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-3
2.7 Speculation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-3

2.7.1 Control Speculation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-3
2.7.2 Data Speculation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-4

2.8 Predication.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-4
2.9 Register Stack .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-5
2.10 Branching  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-5
2.11 Register Rotation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-5
2.12 Floating-point Architecture .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-5
2.13 Multimedia Support .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 2-6

3 IA-64 Execution Environment .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-1
3.1 Application Register State.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-1

3.1.1 Reserved and Ignored Registers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-1
3.1.2 General Registers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-3
3.1.3 Floating-Point Registers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-3
3.1.4 Predicate Registers   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-3
3.1.5 Branch Registers.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-3
3.1.6 Instruction Pointer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-3
3.1.7 Current Frame Marker.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-4
3.1.8 Application Registers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-4
3.1.9 Performance Monitor Data Registers (PMD) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-8
3.1.10 User Mask (UM).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-8
3.1.11 Processor Identification Registers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-8

3.2 Memory .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-10
3.2.1 Application Memory Addressing Model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-10
3.2.2 Addressable Units and Alignment.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-10
3.2.3 Byte Ordering  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-10

3.3 Instruction Encoding Overview .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-11
3.4 Instruction Sequencing  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-12

4 IA-64 Application Programming Model   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-1
4.1 Register Stack .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-1

4.1.1 Register Stack Operation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-1
4.1.2 Register Stack Instructions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-3

4.2 Integer Computation Instructions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-3
4.2.1 Arithmetic Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-3
4.2.2 Logical Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-4
4.2.3 32-Bit Addresses and Integers.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-4
4.2.4 Bit Field and Shift Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-4
4.2.5 Large Constants  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-5

4.3 Compare Instructions and Predication   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-5
4.3.1 Predication.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-6
4.3.2 Compare Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-6
4.3.3 Compare Types  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-6
4.3.4 Predicate Register Transfers.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-8

4.4 Memory Access Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-8



iv Table of Contents HP/Intel

IA-64 Application ISA Guide 1.0

4.4.1 Load Instructions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-9
4.4.2 Store Instructions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-9
4.4.3 Semaphore Instructions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-10
4.4.4 Control Speculation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-10
4.4.5 Data Speculation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-12
4.4.6 Memory Hierarchy Control and Consistency   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-16
4.4.7 Memory Access Ordering  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-18

4.5 Branch Instructions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-19
4.5.1 Modulo-Scheduled Loop Support  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-20
4.5.2 Branch Prediction Hints  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-22

4.6 Multimedia Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-23
4.6.1 Parallel Arithmetic .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-23
4.6.2 Parallel Shifts.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-24
4.6.3 Data Arrangement  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-24

4.7 Register File Transfers .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-24
4.8 Character Strings and Population Count .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-25

4.8.1 Character Strings .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-25
4.8.2 Population Count .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-26

5 IA-64 Floating-point Programming Model   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-1
5.1 Data Types and Formats .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-1

5.1.1 Real Types  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-1
5.1.2 Floating-point Register Format   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-1
5.1.3 Representation of Values in Floating-point Registers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-2

5.2 Floating-point Status Register  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-4
5.3 Floating-point Instructions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-6

5.3.1 Memory Access Instructions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-6
5.3.2 Floating-Point Register to/from General Register Transfer Instructions   .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-11
5.3.3 Arithmetic Instructions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-12
5.3.4 Non-Arithmetic Instructions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-13
5.3.5 Floating-point Status Register (FPSR) Status Field Instructions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-14
5.3.6 Integer Multiply and Add Instructions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-14

5.4 Additional IEEE Considerations .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-15
5.4.1 Definition of SNaNs, QNaNs, and Propagation of NaNs  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-15
5.4.2 IEEE Standard Mandated Operations Deferred to Software .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-15
5.4.3 Additions beyond the IEEE Standard   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-15

6 IA-64 Instruction Reference   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-1
6.1 Instruction Page Conventions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-1
6.2 Instruction Descriptions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-2

A Instruction Sequencing Considerations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-1
A.1 RAW Ordering Exceptions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-2
A.2 WAW Ordering Exceptions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-3
A.3 WAR Ordering Exceptions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . A-3

B IA-64 Pseudo-Code Functions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  B-1
C IA-64 Instruction Formats  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-1

C.1 Format Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  C-2
C.2 A-Unit Instruction Encodings .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  C-8

C.2.1 Integer ALU  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  C-8
C.2.2 Integer Compare  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-10
C.2.3 Multimedia .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-13

C.3 I-Unit Instruction Encodings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-16
C.3.1 Multimedia and Variable Shifts  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-16
C.3.2 Integer Shifts .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-20
C.3.3 Test Bit .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-22
C.3.4 Miscellaneous I-Unit Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-23
C.3.5 GR/BR Moves  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-24
C.3.6 GR/Predicate/IP Moves   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-24
C.3.7 GR/AR Moves (I-Unit).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-25



HP/Intel Table of Contents v

IA-64 Application ISA Guide 1.0

C.3.8 Sign/Zero Extend/Compute Zero Index .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-25
C.4 M-Unit Instruction Encodings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-26

C.4.1 Loads and Stores.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-26
C.4.2 Line Prefetch   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-38
C.4.3 Semaphores  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-39
C.4.4 Set/Get FR .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-39
C.4.5 Speculation and Advanced Load Checks  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-40
C.4.6 Cache/Synchronization/RSE/ALAT.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-41
C.4.7 GR/AR Moves (M-Unit)   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-42
C.4.8 Miscellaneous M-Unit Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-42
C.4.9 Memory Management .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-43

C.5 B-Unit Instruction Encodings   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-45
C.5.1 Branches .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-45
C.5.2 Nop   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-48
C.5.3 Miscellaneous B-Unit Instructions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-49

C.6 F-Unit Instruction Encodings   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-49
C.6.1 Arithmetic .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-51
C.6.2 Parallel Floating-point Select  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-52
C.6.3 Compare and Classify .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-52
C.6.4 Approximation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-53
C.6.5 Minimum/Maximum and Parallel Compare.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-54
C.6.6 Merge and Logical.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-54
C.6.7 Conversion.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-55
C.6.8 Status Field Manipulation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-55
C.6.9 Miscellaneous F-Unit Instructions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-56

C.7 X-Unit Instruction Encodings  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-56
C.7.1 Miscellaneous X-Unit Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-56
C.7.2 Move Long Immediate64   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-57

C.8 Immediate Formation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-57



vi List of Figures HP/Intel

IA-64 Application ISA Guide 1.0

List of Figures

Figure 3-1. Application Register Model  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-2
Figure 3-2. Frame Marker Format  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-4
Figure 3-3. RSC Format  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-6
Figure 3-4. BSP Register Format.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-6
Figure 3-5. BSPSTORE Register Format   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-6
Figure 3-6. RNAT Register Format   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-6
Figure 3-7. PFS Format   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-7
Figure 3-8. Epilog Count Register Format .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-8
Figure 3-9. User Mask Format .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-8
Figure 3-10. CPUID Registers 0 and 1 – Vendor Information  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-9
Figure 3-11. CPUID Register 2 – Processor Serial Number   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-9
Figure 3-12. CPUID Register 3 – Version Information .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-9
Figure 3-13. CPUID Register 4 – General Features/Capability Bits   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-9
Figure 3-14. Little-endian Loads   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-10
Figure 3-15. Big-endian Loads   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-11
Figure 3-16. Bundle Format .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-11
Figure 4-1. Register Stack Behavior on Procedure Call and Return .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-2
Figure 4-2. Data Speculation Recovery Using ld.c   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-13
Figure 4-3. Data Speculation Recovery Using chk.a.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-14
Figure 4-4. Memory Hierarchy.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-16
Figure 4-5. Allocation Paths Supported in the Memory Hierarchy  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-17
Figure 5-1. Floating-point Register Format   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-2
Figure 5-2. Floating-point Status Register Format .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-4
Figure 5-3. Floating-point Status Field Format   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-4
Figure 5-4. Memory to Floating-point Register Data Translation – Single Precision .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-7
Figure 5-5. Memory to Floating-point Register Data Translation – Double Precision   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-8
Figure 5-6. Memory to Floating-point Register Data Translation – Double Extended, Integer and Fill   .  .  .  .  .  .  5-9
Figure 5-7. Floating-point Register to Memory Data Translation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-10
Figure 5-8. Spill/Fill and Double-Extended (80-bit) Floating-point Memory Formats  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-11
Figure 6-1. Add Pointer   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-4
Figure 6-2. Stack Frame  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-5
Figure 6-3. Operation of br.ctop and br.cexit   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-10
Figure 6-4. Operation of br.wtop and br.wexit .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-11
Figure 6-5. Deposit Example .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-27
Figure 6-6. Extract Example .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-28
Figure 6-7. Floating-point Merge Negative Sign Operation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-49
Figure 6-8. Floating-point Merge Sign Operation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-49
Figure 6-9. Floating-point Merge Sign and Exponent Operation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-49
Figure 6-10. Floating-point Mix Left  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-52
Figure 6-11. Floating-point Mix Right   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-52
Figure 6-12. Floating-point Mix Left-Right .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-52
Figure 6-13. Floating-point Pack   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-63
Figure 6-14. Floating-point Merge Negative Sign Operation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-73
Figure 6-15. Floating-point Merge Sign Operation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-73
Figure 6-16. Floating-point Merge Sign and Exponent Operation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-73
Figure 6-17. Floating-point Swap .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-95
Figure 6-18. Floating-point Swap Negate Left or Right.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-95
Figure 6-19. Floating-point Sign Extend Left .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-97
Figure 6-20. Floating-point Sign Extend Right  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-97
Figure 6-21. Function of getf.exp  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-99
Figure 6-22. Function of getf.sig   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-99
Figure 6-23. Mix Example.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-114
Figure 6-24. Mux1 Operation (8-bit elements)  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-127
Figure 6-25. Mux2 Examples (16-bit elements).  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-128



HP/Intel List of Figures vii

IA-64 Application ISA Guide 1.0

Figure 6-26. Pack Operation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-132
Figure 6-27. Parallel Add Examples  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-134
Figure 6-28. Parallel Average Example   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-137
Figure 6-29. Parallel Average with Round Away from Zero Example.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-138
Figure 6-30. Parallel Average Subtract Example .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-140
Figure 6-31. Parallel Compare Example  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-142
Figure 6-32. Parallel Maximum Example   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-144
Figure 6-33. Parallel Minimum Example .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-145
Figure 6-34. Parallel Multiply Operation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-146
Figure 6-35. Parallel Multiply and Shift Right Operation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-147
Figure 6-36. Parallel Sum of Absolute Difference Example .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-149
Figure 6-37. Parallel Shift Left Example .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-150
Figure 6-38. Parallel Subtract Example.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-154
Figure 6-39. Function of setf.exp .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-158
Figure 6-40. Function of setf.sig  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-158
Figure 6-41. Shift Left and Add Pointer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-162
Figure 6-42. Shift Right Pair  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-164
Figure 6-43. Unpack Operation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-178
Figure C-1. Bundle Format   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-1



viii List of Tables HP/Intel

IA-64 Application ISA Guide 1.0

List of Tables

Table 2-1. IA-64 Processor Operating Environments .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  2-1
Table 3-1. Reserved and Ignored Registers and Fields  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-2
Table 3-2. Frame Marker Field Description.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-4
Table 3-3. Application Registers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-5
Table 3-4. RSC Field Description .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-6
Table 3-5. PFS Field Description  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-7
Table 3-6. User Mask Field Descriptions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-8
Table 3-7. CPUID Register 3 Fields.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  3-9
Table 3-8. Relationship Between Instruction Type and Execution Unit Type  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-11
Table 3-9. Template Field Encoding and Instruction Slot Mapping   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 3-12
Table 4-1. Architectural Visible State Related to the Register Stack .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-3
Table 4-2. Register Stack Management Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-3
Table 4-3. Integer Arithmetic Instructions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-4
Table 4-4. Integer Logical Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-4
Table 4-5. 32-bit Pointer and 32-bit Integer Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-4
Table 4-6. Bit Field and Shift Instructions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-5
Table 4-7. Instructions to Generate Large Constants  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-5
Table 4-8. Compare Instructions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-6
Table 4-9. Compare Type Function .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-7
Table 4-10. Compare Outcome with NaT Source Input  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-7
Table 4-11. Instructions and Compare Types Provided  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-7
Table 4-12. Memory Access Instructions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  4-9
Table 4-13. State Relating to Memory Access  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-10
Table 4-14. State Related to Control Speculation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-12
Table 4-15. Instructions Related to Control Speculation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-12
Table 4-16. State Relating to Data Speculation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-16
Table 4-17. Instructions Relating to Data Speculation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-16
Table 4-18. Locality Hints Specified by Each Instruction Class .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-17
Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-18
Table 4-20. Memory Ordering Rules .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-19
Table 4-21. Memory Ordering Instructions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-19
Table 4-22. Branch Types   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-20
Table 4-23. State Relating to Branching  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-20
Table 4-24. Instructions Relating to Branching   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-20
Table 4-25. Instructions that Modify RRBs   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-21
Table 4-26. Whether Prediction Hint on Branches .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-22
Table 4-27. Sequential Prefetch Hint on Branches .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-22
Table 4-28. Predictor Deallocation Hint  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-22
Table 4-29. Parallel Arithmetic Instructions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-23
Table 4-30. Parallel Shift Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-24
Table 4-31. Parallel Data Arrangement Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-24
Table 4-32. Register File Transfer Instructions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-25
Table 4-33. String Support Instructions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 4-26
Table 5-1. IEEE Real-Type Properties   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-1
Table 5-2. Floating-point Register Encodings   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-2
Table 5-3. Floating-point Status Register Field Description  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-4
Table 5-4. Floating-point Status Register’s Status Field Description   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-4
Table 5-5. Floating-point Rounding Control Definitions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-5
Table 5-6. Floating-point Computation Model Control Definitions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-5
Table 5-7. Floating-point Memory Access Instructions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  5-6
Table 5-8. Floating-point Register Transfer Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-11
Table 5-9. General Register (Integer) to Floating-point Register Data Translation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-12
Table 5-10. Floating-point Register to General Register (Integer) Data Translation.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-12
Table 5-11. Floating-point Instruction Status Field Specifier Definition.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-12



HP/Intel List of Tables ix

IA-64 Application ISA Guide 1.0

Table 5-12. Floating-point Arithmetic Instructions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-12
Table 5-13. Floating-point Pseudo-Operations   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-13
Table 5-14. Non-Arithmetic Floating-point Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-13
Table 5-15. FPSR Status Field Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-14
Table 5-16. Integer Multiply and Add Instructions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 5-14
Table 6-1. Instruction Page Description  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-1
Table 6-2. Instruction Page Font Conventions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-1
Table 6-3. Register File Notation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-1
Table 6-4. C Syntax Differences  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-2
Table 6-5. Branch Types  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-8
Table 6-6. Branch Whether Hint  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-11
Table 6-7. Sequential Prefetch Hint   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-11
Table 6-8. Branch Cache Deallocation Hint  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-12
Table 6-9. ALAT Clear Completer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-16
Table 6-10. Comparison Types   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-19
Table 6-11. 64-bit Comparison Relations for Normal and unc Compares.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-20
Table 6-12. 64-bit Comparison Relations for Parallel Compares  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-20
Table 6-13. Immediate Range for 32-bit Compares .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-22
Table 6-14. Memory Compare and Exchange Size  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-24
Table 6-15. Compare and Exchange Semaphore Types .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-24
Table 6-16. Result Ranges for czx .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-26
Table 6-17. Specified pc Mnemonic Values .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-30
Table 6-18. sf Mnemonic Values   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-30
Table 6-19. Floating-point Class Relations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-37
Table 6-20. Floating-point Classes.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-37
Table 6-21. Floating-point Comparison Types   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-40
Table 6-22. Floating-point Comparison Relations .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-40
Table 6-23. Fetch and Add Semaphore Types .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-45
Table 6-24. Floating-point Parallel Comparison Results   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-66
Table 6-25. Floating-point Parallel Comparison Relations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . 6-66
Table 6-26. sz Completers  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-101
Table 6-27. Load Types .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-101
Table 6-28. Load Hints.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-102
Table 6-29. fsz Completers.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-105
Table 6-30. FP Load Types  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-105
Table 6-31. lftype Mnemonic Values   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-110
Table 6-32. lfhint Mnemonic Values.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-110
Table 6-33. Indirect Register File Mnemonics.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-122
Table 6-34. Mux Permutations for 8-bit Elements.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-127
Table 6-35. Pack Saturation Limits  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-132
Table 6-36. Parallel Add Saturation Completers   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-134
Table 6-37. Parallel Add Saturation Limits  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-134
Table 6-38. Pcmp Relations  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-142
Table 6-39. PMPYSHR Shift Options .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-147
Table 6-40. Parallel Subtract Saturation Completers   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-154
Table 6-41. Parallel Subtract Saturation Limits  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-154
Table 6-42. Store Types  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-166
Table 6-43. Store Hints   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-166
Table 6-44. xsz Mnemonic Values .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-171
Table 6-45. Test Bit Relations for Normal and unc tbits   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-173
Table 6-46. Test Bit Relations for Parallel tbits .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-173
Table 6-47. Test NaT Relations for Normal and unc tnats   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-175
Table 6-48. Test NaT Relations for Parallel tnats  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-175
Table 6-49. Memory Exchange Size .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  6-180
Table B-1. Pseudo-Code Functions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .B-1
Table C-1. Relationship Between Instruction Type and Execution Unit Type .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-1
Table C-2. Template Field Encoding and Instruction Slot Mapping .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-2



x List of Tables HP/Intel

IA-64 Application ISA Guide 1.0

Table C-3. Major Opcode Assignments .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  C-3
Table C-4. Instruction Format Summary  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  C-4
Table C-5. Instruction Field Color Key  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  C-6
Table C-6. Instruction Field Names .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  C-7
Table C-7. Special Instruction Notations   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  C-7
Table C-8. Integer ALU 2-bit+1-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  C-8
Table C-9. Integer ALU 4-bit+2-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  C-8
Table C-10. Integer Compare Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-10
Table C-11. Integer Compare Immediate Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-10
Table C-12. Multimedia ALU 2-bit+1-bit Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-13
Table C-13. Multimedia ALU Size 1 4-bit+2-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-14
Table C-14. Multimedia ALU Size 2 4-bit+2-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-14
Table C-15. Multimedia ALU Size 4 4-bit+2-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-15
Table C-16. Multimedia and Variable Shift 1-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-16
Table C-17. Multimedia Max/Min/Mix/Pack/Unpack Size 1 2-bit Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-16
Table C-18. Multimedia Multiply/Shift/Max/Min/Mix/Pack/Unpack Size 2 2-bit Opcode Extensions .  .  .  .  .  .  .C-17
Table C-19. Multimedia Shift/Mix/Pack/Unpack Size 4 2-bit Opcode Extensions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-17
Table C-20. Variable Shift 2-bit Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-18
Table C-21. Integer Shift/Test Bit/Test NaT 2-bit Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-20
Table C-22. Deposit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-20
Table C-23. Test Bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-22
Table C-24. Misc I-Unit 3-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-23
Table C-25. Misc I-Unit 6-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-23
Table C-26. Integer Load/Store/Semaphore/Get FR 1-bit Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-26
Table C-27. Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-26
Table C-28. Integer Load/Store Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-26
Table C-29. Integer Load +Reg Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-27
Table C-30. Integer Load/Store +Imm Opcode Extensions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-27
Table C-31. Semaphore/Get FR Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-28
Table C-32. Floating-point Load/Store/Lfetch Opcode Extensions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-28
Table C-33. Floating-point Load/Lfetch +Reg Opcode Extensions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-29
Table C-34. Floating-point Load/Store/Lfetch +Imm Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-29
Table C-35. Floating-point Load Pair/Set FR Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-30
Table C-36. Floating-point Load Pair +Imm Opcode Extensions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-30
Table C-37. Load Hint Completer   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-30
Table C-38. Store Hint Completer   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-30
Table C-39. Line Prefetch Hint Completer  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-38
Table C-40. Opcode 0 Memory Management 3-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-43
Table C-41. Opcode 0 Memory Management 4-bit+2-bit Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-44
Table C-42. Opcode 1 Memory Management 3-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-44
Table C-43. Opcode 1 Memory Management 6-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-44
Table C-44. IP-Relative Branch Types  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-45
Table C-45. Indirect/Miscellaneous Branch Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-46
Table C-46. Indirect Branch Types  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-46
Table C-47. Indirect Return Branch Types  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-46
Table C-48. Sequential Prefetch Hint Completer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-46
Table C-49. Branch Whether Hint Completer   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-47
Table C-50. Indirect Call Whether Hint Completer.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-47
Table C-51. Branch Cache Deallocation Hint Completer.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-47
Table C-52. Indirect Predict/Nop Opcode Extensions   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-48
Table C-53. Miscellaneous Floating-point 1-bit Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-49
Table C-54. Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-50
Table C-55. Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-50
Table C-56. Reciprocal Approximation 1-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-50
Table C-57. Floating-point Status Field Completer .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-51
Table C-58. Floating-point Arithmetic 1-bit Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-51
Table C-59. Fixed-point Multiply Add and Select Opcode Extensions.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .C-51



HP/Intel List of Tables xi

IA-64 Application ISA Guide 1.0

Table C-60. Floating-point Compare Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-52
Table C-61. Floating-point Class 1-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-52
Table C-62. Misc X-Unit 3-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-56
Table C-63. Misc X-Unit 6-bit Opcode Extensions  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-56
Table C-64. Move Long 1-bit Opcode Extensions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-57
Table C-65. Immediate Formation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . C-57



xii List of Tables HP/Intel

IA-64 Application ISA Guide 1.0



HP/Intel About the IA-64 Application ISA Guide 1-1

IA-64 Application ISA Guide 1.0

1 About the IA-64 Application ISA Guide

The Intel Architecture – 64-bit (IA-64) is a unique combination of innovative features, such as explicit parallelism, predi-
cation, speculation and much more. The architecture is designed to be highly scalable to fill the ever increasing perfor-
mance  requirements of various server and workstation market segments. The IA-64 architecture features a revolutionary
64-bit instruction set architecture (ISA) which applies a new processor architecture technology called EPIC, or Explicitly
Parallel Instruction Computing.  A key feature of the IA-64 architecture is IA-32 instruction set compatibility. 

This document provides a comprehensive description of IA-64 architecture exposed to application software. This includes
information on application level resources (registers, etc), application environment, detailed application (non-privileged)
instruction description, format and encoding.

1.1 Overview of IA-64 Application Instruction Set Architecture (ISA) 
Guide

Chapter 1, “About the IA-64 Application ISA Guide”. Gives an overview of this guide.

Chapter 2, “Introduction to the IA-64 Processor Architecture”. Provides an overview of key features of IA-64 architec-
ture.

Chapter 3, “IA-64 Execution Environment”. Describes the IA-64 application architectural state (registers, memory, etc).

Chapter 4, “IA-64 Application Programming Model”. Describes the IA-64 architecture from the perspective of the appli-
cation programmer. IA-64 instructions are grouped into related functions and an overview of their behavior is given.

Chapter 5, “IA-64 Floating-point Programming Model”. This chapter provides a description of IA-64 floating-point regis-
ters, data types and formats and floating-point instructions.

Chapter 6, “IA-64 Instruction Reference”. Provides detailed description of IA-64 application instructions, operation, and
instruction format.

Appendix A, "Instruction Sequencing Considerations". Describes the details of instruction sequencing in IA-64 architec-
ture.

Appendix B, "IA-64 Pseudo-Code Functions". Describes pseudo-code functions used in Chapter 6, “IA-64 Instruction
Reference”.

Appendix C, "IA-64 Instruction Formats". Describes the encoding and instruction format of instructions covered in Chap-
ter 6, “IA-64 Instruction Reference”.

1.2 Terminology
The following definitions are for terms related to the IA-64 architecture and will be used in the rest of this document:

• Instruction Set Architecture (ISA) – Defines application and system level resources. These resources include
instructions and registers.

• IA-64 Architecture – IA-64 defines the architectural extensions defined in the new ISA including 64-bit instruction
capabilities, new performance-enhancing features and support for IA-32 instruction set.

• IA-32 Architecture – The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture Software Devel-
oper’s Manual.

• IA-64 Processor – An Intel 64-bit processor that implements both the IA-64 and the IA-32 instruction sets.



1-2 About the IA-64 Application ISA Guide HP/Intel

IA-64 Application ISA Guide 1.0

• IA-64 System Environment – IA-64 operating system privileged environment that supports the execution of both
IA-64 and IA-32 code.

• IA-32 System Environment – Operating system privileged environment and resources as defined by the Intel Archi-
tecture Software Developer’s Manual. Resources include virtual paging, control registers, debugging, performance
monitoring, machine checks, and the set of privileged instructions.



HP/Intel Introduction to the IA-64 Processor Architecture 2-1

IA-64 Application ISA Guide 1.0

2 Introduction to the IA-64 Processor Architecture

The IA-64 architecture was designed to overcome the performance limitations of traditional architectures and provide
maximum headroom for the future. To achieve this, IA-64 was designed with an array of innovative features to extract
greater instruction level parallelism including: speculation, predication, large register files, a register stack, advanced
branch architecture, and many others. 64-bit memory addressability was added to meet the increasing large memory foot-
print requirements of data warehousing, E-business, and other high performance server and workstation applications. 

The IA-64 architecture also provides binary compatibility with the IA-32 instruction set. IA-64 processors can run IA-32
applications on an IA-64 operating system that supports execution of IA-32 applications. IA-64 processors can run IA-32
application binaries on IA-32 legacy operating systems assuming the platform and firmware support exists in the system.
The IA-64 architecture also provides the capability to support mixed IA-32 and IA-64 code execution.

The IA-64 architecture was designed with the understanding that compatibility with IA-32 and PA-RISC is a key require-
ment. Significant effort has been applied in the architectural definition to maximize IA-64 scalability, performance and
architectural longevity. As a result, IA-64 has been designed with an array of performance optimization techniques that
extend the architecture to 64-bits and enable higher performance. These features include speculation, predication, large
register files, a register stack, and an advanced branch architecture and are designed to extract greater instruction level
parallelism. 

2.1 IA-64 Operating Environments
The IA-64 architecture supports two operating system environments: 

• IA-32 System Environment: supports IA-32 32-bit operating systems, and 

• IA-64 System Environment: supports IA-64 operating systems. 

The architectural model also supports a mixture of IA-32 and IA-64 applications within a single IA-64 operating system.
Table 2-1 defines the major operating environments supported on IA-64 processors.

Table 2-1. IA-64 Processor Operating Environments

System 
Environment

Application 
Environment

Usage

IA-32 IA-32 Instruction 
Set

IA-32 Protected Mode, Real Mode and Virtual 8086 
Mode application and operating system environment. 
Compatible with IA-32 Pentium®, Pentium Pro and Pen-
tium II processors.

IA-64 IA-32 Protected 
Mode

IA-32 Protected Mode applications in the IA-64 system 
environment, if supported by OS.

IA-32 Real Mode IA-32 Real Mode applications in the IA-64 system envi-
ronment, if supported by OS.

IA-32 Virtual 
Mode

IA-32 Virtual 86 Mode applications in the IA-64 system 
environment, if supported by OS.

IA-64 Instruction 
Set

IA-64 Applications on IA-64 operating systems.



2-2 Introduction to the IA-64 Processor Architecture HP/Intel

IA-64 Application ISA Guide 1.0

2.2 Instruction Set Transition Model Overview
Within the IA-64 System Environment, the processor can execute either IA-32 or IA-64 instructions at any time. Three
special instructions and interruptions are defined to transition the processor between the IA-32 and the IA-64 instruction
set.

• jmpe (IA-32 instruction) Jump to an IA-64 target instruction, and change the instruction set to IA-64.

• br.ia (IA-64 instruction) IA-64 branch to an IA-32 target instruction, and change the instruction set to IA-32.

• Interruptions transition the processor to the IA-64 instruction set for handling all interruption conditions.

• rfi (IA-64 instruction) “return from interruption” is defined to return to an IA-32 or IA-64 instruction.

The jmpe and br.ia instructions provide a low overhead mechanism to transfer control between the instruction sets.
These instructions are typically incorporated into “thunks” or “stubs” that implement the required call linkage and calling
conventions to call dynamic or statically linked libraries. 

2.3 PA-RISC Compatibility
Binary compatibility between PA-RISC and IA-64 is handled through dynamic object code translation. This process is
very efficient because there is such a high degree of correspondence between PA-RISC and IA-64 instructions. HP’s per-
formance studies show that on average the dynamic translator only spends 1-2% of its time in translation with 98-99% of
the time spent executing native code. The dynamic translator actually performs optimizations on the translated code to
take advantage of IA-64’s wider instructions, and performance features such as predication, speculation and large register
sets. In addition, if an application has been aggressively optimized for PA-RISC, some of the benefit of the optimizations
will carry over to IA-64. In fact, an aggressively optimized PA-RISC application may actually perform faster on IA-64
using the dynamic translator than the same application recompiled at a low level of optimization on an IA-64 compiler. Of
course, the best performance will result from a high level of optimization using a good native compiler.

The dynamic translator is designed to run all non-kernel intrusive code, handling both 64-bit and 32-bit instructions. This
means operating systems and device drivers typically would not be supported, but all other applications will run. HP’s
dynamic translator will be bundled with all versions of HP-UX sold for IA-64 systems. When HP-UX encounters code
compiled for PA-RISC, it will automatically and transparently invoke the dynamic translator which will allow the code to
run on IA-64 without any intervention.   Correctness of the dynamic translator has been verified with the same testing reg-
imen used to validate PA-RISC processors.

2.4 IA-64 Instruction Set Features
IA-64 incorporates architectural features which enable high sustained performance and remove barriers to further perfor-
mance increases. The IA-64 architecture is based on the following principles: 

• Explicit parallelism

— Mechanisms for synergy between the compiler and the processor

— Massive resources to take advantage of instruction level parallelism

— 128 Integer and Floating point registers, 64 1-bit predicate registers, 8 branch registers

— Support for many execution units and memory ports

• Features that enhance instruction level parallelism

— Speculation (which minimizes memory latency impact).

— Predication (which removes branches).

— Software pipelining of loops with low overhead

— Branch prediction to minimize the cost of branches



HP/Intel Introduction to the IA-64 Processor Architecture 2-3

IA-64 Application ISA Guide 1.0

• Focussed enhancements for improved software performance

— Special support for software modularity

— High performance floating-point architecture

— Specific multimedia instructions

The following sections highlight these important features of IA-64.

2.5 Instruction Level Parallelism
Instruction Level Parallelism (ILP) is the ability to execute multiple instructions at the same time. The IA-64 architecture
allows issuing of independent instructions in bundles (three instructions per bundle) for parallel execution and can issue
multiple bundles per clock. Supported by a large number of parallel resources such as large register files and multiple exe-
cution units, the IA-64 architecture enables the compiler to manage work in progress and schedule simultaneous threads
of computation. 

The IA-64 architecture incorporates mechanisms to take advantage of ILP. Compilers for traditional architectures are
often limited in their ability to utilize speculative information because it cannot always be guaranteed to be correct. The
IA-64 architecture enables the compiler to exploit speculative information without sacrificing the correct execution of an
application (see “Speculation” on page 2-3). In traditional architectures, procedure calls limit performance since registers
need be spilled and filled. IA-64 enables procedures to communicate register usage to the processor. This allows the pro-
cessor to schedule procedure register operations even when there is a low degree of ILP. See “Register Stack” on page 2-5.

2.6 Compiler to Processor Communication
The IA-64 architecture provides mechanisms, such as instruction templates, branch hints, and cache hints to enable the
compiler to communicate compile-time information to the processor. In addition, IA-64 allows compiled code to manage
the processor hardware using run-time information. These communication mechanisms are vital in minimizing the perfor-
mance penalties associated with branches and cache misses.

Every memory load and store in IA-64 has a 2-bit cache hint field in which the compiler encodes its prediction of the spa-
tial and/or temporal locality of the memory area being accessed. An IA-64 processor can use this information to determine
the placement of cache lines in the cache hierarchy. This leads to better utilization of the hierarchy since the relative cost
of cache misses continues to grow.

2.7 Speculation
There are two types of speculation: control and data. In both control and data speculation, the compiler exposes ILP by
issuing an operation early and removing the latency of this operation from the critical path. The compiler will issue an
operation speculatively if it is reasonably sure that the speculation will be beneficial. To be beneficial two conditions
should hold: it must be statistically frequent enough that the probability it will require recovery is small, and issuing the
operation early should expose further ILP-enhancing optimization. Speculation is one of the primary mechanisms for the
compiler to exploit statistical ILP by overlapping, and therefore tolerating, the latencies of operations.

2.7.1 Control Speculation

Control speculation is the execution of an operation before the branch which guards it. Consider the code sequence below:

if (a>b) load(ld_addr1,target1)
else load(ld_addr2, target2)

If the operation load(ld_addr1,target1)were to be performed prior to the determination of (a>b), then the operation
would be control speculative with respect to the controlling condition (a>b). Under normal execution, the operation
load(ld_addr1,target1) may or may not execute. If the new control speculative load causes an exception then the
exception should only be serviced if (a>b) is true. When the compiler uses control speculation it leaves a check operation
at the original location. The check verifies whether an exception has occurred and if so it branches to recovery code. The
code sequence above now translates into:



2-4 Introduction to the IA-64 Processor Architecture HP/Intel

IA-64 Application ISA Guide 1.0

/* off critical path */
sload(ld_addr1,target1)
sload(ld_addr2,target2)

/* other operations including uses of target1/target2 */
if (a>b) scheck(target1,recovery_addr1)
else scheck(target2, recovery_addr2)

2.7.2 Data Speculation

Data speculation is the execution of a memory load prior to a store that preceded it and that may potentially alias with it.
Data speculative loads are also referred to as “advanced loads”. Consider the code sequence below:

store(st_addr,data)
load(ld_addr,target)
use(target)

The process of determining at compile time the relationship between memory addresses is called disambiguation. In the
example above, if ld_addr and st_addr cannot be disambiguated, and if the load were to be performed prior to the store,
then the load would be data speculative with respect to the store. If memory addresses overlap during execution, a data-
speculative load issued before the store might return a different value than a regular load issued after the store. Therefore
analogous to control speculation, when the compiler data speculates a load, it leaves a check instruction at the original
location of the load. The check verifies whether an overlap has occurred and if so it branches to recovery code. The code
sequence above now translates into:

/* off critical path */
aload(ld_addr,target)

/* other operations including uses of target */
store(st_addr,data)
acheck(target,recovery_addr)
use(target)

2.8 Predication
Predication is the conditional execution of instructions. Conditional execution is implemented through branches in tradi-
tional architectures. IA-64 implements this function through the use of predicated instructions. Predication removes
branches used for conditional execution resulting in larger basic blocks and the elimination of associated mispredict pen-
alties.

To illustrate, an unpredicated instruction

r1 = r2 + r3

when predicated, would be of the form

if (p5) r1 = r2 + r3

In this example p5 is the controlling predicate that decides whether or not the instruction executes and updates state. If the
predicate value is true, then the instruction updates state. Otherwise it generally behaves like a nop. Predicates are
assigned values by compare instructions.

Predicated execution avoids branches, and simplifies compiler optimizations by converting a control dependence to a data
dependence. Consider the original code:

if (a>b) c = c + 1
else d = d * e + f

The branch at (a>b) can be avoided by converting the code above to the predicated code:

pT, pF = compare(a>b)
if (pT) c = c + 1
if (pF) d = d * e + f



HP/Intel Introduction to the IA-64 Processor Architecture 2-5

IA-64 Application ISA Guide 1.0

The predicate pT is set to 1 if the condition evaluates to true, and to 0 if the condition evaluates to false. The predicate pF
is the complement of pT. The control dependence of the instructions c = c + 1 and d = d * e + f on the branch with
the condition (a>b) is now converted into a data dependence on compare(a>b) through predicates pT and pF (the branch
is eliminated). An added benefit is that the compiler can schedule the instructions under pT and pF to execute in parallel.
It is also worth noting that there are several different types of compare instructions that write predicates in different man-
ners including unconditional compares and parallel compares. 

2.9 Register Stack
IA-64 avoids the unnecessary spilling and filling of registers at procedure call and return interfaces through compiler-con-
trolled renaming. At a call site, a new frame of registers is available to the called procedure without the need for register
spill and fill (either by the caller or by the callee). Register access occurs by renaming the virtual register identifiers in the
instructions through a base register into the physical registers. The callee can freely use available registers without having
to spill and eventually restore the caller’s registers. The callee executes an alloc instruction specifying the number of
registers it expects to use in order to ensure that enough registers are available. If sufficient registers are not available
(stack overflow), the alloc stalls the processor and spills the caller’s registers until the requested number of registers are
available. 

At the return site, the base register is restored to the value that the caller was using to access registers prior to the call.
Some of the caller’s registers may have been spilled by the hardware and not yet restored. In this case (stack underflow),
the return stalls the processor until the processor has restored an appropriate number of the caller’s registers. The hard-
ware can exploit the explicit register stack frame information to spill and fill registers from the register stack to memory at
the best opportunity (independent of the calling and called procedures).

2.10 Branching
In addition to removing branches through the use of predication, several mechanisms are provided to decrease the branch
misprediction rate and the cost of the remaining mispredicted branches. These mechanisms provide ways for the compiler
to communicate information about branch conditions to the processor.

For indirect branches, a branch register is used to hold the target address. 

Special loop-closing branches are provided to accelerate counted loops and modulo-scheduled loops. These branches pro-
vide information that allows for perfect prediction of loop termination, thereby eliminating costly mispredict penalties and
a reduction of the loop overhead.

2.11 Register Rotation
Modulo scheduling of a loop is analogous to hardware pipelining of a functional unit since the next iteration of the loop
starts before the previous iteration has finished. The iteration is split into stages similar to the stages of an execution pipe-
line. Modulo scheduling allows the compiler to execute loop iterations in parallel rather than sequentially. The concurrent
execution of multiple iterations traditionally requires unrolling of the loop and software renaming of registers. IA-64
allows the renaming of registers which provide every iteration with its own set of registers, avoiding the need for unroll-
ing. This kind of register renaming is called register rotation. The result is that software pipelining can be applied to a
much wider variety of loops - both small as well as large with significantly reduced overhead.

2.12 Floating-point Architecture
IA-64 defines a floating-point architecture with full IEEE support for the single, double, and double-extended (80-bit)
data types. Some extensions, such as a fused multiply and add operation, minimum and maximum functions, and a regis-
ter file format with a larger range than the double-extended memory format, are also included. 128 floating-point registers
are defined. Of these, 96 registers are rotating (not stacked) and can be used to modulo schedule loops compactly. Multi-
ple floating-point status registers are provided for speculation.

IA-64 has parallel FP instructions which operate on two 32-bit single precision numbers, resident in a single floating-point
register, in parallel and independently. These instructions significantly increase the single precision floating-point compu-
tation throughput and enhance the performance of 3D intensive applications and games.



2-6 Introduction to the IA-64 Processor Architecture HP/Intel

IA-64 Application ISA Guide 1.0

2.13 Multimedia Support
IA-64 has multimedia instructions which treat the general registers as concatenations of eight 8-bit, four 16-bit, or two 32-
bit elements. These instructions operate on each element in parallel, independent of the others. IA-64 multimedia instruc-
tions are semantically compatible with HP’s MAX-2 multimedia technology and Intel’s MMX technology instructions
and Streaming SIMD Extensions instruction technology.



HP/Intel IA-64 Execution Environment 3-1

IA-64 Application ISA Guide 1.0

3 IA-64 Execution Environment

The architectural state consists of registers and memory. The results of instruction execution become architecturally visi-
ble according to a set of execution sequencing rules. This chapter describes the IA-64 application architectural state and
the rules for execution sequencing. 

3.1 Application Register State
The following is a list of the registers available to application programs (see Figure 3-1): 

• General Registers (GRs) – General purpose 64-bit register file, GR0 – GR127. IA-32 integer and segment registers
are contained in GR8 - GR31 when executing IA-32 instructions.

• Floating-Point Registers (FRs) – Floating-point register file, FR0 – FR127. IA-32 floating-point and multi-media
registers are contained in FR8 - FR31 when executing IA-32 instructions.

• Predicate Registers (PRs) – Single-bit registers, used in IA-64 predication and branching, PR0 – PR63.

• Branch Registers (BRs) – Registers used in IA-64 branching, BR0 – BR7.

• Instruction Pointer (IP) – Register which holds the bundle address of the currently executing IA-64 instruction, or
byte address of the currently executing IA-32 instruction.

• Current Frame Marker (CFM) – State that describes the current general register stack frame, and FR/PR rotation.

• Application Registers (ARs) – A collection of special-purpose IA-64 and IA-32 application registers.

• Performance Monitor Data Registers (PMD) – Data registers for performance monitor hardware.

• User Mask (UM) – A set of single-bit values used for alignment traps, performance monitors, and to monitor float-
ing-point register usage.

• Processor Identifiers (CPUID) – Registers that describe processor implementation-dependent IA-64 features.

IA-32 application register state is entirely contained within the larger IA-64 application register set and is accessible by
IA-64 instructions. IA-32 instructions cannot access the IA-64 specific register set. 

3.1.1 Reserved and Ignored Registers

Registers which are not defined are either reserved or ignored. An access to a reserved register raises an Illegal Opera-
tion fault. A read of an ignored register returns zero. Software may write any value to an ignored register and the hard-
ware will ignore the value written. In variable-sized register sets, registers which are unimplemented in a particular
processor are also reserved registers. An access to one of these unimplemented registers causes a Reserved Register/Field
fault.

Within defined registers, fields which are not defined are either reserved or ignored. For reserved fields, hardware will
always return a zero on a read. Software must always write zeros to these fields. Any attempt to write a non-zero value
into a reserved field will raise a Reserved register/field fault. Reserved fields may have a possible future use.

For ignored fields, hardware will return a 0 on a read, unless noted otherwise. Software may write any value to these
fields since the hardware will ignore any value written. Except where noted otherwise some IA-32 ignored fields may
have a possible future use.

Table 3-1 summarizes how the processor treats reserved and ignored registers and fields.



3-2 IA-64 Execution Environment HP/Intel

IA-64 Application ISA Guide 1.0

For defined fields in registers, values which are not defined are reserved. Software must always write defined values to
these fields. Any attempt to write a reserved value will raise a Reserved Register/Field fault. Certain registers are read-
only registers. A write to a read-only register raises an Illegal Operation fault.

When fields are marked as reserved, it is essential for compatibility with future processors that software treat these fields
as having a future, though unknown effect. Software should follow these guidelines when dealing with reserved fields:

• Do not depend on the state of any reserved fields. Mask all reserved fields before testing.

• Do not depend on the states of any reserved fields when storing to memory or a register.

• Do not depend on the ability to retain information written into reserved or ignored fields.

• Where possible reload reserved or ignored fields with values previously returned from the same register, otherwise
load zeros.

Table 3-1. Reserved and Ignored Registers and Fields

Type Read Write
Reserved register Illegal operation fault Illegal operation fault

Ignored register 0 value written is discarded

Reserved field 0 write of non-zero causes Reserved Reg/Field fault

Ignored field 0 (unless noted otherwise) value written is discarded

Figure 3-1. Application Register Model

APPLICATION REGISTER SET

pr0

 IP

PredicatesFloating-point registers

Instruction Pointer

fr0
pr1
pr2

fr1
fr2

1
81 0

63 0

Branch registers

 br0
 br1
 br2

63 0

 br7

gr0
gr1
gr2

63 0

gr127
fr127

gr16

gr31

gr32
fr32

fr31

0 +0.0
+1.0

General registers

0

 nats

CFM

Current Frame Marker

Performance Monitor

63 0

pr63

pr15
pr16

37 0

pmd0
pmd1

pmdm

Processor Identifiers
63 0

cpuid0
cpuid1

cpuidn

Data registers

User Mask
5 0

63 0

ar64

Application registers

KR0

KR7

RSC
BSPar17

ar16

BSPSTORE
RNAT

ar18
ar19

CCV

UNATar36

ar32

FPSR

ITC

ar40

ar44

EC
LCar65

ar66

PFS

ar127

ar0

ar7

EFLAG
CSDar25

ar24

SSD
CFLG

ar26
ar27

FSR
FIRar29

ar28

FDRar31

FCRar21



HP/Intel IA-64 Execution Environment 3-3

IA-64 Application ISA Guide 1.0

3.1.2 General Registers

A set of 128 (64-bit) general registers provide the central resource for all integer and integer multimedia computation.
They are numbered GR0 through GR127, and are available to all programs at all privilege levels. Each general register
has 64 bits of normal data storage plus an additional bit, the NaT bit (Not a Thing), which is used to track deferred specu-
lative exceptions.

The general registers are partitioned into two subsets. General registers 0 through 31 are termed the static general regis-
ters. Of these, GR0 is special in that it always reads as zero when sourced as an operand and attempting to write to GR 0
causes an Illegal Operation fault. General registers 32 through 127 are termed the stacked general registers. The stacked
registers are made available to a program by allocating a register stack frame consisting of a programmable number of
local and output registers. See Chapter 4.1, “Register Stack” for a description. A portion of the stacked registers can be
programmatically renamed to accelerate loops. See “Modulo-Scheduled Loop Support” on page 4-20.

General registers 8 through 31 contain the IA-32 integer, segment selector and segment descriptor registers when execut-
ing IA-32 instructions. 

3.1.3 Floating-Point Registers

A set of 128 (82-bit) floating-point registers are used for all floating-point computation. They are numbered FR0 through
FR127, and are available to all programs at all privilege levels. The floating-point registers are partitioned into two sub-
sets. Floating-point registers 0 through 31 are termed the static floating-point registers. Of these, FR0 and FR1 are spe-
cial. FR0 always reads as +0.0 when sourced as an operand, and FR 1 always reads as +1.0. When either of these is used
as a destination, a fault is raised. Deferred speculative exceptions are recorded with a special register value called NaTVal
(Not a Thing Value).

Floating-point registers 32 through 127 are termed the rotating floating-point registers. These registers can be program-
matically renamed to accelerate loops. See “Modulo-Scheduled Loop Support” on page 4-20.

Floating-point registers 8 through 31 contain the IA-32 floating point and multi-media registers when executing IA-32
instructions. 

3.1.4 Predicate Registers

A set of 64 (1-bit) predicate registers are used to hold the results of IA-64 compare instructions. These registers are num-
bered PR0 through PR63, and are available to all programs at all privilege levels. These registers are used for conditional
execution of instructions. 

The predicate registers are partitioned into two subsets. Predicate registers 0 through 15 are termed the static predicate
registers. Of these, PR0 always reads as ‘1’ when sourced as an operand, and when used as a destination, the result is dis-
carded. The static predicate registers are also used in conditional branching. See “Predication” on page 4-6.

Predicate registers 16 through 63 are termed the rotating predicate registers. These registers can be programmatically
renamed to accelerate loops. See “Modulo-Scheduled Loop Support” on page 4-20.

3.1.5 Branch Registers

A set of 8 (64-bit) branch registers are used to hold IA-64 branching information. They are numbered BR 0 through BR
7, and are available to all programs at all privilege levels. The branch registers are used to specify the branch target
addresses for indirect branches. For more information see “Branch Instructions” on page 4-19.

3.1.6 Instruction Pointer

The Instruction Pointer (IP) holds the address of the bundle which contains the current executing IA-64 instruction. The IP
can be read directly with a mov ip instruction. The IP cannot be directly written, but is incremented as instructions are
executed, and can be set to a new value with a branch. Because IA-64 instruction bundles are 16 bytes, and are 16-byte
aligned, the least significant 4 bits of IP are always zero. See “Instruction Encoding Overview” on page 3-11. For IA-32
instruction set execution, IP holds the zero extended 32-bit virtual linear address of the currently executing IA-32 instruc-
tion. IA-32 instructions are byte-aligned, therefore the least significant 4 bits of IP are preserved for IA-32 instruction set
execution. 



3-4 IA-64 Execution Environment HP/Intel

IA-64 Application ISA Guide 1.0

3.1.7 Current Frame Marker

Each general register stack frame is associated with a frame marker. The frame marker describes the state of the IA-64
general register stack. The Current Frame Marker (CFM) holds the state of the current stack frame. The CFM cannot be
directly read or written (see “Register Stack” on page 4-1). 

The frame markers contain the sizes of the various portions of the stack frame, plus three Register Rename Base values
(used in register rotation). The layout of the frame markers is shown in Figure 3-2 and the fields are described in
Table 3-2.

On a call, the CFM is copied to the Previous Frame Marker field in the Previous Function State register (see Section
3.1.8.10). A new value is written to the CFM, creating a new stack frame with no locals or rotating registers, but with a set
of output registers which are the caller’s output registers. Additionally, all Register Rename Base registers (RRBs) are set
to 0. See “Modulo-Scheduled Loop Support” on page 4-20.

3.1.8 Application Registers

The application register file includes special-purpose data registers and control registers for application-visible processor
functions for both the IA-32 and IA-64 instruction sets. These registers can be accessed by IA-64 application software
(except where noted). Table 3-3 contains a list of the application registers.

37 32 31 25 24 18 17 14 13 7 6 0

rrb.pr rrb.fr rrb.gr sor sol sof
6 7 7 4 7 7

Figure 3-2. Frame Marker Format

Table 3-2. Frame Marker Field Description

Field Bit Range Description
sof 6:0 Size of stack frame

sol 13:7 Size of locals portion of stack frame

sor 17:14 Size of rotating portion of stack frame
(the number of rotating registers is 8 * sor)

rrb.gr 24:18 Register Rename Base for general registers

rrb.fr 31:25 Register Rename Base for floating-point registers

rrb.pr 37:32 Register Rename Base for predicate registers



HP/Intel IA-64 Execution Environment 3-5

IA-64 Application ISA Guide 1.0

Application registers can only be accessed by either a M or I execution unit. This is specified in the last column of the
table. The ignored registers are for future backward-compatible extensions.

3.1.8.1 Kernel Registers (KR 0-7 – AR 0-7)

Eight user-visible IA-64 64-bit data kernel registers are provided to convey information from the operating system to the
application. These registers can be read at any privilege level but are writable only at the most privileged level. KR0 -
KR2 are also used to hold additional IA-32 register state when the IA-32 instruction set is executing. 

3.1.8.2 Register Stack Configuration Register (RSC – AR 16)

The Register Stack Configuration (RSC) Register is a 64-bit register used to control the operation of the IA-64 Register
Stack Engine (RSE). The RSC format is shown in Figure 3-3 and the field description is contained in Table 3-4. Instruc-

Table 3-3. Application Registers

Register Name Description
Execution Unit 

Type
AR 0-7 KR 0-7a

a. Writes to these registers when the privilege level is not zero result in a Privileged Register fault. Reads are always allowed.

Kernel Registers 0-7

M

AR 8-15 Reserved

AR 16 RSC Register Stack Configuration Register

AR 17 BSP Backing Store Pointer (read-only)

AR 18 BSPSTORE Backing Store Pointer for Memory Stores

AR 19 RNAT RSE NAT Collection Register

AR 20 Reserved

AR 21 FCR IA-32 Floating-point Control Register

AR 22 – AR 23 Reserved

AR 24 EFLAGb

b. Some IA-32 EFLAG field writes are silently ignored if the privilege level is not zero. 

IA-32 EFLAG register

AR 25 CSD IA-32 Code Segment Descriptor

AR 26 SSD IA-32 Stack Segment Descriptor

AR 27 CFLGa IA-32 Combined CR0 and CR4 register

AR 28 FSR IA-32 Floating-point Status Register

AR 29 FIR IA-32 Floating-point Instruction Register

AR 30 FDR IA-32 Floating-point Data Register

AR 31 Reserved

AR 32 CCV Compare and Exchange Compare Value Register

AR 33 – AR 35 Reserved

AR 36 UNAT User NAT Collection Register

AR 37 – AR 39 Reserved

AR 40 FPSR Floating-Point Status Register

AR 41 – AR 43 Reserved

AR 44 ITC Interval Time Counter

AR 45 – AR 47 Reserved

AR 48 – AR 63 Ignored M or I

AR 64 PFS Previous Function State

I
AR 65 LC Loop Count Register

AR 66 EC Epilog Count Register

AR 67 – AR 111 Reserved

AR 112 – AR 127 Ignored M or I



3-6 IA-64 Execution Environment HP/Intel

IA-64 Application ISA Guide 1.0

tions that modify the RSC can never set the privilege level field to a more privileged level than the currently executing
process.

3.1.8.3 RSE Backing Store Pointer (BSP – AR 17)

The RSE Backing Store Pointer is a 64-bit read-only register (Figure 3-4). It holds the address of the location in memory
which is the save location for GR 32 in the current stack frame. 

3.1.8.4 RSE Backing Store Pointer for Memory Stores (BSPSTORE – AR 18)

The RSE Backing Store Pointer for memory stores is a 64-bit register (Figure 3-5). It holds the address of the location in
memory to which the RSE will spill the next value. 

3.1.8.5 RSE NAT Collection Register (RNAT – AR 19)

The RSE NaT Collection Register is a 64-bit register (Figure 3-6) used by the RSE to temporarily hold NaT bits when it is
spilling general registers. Bit 63 always reads as zero and ignores all writes. 

3.1.8.6 Compare and Exchange Value Register (CCV – AR 32)

The Compare and Exchange Value Register is a 64-bit register that contains the compare value used as the third source
operand in the IA-64 cmpxchg instruction.

63 30 29 16 15 5 4 3 2 1 0

rv loadrs rv be pl mode
34 14 11 1 2 2

Figure 3-3. RSC Format

Table 3-4. RSC Field Description

Field Bit Range Description
mode 1:0 RSE mode – controls how aggressively the RSE saves and restores register frames. 

Eager and intensive settings are hints and can be implemented as lazy.

Bit Pattern
00
10
01
11

RSE Mode
enforced lazy
load intensive
store intensive
eager

Bit 1: eager loads
disabled
enabled
disabled
enabled

Bit 0: eager stores
disabled
disabled
enabled
enabled

pl 3:2 RSE privilege level – loads and stores issued by the RSE are at this privilege level

be 4 RSE endian mode – loads and stores issued by the RSE use this byte ordering
(0: little endian; 1: big endian)

loadrs 29:16 RSE load distance to tear point – value used in the loadrs instruction for synchro-
nizing the RSE to a tear point

rv 15:5, 63:30 Reserved

63 3 2 1 0

pointer ig
61 3

Figure 3-4. BSP Register Format

63 3 2 1 0

pointer ig
61 3

Figure 3-5. BSPSTORE Register Format

63 0

ig RSE NaT Collection
1 63

Figure 3-6. RNAT Register Format



HP/Intel IA-64 Execution Environment 3-7

IA-64 Application ISA Guide 1.0

3.1.8.7 User NAT Collection Register (UNAT – AR 36)

The User NaT Collection Register is a 64-bit register used to temporarily hold NaT bits when saving and restoring general
registers with the IA-64 ld8.fill and st8.spill instructions.

3.1.8.8 Floating-Point Status Register (FPSR – AR 40)

The floating-point status register (FPSR) controls traps, rounding mode, precision control, flags, and other control bits for
IA-64 floating point instructions. FPSR does not control or reflect the status of IA-32 floating point instructions. For more
details on the FPSR, see Section 5.2.

3.1.8.9 Interval Time Counter (ITC – AR 44)

The Interval Time Counter (ITC) is a 64-bit register which counts up at a fixed relationship to the processor clock fre-
quency. Applications can directly sample the ITC for time-based calculations and performance measurements. System
software can secure the interval time counter from non-privileged IA-64 access. When secured, a read of the ITC at any
privilege level other than the most privileged causes a Privileged Register fault. The ITC can be written only at the most
privileged level. The IA-32 Time Stamp Counter (TSC) is equivalent to ITC. ITC can directly be read by the IA-32 rdtsc

(read time stamp counter) instruction. System software can secure the ITC from non-privileged IA-32 access. When
secured, an IA-32 read of the ITC at any privilege level other than the most privileged raises an IA-
32_Exception(GPfault).

3.1.8.10 Previous Function State (PFS – AR 64)

The IA-64 Previous Function State register (PFS) contains multiple fields: Previous Frame Marker (pfm), Previous Epilog
Count (pec), and Previous Privilege Level (ppl). Figure 3-7 diagrams the PFS format and Table 3-5 describes the PFS
fields. These values are copied automatically on a call from the CFM register, Epilog Count Register (EC) and PSR.cpl
(Current Privilege Level in the Processor Status Register) to accelerate procedure calling.

When an IA-64 br.call is executed, the CFM, EC, and PSR.cpl are copied to the PFS and the old contents of the PFS are
discarded. When an IA-64 br.ret is executed, the PFS is copied to the CFM and EC. PFS.ppl is copied to PSR.cpl,
unless this action would increase the privilege level. 

The PFS.pfm has the same layout as the CFM (see Section 3.1.7), and the PFS.pec has the same layout as the EC (see Sec-
tion 3.1.8.12). 

3.1.8.11 Loop Count Register (LC – AR 65)

The Loop Count register (LC) is a 64-bit register used in IA-64 counted loops. LC is decremented by counted-loop-type
branches.

3.1.8.12 Epilog Count Register (EC – AR 66)

The Epilog Count register (EC) is a 6-bit register used for counting the final (epilog) stages in IA-64 modulo-scheduled
loops. See “Modulo-Scheduled Loop Support” on page 4-20. A diagram of the EC register is shown in Figure 3-8.

63 62 61 58 57 52 51 38 37 0

ppl rv pec rv pfm
2 4 6 14 38

Figure 3-7. PFS Format

Table 3-5. PFS Field Description

Field Bit Range Description
pfm 37:0 Previous Frame Marker

pec 57:52 Previous Epilog Count

ppl 63:62 Previous Privilege Level

rv 51:38, 61:58 Reserved



3-8 IA-64 Execution Environment HP/Intel

IA-64 Application ISA Guide 1.0

3.1.9 Performance Monitor Data Registers (PMD)

A set of performance monitoring registers can be configured by privileged software to be accessible at all privilege levels.
Performance monitor data can be directly sampled from within the application. The operating system is allowed to secure
user-configured performance monitors. Secured performance counters return zeros when read, regardless of the current
privilege level. The performance monitors can only be written at the most privileged level. Performance monitors can be
used to gather performance information for both IA-32 and IA-64 instruction set execution.

3.1.10 User Mask (UM)

The user mask is a subset of the Processor Status Register and is accessible to IA-64 application programs. The user mask
controls memory access alignment, byte-ordering and user-configured performance monitors. It also records the modifica-
tion state of IA-64 floating-point registers. Figure 3-9 show the user mask format and Table 3-6 describes the user mask
fields. 

3.1.11 Processor Identification Registers

Application level processor identification information is available in an IA-64 register file termed: CPUID. This register
file is divided into a fixed region, registers 0 to 4, and a variable region, register 5 and above. The CPUID[3].number field
indicates the maximum number of 8-byte registers containing processor specific information.

The CPUID registers are unprivileged and accessed using the indirect mov (from) instruction. All registers beyond register
CPUID[3].number are reserved and raise a Reserved Register/Field fault if they are accessed. Writes are not permitted and
no instruction exists for such an operation.

63 6 5 0

ig epilog count
58 6

Figure 3-8. Epilog Count Register Format

5 4 3 2 1 0

mfh mfl ac up be rv
1 1 1 1 1 1

Figure 3-9. User Mask Format

Table 3-6. User Mask Field Descriptions

Field Bit Range Description
rv 0 Reserved

be 1 IA-64 Big-endian memory access enable
(controls loads and stores but not RSE memory accesses)
0: accesses are done little-endian 
1: accesses are done big-endian
This bit is ignored for IA-32 data memory accesses. IA-32 data references are always 
performed little-endian.

up 2 User performance monitor enable for IA-32 and IA-64 instruction set execution
0: user performance monitors are disabled 
1: user performance monitors are enabled

ac 3 Alignment check for IA-32 and IA-64 data memory references
0: unaligned data memory references may cause an Unaligned Data Reference fault.
1: all unaligned data memory references cause an Unaligned Data Reference fault. 

mfl 4 Lower (f2 .. f31) floating-point registers written – This bit is set to one when an IA-64 
instruction that uses register f2..f31 as a target register, completes. This bit is sticky and is 
only cleared by an explicit write of the user mask.

mfh 5 Upper (f32 .. f127) floating-point registers written – This bit is set to one when an IA-64 
instruction that uses register f32..f127 as a target register, completes. This bit is sticky 
and only cleared by an explicit write of the user mask. 



HP/Intel IA-64 Execution Environment 3-9

IA-64 Application ISA Guide 1.0

Vendor information is located in CPUID registers 0 and 1 and specify a vendor name, in ASCII, for the processor imple-
mentation (Figure 3-10). All bytes after the end of the string up to the 16th byte are zero. Earlier ASCII characters are
placed in lower number register and lower numbered byte positions.

A Processor Serial Number is located in CPUID register 2. If Processor Serial Numbers are supported by the processor
model and are not disabled, this register returns a 64-bit number Processor Serial Number (Figure 3-11), otherwise zero is
returned. The Processor Serial Number (64-bits) must be combined with the 32-bit version information (CPUID register
3; processor archrev, family, model, and revision numbers) to form a 96-bit Processor Identifier. 

The 96-bit Processor Identifier is designed to be unique.

CPUID register 3 contains several fields indicating version information related to the processor implementation.
Figure 3-12 and Table 3-7 specify the definitions of each field.

CPUID register 4 provides general application level information about IA-64 features. As shown in Figure 3-13, it is a set
of flag bits used to indicate if a given IA-64 feature is supported in the processor model. When a bit is one the feature is
supported; when 0 the feature is not supported. This register does not contain IA-32 instruction set features. IA-32 instruc-
tion set features can be acquired by the IA-32 cpuid instruction. There are no defined feature bits in the current architec-
ture. As new features are added (or removed) from future processor models the presence (or removal) of new features will
be indicated by new feature bits. A value of zero in this register indicates all features defined in the first IA-64 architec-
tural revision are implemented.

63     0

CPUID[0] byte 0

CPUID[1] byte 15
64

Figure 3-10. CPUID Registers 0 and 1 – Vendor Information

63    0

Processor Serial Number
64

Figure 3-11. CPUID Register 2 – Processor Serial Number

63 40 39 32 31 24 23 16 15 8 7 0

rv archrev family model revision number
24 8 8 8 8 8

Figure 3-12. CPUID Register 3 – Version Information

Table 3-7. CPUID Register 3 Fields

Field Bits Description
number 7:0 The index of the largest implemented CPUID register (one less than the number of implemented CPUID 

registers). This value will be at least 4.

revision 15:8 Processor revision number. An 8-bit value that represents the revision or stepping of this processor 
implementation within the processor model.

model 23:16 Processor model number. A unique 8-bit value representing the processor model within the processor 
family.

family 31:24 Processor family number. A unique 8-bit value representing the processor family.

archrev 39:32 Architecture revision. An 8-bit value that represents the architecture revision number that the processor 
implements.

rv 63:40 Reserved.

63    0

rv
64

Figure 3-13. CPUID Register 4 – General Features/Capability Bits



3-10 IA-64 Execution Environment HP/Intel

IA-64 Application ISA Guide 1.0

3.2 Memory
This section describes an IA-64 application program’s view of memory. This includes a description of how memory is
accessed, for both 32-bit and 64-bit applications. The size and alignment of addressable units in memory is also given,
along with a description of how byte ordering is handled. 

3.2.1 Application Memory Addressing Model

Memory is byte addressable and is accessed with 64-bit pointers. A 32-bit pointer model without a hardware mode is sup-
ported architecturally. Pointers which are 32 bits in memory are loaded and manipulated in 64-bit registers. Software must
explicitly convert 32-bit pointers into 64-bit pointers before use. 

3.2.2 Addressable Units and Alignment

Memory can be addressed in units of 1, 2, 4, 8, 10 and 16 bytes.

It is recommended that all addressable units be stored on their naturally aligned boundaries. Hardware and/or operating
system software may have support for unaligned accesses, possibly with some performance cost. 10-byte floating-point
values should be stored on 16-byte aligned boundaries.

Bits within larger units are always numbered from 0 starting with the least-significant bit. Quantities loaded from memory
to general registers are always placed in the least-significant portion of the register (loaded values are placed right justi-
fied in the target general register).

Instruction bundles (3 IA-64 instructions per bundle) are 16-byte units that are always aligned on 16-byte boundaries.

3.2.3 Byte Ordering

The UM.be bit in the User Mask controls whether loads and stores use little-endian or big-endian byte ordering for IA-64
references. When the UM.be bit is 0, larger-than-byte loads and stores are little endian (lower-addressed bytes in memory
correspond to the lower-order bytes in the register). When the UM.be bit is 1, larger-than-byte loads and stores are big
endian (lower-addressed bytes in memory correspond to the higher-order bytes in the register). Load byte and store byte
are not affected by the UM.be bit. The UM.be bit does not affect instruction fetch, IA-32 references, or the RSE. IA-64
instructions are always accessed by the processor as little-endian units. When instructions are referenced as big-endian
data, the instruction will appear reversed in a register.

Figure 3-14 shows various loads in little-endian format. Figure 3-15 shows various loads in big endian format. Stores are
not shown but behave similarly.

Figure 3-14. Little-endian Loads

a

b

c

d

e

f

g

h
d ac bh eg f

63 0

0

1

2

3

4

5

6

7
LD8 [0] =>

7 0
Memory Registers

0 b0 00 00 0

63 0

LD1 [1] =>

0 c0 d0 00 0

63 0

LD2 [2] =>

h eg f0 00 0

63 0

LD4 [4] =>

Address



HP/Intel IA-64 Execution Environment 3-11

IA-64 Application ISA Guide 1.0

3.3 Instruction Encoding Overview
Each IA-64 instruction is categorized into one of six types; each instruction type may be executed on one or more execu-
tion unit types. Table 3-8 lists the instruction types and the execution unit type on which they are executed:

Three instructions are grouped together into 128-bit sized and aligned containers called bundles. Each bundle contains
three 41-bit instruction slots and a 5-bit template field. The format of a bundle is depicted in Figure 3-16.

During execution, architectural stops in the program indicate to the hardware that one or more instructions before the stop
may have certain kinds of resource dependencies with one or more instructions after the stop. A stop is present after each
slot having a double line to the right of it in Table 3-9. For example, template 00 has no stops, while template 03 has a stop
after slot 1 and another after slot 2.

In addition to the location of stops, the template field specifies the mapping of instruction slots to execution unit types.
Not all possible mappings of instructions to units are available. Table 3-9 indicates the defined combinations. The three
rightmost columns correspond to the three instruction slots in a bundle. Listed within each column is the execution unit
type controlled by that instruction slot.

Figure 3-15. Big-endian Loads

Table 3-8. Relationship Between Instruction Type and Execution Unit Type

Instruction
Type

Description
Execution Unit 

Type
A Integer ALU I-unit or M-unit

I Non-ALU integer I-unit

M Memory M-unit

F Floating-point F-unit

B Branch B-unit

L+X Extended I-unit

127 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 instruction slot 0 template
41 41 41 5

Figure 3-16. Bundle Format

a

b

c

d

e

f

g

h

e hf ga db c

63 0

0

1

2

3

4

5

6

7

LD8 [0] =>

7 0
Memory Registers

0 b0 00 00 0

63 0

LD1 [1] =>

0 d0 c0 00 0

63 0

LD2 [2] =>

e hf g0 00 0

63 0

LD4 [4] =>

Address



3-12 IA-64 Execution Environment HP/Intel

IA-64 Application ISA Guide 1.0

Extended instructions, used for long immediate integer, occupy two instruction slots. 

3.4 Instruction Sequencing
An IA-64 program consists of a sequence of instructions and stops packed in bundles. Instruction execution is ordered as
follows:

• Bundles are ordered from lowest to highest memory address. Instructions in bundles with lower memory addresses
are considered to precede instructions in bundles with higher memory addresses. The byte order of each bundle in
memory is little-endian (the template field is contained in byte 0 of a bundle).

• Within a bundle, instructions are ordered from instruction slot 0 to instruction slot 2 as specified in Figure 3-16 on
page 3-11.

For additional details on Instruction sequencing, refer to Appendix A, “Instruction Sequencing Considerations”.

Table 3-9. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2
00 M-unit I-unit I-unit

01 M-unit I-unit I-unit

02 M-unit I-unit I-unit

03 M-unit I-unit I-unit

04 M-unit L-unit X-unit

05 M-unit L-unit X-unit

06

07

08 M-unit M-unit I-unit

09 M-unit M-unit I-unit

0A M-unit M-unit I-unit

0B M-unit M-unit I-unit

0C M-unit F-unit I-unit

0D M-unit F-unit I-unit

0E M-unit M-unit F-unit

0F M-unit M-unit F-unit

10 M-unit I-unit B-unit

11 M-unit I-unit B-unit

12 M-unit B-unit B-unit

13 M-unit B-unit B-unit

14

15

16 B-unit B-unit B-unit

17 B-unit B-unit B-unit

18 M-unit M-unit B-unit

19 M-unit M-unit B-unit

1A

1B

1C M-unit F-unit B-unit

1D M-unit F-unit B-unit

1E

1F



HP/Intel IA-64 Application Programming Model 4-1

IA-64 Application ISA Guide 1.0

4 IA-64 Application Programming Model

This section describes the IA-64 architectural functionality from the perspective of the application programmer. IA-64
instructions are grouped into related functions and an overview of their behavior is given. Unless otherwise noted, all
immediates are sign extended to 64 bits before use. The floating-point programming model is described separately in
Chapter 5, “IA-64 Floating-point Programming Model”. 

The main features of the IA-64 programming model covered here are:

• General Register Stack

• Integer Computation Instructions

• Compare Instructions and Predication

• Memory Access Instructions and Speculation

• Branch Instructions and Branch Prediction

• Multimedia Instructions

• Register File Transfer Instructions

• Character Strings and Population Count

4.1 Register Stack
As described in “General Registers” on page 3-3, the general register file is divided into static and stacked subsets. The
static subset is visible to all procedures and consists of the 32 registers from GR 0 through GR 31. The stacked subset is
local to each procedure and may vary in size from zero to 96 registers beginning at GR 32. The register stack mechanism
is implemented by renaming register addresses as a side-effect of procedure calls and returns. The implementation of this
rename mechanism is not otherwise visible to application programs. The register stack is disabled during IA-32 instruc-
tion set execution.

The static subset must be saved and restored at procedure boundaries according to software convention. The stacked sub-
set is automatically saved and restored by the Register Stack Engine (RSE) without explicit software intervention. All
other register files are visible to all procedures and must be saved/restored by software according to software convention.

4.1.1 Register Stack Operation

The registers in the stacked subset visible to a given procedure are called a register stack frame. The frame is further par-
titioned into two variable-size areas: the local area and the output area. Immediately after a call, the size of the local area
of the newly activated frame is zero and the size of the output area is equal to the size of the caller’s output area and over-
lays the caller’s output area.

The local and output areas of a frame can be re-sized using the alloc instruction which specifies immediates that deter-
mine the size of frame (sof) and size of locals (sol). (Note that in the assembly language, alloc specifies three operands:
the size of inputs immediate; the size of locals immediate; and the size of outputs immediate. The value of sol is deter-
mined by adding the size of inputs immediate and the size of locals immediate; the value of sof is determined by adding
all three immediates.) The value of sof specifies the size of the entire stacked subset visible to the current procedure; the
value of sol specifies the size of the local area. The size of the output area is determined by the difference between sof and
sol. The values of these parameters for the currently active procedure are maintained in the Current Frame Marker (CFM).

Reading a stacked register outside the current frame will return an undefined result. Writing a stacked register outside the
current frame will cause an Illegal Operation fault. 



4-2 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

When a call-type branch is executed, the CFM is copied to the Previous Frame Marker (PFM) field in the Previous Func-
tion State application register (PFS), and the callee’s frame is created as follows:

• The stacked registers are renamed such that the first register in the caller’s output area becomes GR 32 for the callee

• The size of the local area is set to zero

• The size of the callee’s frame (sofb1) is set to the size of the caller’s output area (sofa – sola)

Values in the output area of the caller’s register stack frame are visible to the callee. This overlap permits parameter and
return value passing between procedures to take place entirely in registers.

Procedure frames may be dynamically re-sized by issuing an alloc instruction. An alloc instruction causes no renam-
ing, but only changes the size of the register stack frame and the partitioning between local and output areas. Typically,
when a procedure is called, it will allocate some number of local registers for its use (which will include the parameters
passed to it in the caller’s output registers), plus an output area (for passing parameters to procedures it will call). Newly
allocated registers (including their NaT bits) have undefined values.

When a return-type branch is executed, CFM is restored from PFM and the register renaming is restored to the caller’s
configuration. The PFM is procedure local state and must be saved and restored by non-leaf procedures. The CFM is not
directly accessible in application programs and is updated only through the execution of calls, returns, alloc, and clr-
rrb.

Figure 4-1 depicts the behavior of the register stack on a procedure call from procA (caller) to procB (callee). The state of
the register stack is shown at four points: prior to the call, immediately following the call, after procB has executed an
alloc, and after procB returns to procA.

The majority of application programs need only issue alloc instructions and save/restore PFM in order to effectively uti-
lize the register stack. A detailed knowledge of the RSE (Register Stack Engine) is required only by certain specialized
application software such as user-level thread packages, debuggers, etc.

Figure 4-1. Register Stack Behavior on Procedure Call and Return

Caller’s frame (procA)

Callee’s frame (procB)

Local A

Output B2

32 46

32 48

52

Callee’s frame (procB) Output B1

32 38

50

CFM PFM

14 21

14 2116 19

14 210 7

x x

Frame markersStacked GR’s

Caller’s frame (procA) 14 21 14 21Local A Output A

32 46 52

after return 

sofa=21
sola=14

sofb1=7

sofb2=19
solb2=16

call

alloc

return

sol sof sofsol

after call 

after alloc 

Output A

Local B

Instruction Execution



HP/Intel IA-64 Application Programming Model 4-3

IA-64 Application ISA Guide 1.0

4.1.2 Register Stack Instructions

The alloc instruction is used to change the size of the current register stack frame. An alloc instruction must be the first
instruction in an instruction group otherwise the results are undefined. An alloc instruction affects the register stack
frame seen by all instructions in an instruction group, including the alloc itself. An alloc cannot be predicated. An
alloc does not affect the values or NaT bits of the allocated registers. When a register stack frame is expanded, newly
allocated registers may have their NaT bit set.

In addition, there are three instructions which provide explicit control over the state of the register stack. These instruc-
tions are used in thread and context switching which necessitate a corresponding switch of the backing store for the regis-
ter stack.

The flushrs instruction is used to force all previous stack frames out to backing store memory. It stalls instruction execu-
tion until all active frames in the physical register stack up to, but not including the current frame are spilled to the back-
ing store by the RSE. A flushrs instruction must be the first instruction in an instruction group; otherwise, the results are
undefined. A flushrs cannot be predicated.

Table 4-1 lists the architectural visible state relating to the register stack. Table 4-2 summarizes the register stack manage-
ment instructions. Call- and return-type branches, which affect the stack, are described in “Branch Instructions” on
page 4-19. 

4.2 Integer Computation Instructions
The integer execution units provide a set of arithmetic, logical, shift and bit-field-manipulation instructions. Additionally,
they provide a set of instructions to accelerate operations on 32-bit data and pointers.

Arithmetic, logical and 32-bit acceleration instructions can be executed on both I- and M-units

4.2.1 Arithmetic Instructions

Addition and subtraction (add, sub) are supported with regular two input forms and special three input forms. The three
input addition form adds one to the sum of two input registers. The three input subtraction form subtracts one from the dif-
ference of two input registers. The three input forms share the same mnemonics as the two input forms and are specified
by appending a “1” as a third source operand.

Immediate forms of addition and subtraction use a register and a 15-bit immediate. The immediate form is obtained sim-
ply by specifying an immediate rather than a register as the first operand. Also, addition can be performed between a reg-
ister and a 22-bit immediate; however, the source register must be GR 0, 1, 2 or 3.

A shift left and add instruction (shladd) shifts one register operand to the left by 1 to 4 bits and adds the result to a second
register operand. Table 4-3 summarizes the integer arithmetic instructions.

Table 4-1. Architectural Visible State Related to the Register Stack

Register Description
AR[PFS].pfm Previous Frame Marker field

AR[RSC] Register Stack Configuration application register

AR[BSP] Backing store pointer application register

AR[BSPSTORE] Backing store pointer application register for memory stores

AR[RNAT] RSE NaT collection application register

Table 4-2. Register Stack Management Instructions

Mnemonic Operation
alloc Allocate register stack frame
flushrs Flush register stack to backing store



4-4 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Note that an integer multiply instruction is defined which uses the floating-point registers. See “Integer Multiply and Add
Instructions” on page 5-14 for details. Integer divide is performed in software similarly to floating-point divide.

4.2.2 Logical Instructions

Instructions to perform logical AND (and), OR (or), and exclusive OR (xor) between two registers or between a register
and an immediate are defined. The andcm instruction performs a logical AND of a register or an immediate with the com-
plement of another register. Table 4-4 summarizes the integer logical instructions.

4.2.3 32-Bit Addresses and Integers

Support for IA-64 32-bit addresses is provided in the form of add instructions that perform region bit copying. This sup-
ports the virtual address translation model. The add 32-bit pointer instruction (addp) adds two registers or a register and
an immediate, zeroes the most significant 32-bits of the result, and copies bits 31:30 of the second source to bits 62:61 of
the result. The shladdp instruction operates similarly but shifts the first source to the left by 1 to 4 bits before performing
the add, and is provided only in the two-register form. 

In addition, support for 32-bit integers is provided through 32-bit compare instructions and instructions to perform sign
and zero extension. Compare instructions are described in “Compare Instructions and Predication” on page 4-5. The sign
and zero extend (sxt, zxt) instructions take an 8-bit, 16-bit, or 32-bit value in a register, and produce a properly extended
64-bit result.

Table 4-5 summarizes 32-bit pointer and 32-bit integer instructions.

4.2.4 Bit Field and Shift Instructions

Four classes of instructions are defined for shifting and operating on bit fields within a general register: variable shifts,
fixed shift-and-mask instructions, a 128-bit-input funnel shift, and special compare operations to test an individual bit
within a general register. The compare instructions for testing a single bit (tbit), or for testing the NaT bit (tnat) are
described in “Compare Instructions and Predication” on page 4-5.

The variable shift instructions shift the contents of a general register by an amount specified by another general register.
The shift right signed (shr) and shift right unsigned (shr.u) instructions shift the contents of a register to the right with

Table 4-3. Integer Arithmetic Instructions

Mnemonic Operation
add Addition

add ...,1 Three input addition
sub Subtraction

sub ...,1 Three input subtraction
shladd Shift left and add

Table 4-4. Integer Logical Instructions

Mnemonic Operation
and Logical and
or Logical or
andcm Logical and complement
xor Logical exclusive or

Table 4-5. 32-bit Pointer and 32-bit Integer Instructions

Mnemonic Operation
addp 32-bit pointer addition
shladdp Shift left and add 32-bit pointer
sxt Sign extend
zxt Zero extend



HP/Intel IA-64 Application Programming Model 4-5

IA-64 Application ISA Guide 1.0

the vacated bit positions filled with the sign bit or zeroes respectively. The shift left (shl) instruction shifts the contents of
a register to the left.

The fixed shift-and-mask instructions (extr, dep) are generalized forms of fixed shifts. The extract instruction (extr)
copies an arbitrary bit field from a general register to the least-significant bits of the target register. The remaining bits of
the target are written with either the sign of the bit field (extr) or with zero (extr.u). The length and starting position of
the field are specified by two immediates. This is essentially a shift-right-and-mask operation. A simple right shift by a
fixed amount can be specified by using shr with an immediate value for the shift amount. This is just an assembly
pseudo-op for an extract instruction where the field to be extracted extends all the way to the left-most register bit.

The deposit instruction (dep) takes a field from either the least-significant bits of a general register, or from an immediate
value of all zeroes or all ones, places it at an arbitrary position, and fills the result to the left and right of the field with
either bits from a second general register (dep) or with zeroes (dep.z). The length and starting position of the field are
specified by two immediates. This is essentially a shift-left-mask-merge operation. A simple left shift by a fixed amount
can be specified by using shl with an immediate value for the shift amount. This is just an assembly pseudo-op for dep.z
where the deposited field extends all the way to the left-most register bit.

The shift right pair (shrp) instruction performs a 128-bit-input funnel shift. It extracts an arbitrary 64-bit field from a 128-
bit field formed by concatenating two source general registers. The starting position is specified by an immediate. This
can be used to accelerate the adjustment of unaligned data. A bit rotate operation can be performed by using shrp and
specifying the same register for both operands.

Table 4-6 summarizes the bit field and shift instructions.

4.2.5 Large Constants

A special instruction is defined for generating large constants (see Table 4-7). For constants up to 22 bits in size, the add
instruction can be used, or the mov pseudo-op (pseudo-op of add with GR0, which always reads 0). For larger constants,
the move long immediate instruction (movl) is defined to write a 64-bit immediate into a general register. This instruction
occupies two instruction slots within the same bundle, and is the only such instruction.

4.3 Compare Instructions and Predication
A set of compare instructions provides the ability to test for various conditions and affect the dynamic execution of
instructions. A compare instruction tests for a single specified condition and generates a boolean result. These results are
written to predicate registers. The predicate registers can then be used to affect dynamic execution in two ways: as condi-
tions for conditional branches, or as qualifying predicates for predication.

Table 4-6. Bit Field and Shift Instructions

Mnemonic Operation
shr Shift right signed
shr.u Shift right unsigned
shl Shift left
extr Extract signed (shift right and mask)
extr.u Extract unsigned (shift right and mask)
dep Deposit (shift left, mask and merge)
dep.z Deposit in zeroes (shift left and mask)
shrp Shift right pair

Table 4-7. Instructions to Generate Large Constants

Mnemonic Operation
mov Move 22-bit immediate
movl Move 64-bit immediate



4-6 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

4.3.1 Predication

Predication is the conditional execution of instructions. The execution of most IA-64 instructions is gated by a qualifying
predicate. If the predicate is true, the instruction executes normally; if the predicate is false, the instruction does not mod-
ify architectural state (except for the unconditional type of compare instructions, floating-point approximation instructions
and while-loop branches). Predicates are one-bit values and are stored in the predicate register file. A zero predicate is
interpreted as false and a one predicate is interpreted as true (predicate register PR0 is hardwired to one).

A few IA-64 instructions cannot be predicated. These instructions are: allocate stack frame (alloc), clear rrb (clrrrb),
flush register stack (flushrs), and counted branches (cloop, ctop, cexit).

4.3.2 Compare Instructions

Predicate registers are written by the following instructions: general register compare (cmp, cmp4), floating-point register
compare (fcmp), test bit and test NaT (tbit, tnat), floating-point class (fclass), and floating-point reciprocal approxi-
mation and reciprocal square root approximation (frcpa, frsqrta). Most of these compare instructions (all but frcpa
and frsqrta) set two predicate registers based on the outcome of the comparison. The setting of the two target registers
is described below in “Compare Types” on page 4-6. Compare instructions are summarized in Table 4-8.

The 64-bit (cmp) and 32-bit (cmp4) compare instructions compare two registers, or a register and an immediate, for one of
ten relations (e.g., >, <=). The compare instructions set two predicate targets according to the result. The cmp4 instruction
compares the least-significant 32-bits of both sources (the most significant 32-bits are ignored).

The test bit (tbit) instruction sets two predicate registers according to the state of a single bit in a general register (the
position of the bit is specified by an immediate). The test NaT (tnat) instruction sets two predicate registers according to
the state of the NaT bit corresponding to a general register.

The fcmp instruction compares two floating-point registers and sets two predicate targets according to one of eight rela-
tions. The fclass instruction sets two predicate targets according to the classification of the number contained in the
floating-point register source.

The frcpa and frsqrta instructions set a single predicate target if their floating-point register sources are such that a
valid approximation can be produced, otherwise the predicate target is cleared.

4.3.3 Compare Types

Compare instructions can have as many as five compare types: Normal, Unconditional, AND, OR, or DeMorgan. The
type defines how the instruction writes its target predicate registers based on the outcome of the comparison and on the
qualifying predicate. The description of these types is contained in Table 4-9. In the table, “qp” refers to the value of the
qualifying predicate of the compare and “result” refers to the outcome of the compare relation (one if the compare relation
is true and zero if the compare relation is false).

Table 4-8. Compare Instructions

Mnemonic Operation
cmp, cmp4 GR compare
tbit Test bit in a GR
tnat Test GR NaT bit
fcmp FR compare
fclass FR class
frcpa, fprcpa Floating-point reciprocal approximation
frsqrta, fprsqrta Floating-point reciprocal square root approximation



HP/Intel IA-64 Application Programming Model 4-7

IA-64 Application ISA Guide 1.0

The Normal compare type simply writes the compare result to the first predicate target and the complement of the result to
the second predicate target.

The Unconditional compare type behaves the same as the Normal type, except that if the qualifying predicate is 0, both
predicate targets are written with 0. This can be thought of as an initialization of the predicate targets, combined with a
Normal compare. Note that compare instructions with the Unconditional type modify architectural state when their quali-
fying predicate is false.

The AND, OR and DeMorgan types are termed “parallel” compare types because they allow multiple simultaneous com-
pares (of the same type) to target a single predicate register. This provides the ability to compute a logical equation such as
p5 = (r4 == 0) || (r5 == r6) in a single cycle (assuming p5 was initialized to 0 in an earlier cycle). The DeMor-
gan compare type is just a combination of an OR type to one predicate target and an AND type to the other predicate tar-
get. Multiple OR-type compares (including the OR part of the DeMorgan type) may specify the same predicate target in
the same instruction group. Multiple AND-type compares (including the AND part of the DeMorgan type) may also spec-
ify the same predicate target in the same instruction group.

For all compare instructions (except for tnat and fclass), if one or both of the source registers contains a deferred
exception token (NaT or NaTVal – see “Control Speculation” on page 4-10), the result of the compare is different. Both
predicate targets are treated the same, and are either written to 0 or left unchanged. In combination with speculation, this
allows predicated code to be turned off in the presence of a deferred exception. (fclass behaves this way as well if
NaTVal is not one of the classes being tested for.) Table 4-10 describes the behavior.

Only a subset of the compare types are provided for some of the compare instructions. Table 4-11 lists the compare types
which are available for each of the instructions.

Table 4-9. Compare Type Function

Compare Type Completer
Operation

First Predicate Target Second Predicate Target
Normal none if (qp) {target = result} if (qp) {target = !result}

Unconditional unc
if (qp) {target = result}
else {target = 0}

if (qp) {target = !result}
else {target = 0}

AND
and if (qp && !result) {target = 0} if (qp && !result) {target = 0}

andcm if (qp && result) {target = 0} if (qp && result) {target = 0}

OR
or if (qp && result) {target = 1} if (qp && result) {target = 1}

orcm if (qp && !result) {target = 1} if (qp && !result) {target = 1}

DeMorgan
or.andcm if (qp && result) {target = 1} if (qp && result) {target = 0}

and.orcm if (qp && !result) {target = 0} if (qp && !result) {target = 1}

Table 4-10. Compare Outcome with NaT Source Input

Compare Type Operation
Normal if (qp) {target = 0}

Unconditional target = 0

AND if (qp) {target = 0}

OR (not written)

DeMorgan (not written)

Table 4-11. Instructions and Compare Types Provided

Instruction Relation Types Provided
cmp, cmp4 a == b, a != b,

a > 0, a >= 0, a < 0, a <= 0,
0 > a, 0 >= a, 0 < a, 0 <= a

Normal, Unconditional, AND, OR, DeMorgan

All other relations Normal, Unconditional

tbit, tnat All Normal, Unconditional, AND, OR, DeMorgan



4-8 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

4.3.4 Predicate Register Transfers

Instructions are provided to transfer between the predicate register file and a general register. These instructions operate in
a “broadside” manner whereby multiple predicate registers are transferred in parallel, such that predicate register N is
transferred to/from bit N of a general register.

The move to predicates instruction (mov pr=) loads multiple predicate registers from a general register according to a
mask specified by an immediate. The mask contains one bit for each of PR 1 through PR 15 (PR 0 is hardwired to 1) and
one bit for all of PR 16 through PR63 (the rotating predicates). A predicate register is written from the corresponding bit
in a general register if the corresponding mask bit is 1; if the mask bit is 0 the predicate register is not modified.

The move to rotating predicates instruction (mov pr.rot=) copies 48 bits from an immediate value into the 48 rotating
predicates (PR 16 through PR 63). The immediate value includes 28 bits, and is sign-extended. Thus PR 16 through PR 42
can be independently set to new values, and PR 43 through PR 63 are all set to either 0 or 1.

The move from predicates instruction (mov =pr) transfers the entire predicate register file into a general register target.

For all of these predicate register transfers, the predicate registers are accessed as though the register rename base
(CFM.rrb.pr) were 0. Typically, therefore, software should clear CFM.rrb.pr before initializing rotating predicates.

4.4 Memory Access Instructions
Memory is accessed by simple load, store and semaphore instructions, which transfer data to and from general registers or
floating-point registers. The memory address is specified by the contents of a general register.

Most load and store instructions can also specify base-address-register update. Base update adds either an immediate
value or the contents of a general register to the address register, and places the result back in the address register. The
update is done after the load or store operation, i.e., it is performed as an address post-increment.

For highest performance, data should be aligned on natural boundaries. Within a 4K-byte boundary, accesses misaligned
with respect to their natural boundaries will always fault if UM.ac (alignment check bit in the User Mask register) is 1. If
UM.ac is 0, then an unaligned access will succeed if it is supported by the implementation; otherwise it will cause an
Unaligned Data Reference fault.  All memory accesses that cross a 4K-byte boundary will cause an Unaligned Data Ref-
erence fault independent of UM.ac. Additionally, all semaphore instructions will cause an Unaligned Data Reference fault
if the access is not aligned to its natural boundary, independent of UM.ac.

Accesses to memory quantities larger than a byte may be done in a big-endian or little-endian fashion. The byte ordering
for all memory access instructions is determined by UM.be in the User Mask register for IA-64 memory references. All
IA-32 memory references are performed little-endian.

Load, store and semaphore instructions are summarized in Table 4-12.

fcmp, fclass All Normal, Unconditional

frcpa, frsqrta,
fprcpa, fprsqrta

Not Applicable Unconditional

Table 4-11. Instructions and Compare Types Provided (Continued)

Instruction Relation Types Provided



HP/Intel IA-64 Application Programming Model 4-9

IA-64 Application ISA Guide 1.0

4.4.1 Load Instructions

Load instructions transfer data from memory to a general register, a floating-point register or a pair of floating-point reg-
isters.

For general register loads, access sizes of 1, 2, 4, and 8 bytes are defined. For sizes less than eight bytes, the loaded value
is zero extended to 64-bits.

For floating-point loads, five access sizes are defined: single precision (4 bytes), double precision (8 bytes), double-
extended precision (10 bytes), single precision pair (8 bytes), and double precision pair (16 bytes). The value(s) loaded
from memory are converted into floating-point register format (see “Memory Access Instructions” on page 5-6 for
details). The floating-point load pair instructions load two adjacent single or double precision numbers into two indepen-
dent floating-point registers (see the ldfp[s/d] instruction description for restrictions on target register specifiers). The
floating-point load pair instructions cannot specify base register update.

Variants of both general and floating-point register loads are defined for supporting compiler-directed control and data
speculation. These use the general register NaT bits and the ALAT. See “Control Speculation” on page 4-10 and “Data
Speculation” on page 4-12.

Variants are also provided for controlling the memory/cache subsystem. An ordered load can be used to force ordering in
memory accesses. See “Memory Access Ordering” on page 4-18. A biased load provides a hint to acquire exclusive own-
ership of the accessed line. See “Memory Hierarchy Control and Consistency” on page 4-16.

Special-purpose loads are defined for restoring register values that were spilled to memory. The ld8.fill instruction
loads a general register and the corresponding NaT bit (defined for an 8-byte access only). The ldf.fill instruction
loads a value in floating-point register format from memory without conversion (defined for 16-byte access only).
See“Register Spill and Fill” on page 4-12.

4.4.2 Store Instructions

Store instructions transfer data from a general or floating-point register to memory. Store instructions are always non-
speculative. Store instructions can specify base-address-register update, but only by an immediate value. A variant is also
provided for controlling the memory/cache subsystem. An ordered store can be used to force ordering in memory
accesses.

Both general and floating-point register stores are defined with the same access sizes as their load counterparts. The only
exception is that there are no floating-point store pair instructions.

Table 4-12. Memory Access Instructions

Mnemonic
Operation

General
Floating-point

Normal Load Pair
ld ldf ldfp Load
ld.s ldf.s ldfp.s Speculative load
ld.a ldf.a ldfp.a Advanced load
ld.sa ldf.sa ldfp.sa Speculative advanced load
ld.c.nc, ld.c.clr ldf.c.nc, ldf.c.clr ldfp.c.nc, ldfp.c.clr Check load
ld.c.clr.acq Ordered check load
ld.acq Ordered load
ld.bias Biased load
ld8.fill ldf.fill Fill
st stf Store
st.rel Ordered store
st.spill stf.spill Spill
cmpxchg Compare and exchange
xchg Exchange memory and GR
fetchadd Fetch and add



4-10 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Special purpose stores are defined for spilling register values to memory. The st8.spill instruction stores a general reg-
ister and the corresponding NaT bit (defined for 8-byte access only). This allows the result of a speculative calculation to
be spilled to memory and restored. The stf.spill instruction stores a floating-point register in memory in the floating-
point register format without conversion. This allows register spill and restore code to be written to be compatible with
possible future extensions to the floating-point register format. The stf.spill instruction also does not fault if the regis-
ter contains a NaTVal, and is defined for 16-byte access only. See“Register Spill and Fill” on page 4-12.

4.4.3 Semaphore Instructions

Semaphore instructions atomically load a general register from memory, perform an operation and then store a result to
the same memory location. Semaphore instructions are always non-speculative. No base register update is provided.

Three types of atomic semaphore operations are defined: exchange (xchg); compare and exchange (cmpxchg); and fetch
and add (fetchadd).

The xchg target is loaded with the zero-extended contents of the memory location addressed by the first source and then
the second source is stored into the same memory location.

The cmpxchg target is loaded with the zero-extended contents of the memory location addressed by the first source; if the
zero-extended value is equal to the contents of the Compare and Exchange Compare Value application register (CCV),
then the second source is stored into the same memory location.

The fetchadd instruction specifies one general register source, one general register target, and an immediate. The
fetchadd target is loaded with the zero-extended contents of the memory location addressed by the source and then the
immediate is added to the loaded value and the result is stored into the same memory location.

4.4.4 Control Speculation

Special mechanisms are provided to allow for compiler-directed speculation. This speculation takes two forms, control
speculation and data speculation, with a separate mechanism to support each. See also “Data Speculation” on page 4-12.

4.4.4.1 Control Speculation Concepts

Control speculation describes the compiler optimization where an instruction or a sequence of instructions is executed
before it is known that the dynamic control flow of the program will actually reach the point in the program where the
sequence of instructions is needed. This is done with instruction sequences that have long execution latencies. Starting the
execution early allows the compiler to overlap the execution with other work, increasing the parallelism and decreasing
overall execution time. The compiler performs this optimization when it determines that it is very likely that the dynamic
control flow of the program will eventually require this calculation. In cases where the control flow is such that the calcu-
lation turns out not to be needed, its results are simply discarded (the results in processor registers are simply not used).

Since the speculative instruction sequence may not be required by the program, no exceptions encountered that would be
visible to the program can be signalled until it is determined that the program’s control flow does require the execution of
this instruction sequence. For this reason, a mechanism is provided for recording the occurrence of an exception so that it
can be signalled later if and when it is necessary. In such a situation, the exception is said to be deferred. When an excep-
tion is deferred by an instruction, a special token is written into the target register to indicate the existence of a deferred
exception in the program.

Deferred exception tokens are represented differently in the general and floating-point register files. In general registers,
an additional bit is defined for each register called the NaT bit (Not a Thing). Thus general registers are 65 bits wide. A
NaT bit equal to 1 indicates that the register contains a deferred exception token, and that its 64-bit data portion contains
an implementation specific value that software cannot rely upon. In floating-point registers, a deferred exception is indi-

Table 4-13. State Relating to Memory Access

Register Function
UM.be User mask byte ordering

UM.ac User mask Unaligned Data Reference fault enable

UNAT GR NaT collection

CCV Compare and Exchange Compare Value application register



HP/Intel IA-64 Application Programming Model 4-11

IA-64 Application ISA Guide 1.0

cated by a specific pseudo-zero encoding called the NaTVal (see “Representation of Values in Floating-point Registers”
on page 5-2 for details).

4.4.4.2 Control Speculation and Instructions

Instructions are divided into two categories: speculative (instructions which can be used speculatively) and non-specula-
tive (instructions which cannot). Non-speculative instructions will raise exceptions if they occur and are therefore unsafe
to schedule before they are known to be executed. Speculative instructions defer exceptions (they do not raise them) and
are therefore safe to schedule before they are know to be executed.

Loads to general and floating-point registers have both non-speculative (ld, ldf, ldfp) and speculative (ld.s, ldf.s,
ldfp.s) variants. Generally, all computation instructions which write their results to general or floating-point registers
are speculative. Any instruction that modifies state other than a general or floating-point register is non-speculative, since
there would be no way to represent the deferred exception (there are a few exceptions).

Deferred exception tokens propagate through the program in a dataflow manner. A speculative instruction that reads a reg-
ister containing a deferred exception token will propagate a deferred exception token into its target. Thus a chain of
instructions can be executed speculatively, and only the result register need be checked for a deferred exception token to
determine whether any exceptions occurred.

At the point in the program when it is known that the result of a speculative calculation is needed, a speculation check
(chk.s) instruction is used. This instruction tests for a deferred exception token. If none is found, then the speculative cal-
culation was successful, and execution continues normally. If a deferred exception token is found, then the speculative
calculation was unsuccessful and must be re-done. In this case, the chk.s instruction branches to a new address (specified
by an immediate offset in the chk.s instruction). Software can use this mechanism to invoke code that contains a copy of
the speculative calculation (but with non-speculative loads). Since it is now known that the calculation is required, any
exceptions which now occur can be signalled and handled normally.

Since computational instructions do not generally cause exceptions, the only instructions which generate deferred excep-
tion tokens are speculative loads. (IEEE floating-point exceptions are handled specially through a set of alternate status
fields. See “Floating-point Status Register” on page 5-4.) Other speculative instructions propagate deferred exception
tokens, but do not generate them.

4.4.4.3 Control Speculation and Compares

As stated earlier, most instructions that write a register file other than the general registers or the floating-point registers
are non-speculative. The compare (cmp, cmp4, fcmp), test bit (tbit), floating-point class (fclass), and floating-point
approximation (frcpa, frsqrta) instructions are special cases. These instructions read general or floating-point registers
and write one or two predicate registers.

For these instructions, if any source contains a deferred exception token, all predicate targets are either cleared or left
unchanged, depending on the compare type (see Table 4-10 on page 4-7). Software can use this behavior to ensure that
any dependent conditional branches are not taken and any dependent predicated instructions are nullified. See “Predica-
tion” on page 4-6.

Deferred exception tokens can also be tested for with certain compare instructions. The test NaT (tnat) instruction tests
the NaT bit corresponding to the specified general register and writes two predicate results. The floating-point class
(fclass) instruction can be used to test for a NaTVal in a floating-point register and write the result to two predicate reg-
isters. (fclass does not clear both predicate targets in the presence of a NaTVal input if NaTVal is one of the classes
being tested for.)

4.4.4.4 Control Speculation without Recovery

A non-speculative instruction that reads a register containing a deferred exception token will raise a Register NaT Con-
sumption fault. Such instructions can be thought of as performing a non-recoverable speculation check operation. In some
compilation environments, it may be true that the only exceptions that are deferred are fatal errors. In such a program, if
the result of a speculative calculation is checked and a deferred exception token is found, execution of the program is ter-
minated. For such a program, the results of speculative calculations can be checked simply by using non-speculative
instructions.



4-12 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

4.4.4.5 Register Spill and Fill

Special store and load instructions are provided for spilling a register to memory and preserving any deferred exception
token, and for restoring a spilled register.

The spill and fill general register instructions (st8.spill, ld8.fill) are defined to save/restore a general register along
with the corresponding NaT bit.

The st8.spill instruction writes a general register’s NaT bit into the User NaT Collection application register (UNAT),
and, if the NaT bit was 0, writes the register’s 64-bit data portion to memory. If the register’s NaT bit was 1, the UNAT is
updated, but the memory update is implementation specific, and must consistently follow one of three spill behaviors: 

• The st8.spill may not update memory with the register’s 64-bit data portion, or 

• The st8.spill may write a zero to the specified memory location, or

• The st8.spill may write the register’s 64-bit data portion to memory, only if that implementation returns a zero
into the target register of all NaTed speculative loads, and that implementation also guarantees that all NaT propagat-
ing instructions perform all computations as specified by the instruction pages.

Bits 8:3 of the memory address determine which bit in the UNAT register is written.

The ld8.fill instruction loads a general register from memory taking the corresponding NaT bit from the bit in the
UNAT register addressed by bits 8:3 of the memory address. The UNAT register must be saved and restored by software.
It is the responsibility of software to ensure that the contents of the UNAT register are correct while executing st8.spill

and ld8.fill instructions.

The floating-point spill and fill instructions (stf.spill, ldf.fill) are defined to save/restore a floating-point register
(saved as 16 bytes) without surfacing an exception if the FR contains a NaTVal (these instructions do not affect the UNAT
register).

The general and floating-point spill/fill instructions allow spilling/filling of registers that are targets of a speculative
instruction and may therefore contain a deferred exception token. Note also that transfers between the general and float-
ing-point register files cause a conversion between the two deferred exception token formats.

Table 4-14 lists the state relating to control speculation. Table 4-15 summarizes the instructions related to control specula-
tion.

4.4.5 Data Speculation

Just as control speculative loads and checks allow the compiler to schedule instructions across control dependences, data
speculative loads and checks allow the compiler to schedule instructions across some types of ambiguous data depen-
dences. This section details the usage model and semantics of data speculation and related instructions.

Table 4-14. State Related to Control Speculation

Register Description
NaT bits 65th bit associated with each GR indicating a deferred exception

NaTVal Pseudo-Zero encoding for FR indicating a deferred exception

UNAT User NaT collection application register

Table 4-15. Instructions Related to Control Speculation

Mnemonic Operation
ld.s, ldf.s, ldfp.s GR and FR speculative loads
ld8.fill, ldf.fill Fill GR with NaT collection, fill FR
st8.spill, stf.spill Spill GR with NaT collection, spill FR
chk.s Test GR or FR for deferred exception token
tnat Test GR NaT bit and set predicate



HP/Intel IA-64 Application Programming Model 4-13

IA-64 Application ISA Guide 1.0

4.4.5.1 Data Speculation Concepts

An ambiguous memory dependence is said to exist between a store (or any operation that may update memory state) and
a load when it cannot be statically determined whether the load and store might access overlapping regions of memory.
For convenience, a store that cannot be statically disambiguated relative to a particular load is said to be ambiguous rela-
tive to that load. In such cases, the compiler cannot change the order in which the load and store instructions were origi-
nally specified in the program. To overcome this scheduling limitation, a special kind of load instruction called an
advanced load can be scheduled to execute earlier than one or more stores that are ambiguous relative to that load.

As with control speculation, the compiler can also speculate operations that are dependent upon the advanced load and
later insert a check instruction that will determine whether the speculation was successful or not. For data speculation, the
check can be placed anywhere the original non-data speculative load could have been scheduled.

Thus, a data-speculative sequence of instructions consists of an advanced load, zero or more instructions dependent on the
value of that load, and a check instruction. This means that any sequence of stores followed by a load can be transformed
into an advanced load followed by a sequence of stores followed by a check. The decision to perform such a transforma-
tion is highly dependent upon the likelihood and cost of recovering from an unsuccessful data speculation.

4.4.5.2 Data Speculation and Instructions

Advanced loads are available in integer (ld.a), floating-point (ldf.a), and floating-point pair (ldfp.a) forms. When an
advanced load is executed, it allocates an entry in a structure called the Advanced Load Address Table (ALAT). Later,
when a corresponding check instruction is executed, the presence of an entry indicates that the data speculation suc-
ceeded; otherwise, the speculation failed and one of two kinds of compiler-generated recovery is performed:

1. The check load instruction (ld.c, ldf.c, or ldfp.c) is used for recovery when the only instruction scheduled
before a store that is ambiguous relative to the advanced load is the advanced load itself. The check load searches
the ALAT for a matching entry. If found, the speculation was successful; if a matching entry was not found, the
speculation was unsuccessful and the check load reloads the correct value from memory. Figure 4-2 shows this
transformation.

2. The advanced load check (chk.a) is used when an advanced load and several instructions that depend on the
loaded value are scheduled before a store that is ambiguous relative to the advanced load. The advanced load
check works like the speculation check (chk.s) in that, if the speculation was successful, execution continues
inline and no recovery is necessary; if speculation was unsuccessful, the chk.a branches to compiler-generated
recovery code. The recovery code contains instructions that will re-execute all the work that was dependent on
the failed data speculative load up to the point of the check instruction. As with the check load, the success of a
data speculation using an advanced load check is determined by searching the ALAT for a matching entry. This
transformation is shown in Figure 4-3.

Before Data Speculation After Data Speculation

// other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];; // advanced load
// other instructions
st8 [r4] = r12
ld8.c.clr r6 = [r8] // check load
add r5 = r6, r7;;
st8 [r18] = r5

Figure 4-2. Data Speculation Recovery Using ld.c



4-14 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Recovery code may use either a normal or advanced load to obtain the correct value for the failed advanced load. An
advanced load is used only when it is advantageous to have an ALAT entry reallocated after a failed speculation. The last
instruction in the recovery code should branch to the instruction following the chk.a.

4.4.5.3 Detailed Functionality of the ALAT and Related Instructions

The ALAT is the structure that holds the state necessary for advanced loads and checks to operate correctly. The ALAT is
searched in two different ways: by physical addresses and by ALAT register tags. An ALAT register tag is a unique num-
ber derived from the physical target register number and type in conjunction with other implementation-specific state.
Implementation-specific state might include register stack wrap-around information to distinguish one instance of a phys-
ical register that may have been spilled by the RSE from the current instance of that register, thus avoiding the need to
purge the ALAT on all register stack wrap-arounds.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely on ALAT values being
preserved across an instruction set transition. On entry to IA-32 instruction set, existing entries in the ALAT are ignored. 

Allocating and Checking ALAT Entries

Advanced loads perform the following actions:

1. The ALAT register tag for the advanced load is computed. (For ldfp.a, a tag is computed only for the first target
register.)

2. If an entry with a matching ALAT register tag exists, it is removed.

3. A new entry is allocated in the ALAT which contains the new ALAT register tag, the load access size, and a tag
derived from the physical memory address.

4. The value at the address specified in the advanced load is loaded into the target register and, if specified, the base
register is updated and an implicit prefetch is performed.

Since the success of a check is determined by finding a matching register tag in the ALAT, both the chk.a and the target
register of a ld.c must specify the same register as their corresponding advanced load. Additionally, the check load must
use the same address and operand size as the corresponding advanced load; otherwise, the value written into the target
register by the check load is undefined. 

An advanced load check performs the following actions:

1. It looks for a matching ALAT entry and if found, falls through to the next instruction.

2. If no matching entry is found, the chk.a branches to the specified address.

An implementation may choose to implement a failing advanced load check directly as a branch or as a fault where the
fault-handler emulates the branch. Although the expected mode of operation is for an implementation to detect matching
entries in the ALAT during checks, an implementation may fail a check instruction even when an entry with a matching
ALAT register tag exists. This will be a rare occurrence but software must not assume that the ALAT does not contain the
entry.

Before Data Speculation After Data Speculation

// other instructions
st8 [r4] = r12
ld8 r6 = [r8];;
add r5 = r6, r7;;
st8 [r18] = r5

ld8.a r6 = [r8];;
// other instructions
add r5 = r6, r7;;
// other instructions
st8 [r4] = r12
chk.a.clr r6, recover

back:
st8 [r18] = r5

// somewhere else in program
recover:

ld8 r6 = [r8];;
add r5 = r6, r7
br back

Figure 4-3. Data Speculation Recovery Using chk.a



HP/Intel IA-64 Application Programming Model 4-15

IA-64 Application ISA Guide 1.0

A check load checks for a matching entry in the ALAT. If no matching entry is found, it reloads the value from memory
and any faults that occur during the memory reference are raised. When a matching entry is found, the target register is
left unchanged.

If the check load was an ordered check load (ld.c.clr.acq), then it is performed with the semantics of an ordered load
(ld.acq). ALAT register tag lookups by advanced load checks and check loads are subject to memory ordering con-
straints as outlined in “Memory Access Ordering” on page 4-18.

In addition to the flexibility described above, the size, organization, matching algorithm, and replacement algorithm of the
ALAT are implementation dependent. Thus, the success or failure of specific advanced loads and checks in a program
may change: when the program is run on different processor implementations, within the execution of a single program on
the same implementation, or between different runs on the same implementation.

Invalidating ALAT Entries

In addition to entries removed by advanced loads, ALAT entry invalidations can occur implicitly by events that alter
memory state or explicitly by any of the following instructions: ld.c.clr, ld.c.clr.acq, chk.a.clr, invala, inv-
ala.e. Events that may implicitly invalidate ALAT entries include those that change memory state or memory translation
state such as:

1. The execution of stores or semaphores on other processors in the coherence domain.

2. The execution of store or semaphore instructions issued on the local processor.

When one of these events occurs, hardware checks each memory region represented by an entry in the ALAT to see if it
overlaps with the locations affected by the invalidation event. ALAT entries whose memory regions overlap with the
invalidation event locations are removed. 

4.4.5.4 Combining Control and Data Speculation

Control speculation and data speculation are not mutually exclusive; a given load may be both control and data specula-
tive. Both control speculative (ld.sa, ldf.sa, ldfp.sa) and non-control speculative (ld.a, ldf.a, ldfp.a) variants of
advanced loads are defined for general and floating-point registers. If a speculative advanced load generates a deferred
exception token then:

1. Any existing ALAT entry with the same ALAT register tag is invalidated.

2. No new ALAT entry is allocated.

3. If the target of the load was a general-purpose register, its NaT bit is set.

4. If the target of the load was a floating-point register, then NaTVal is written to the target register.

If a speculative advanced load does not generate a deferred exception, then its behavior is the same as the corresponding
non-control speculative advanced load. 

Since there can be no matching entry in the ALAT after a deferred fault, a single advanced load check or check load is suf-
ficient to check both for data speculation failures and to detect deferred exceptions.

4.4.5.5 Instruction Completers for ALAT Management

To help the compiler manage the allocation and deallocation of ALAT entries, two variants of advanced load checks and
check loads are provided: variants with clear (chk.a.clr, ld.c.clr, ld.c.clr.acq, ldf.c.clr, ldfp.c.clr) and
variants with no clear (chk.a.nc, ld.c.nc, ldf.c.nc, ldfp.c.nc). 

The clear variants are used when the compiler knows that the ALAT entry will not be used again and wants the entry
explicitly removed. This allows software to indicate when entries are unneeded, making it less likely that a useful entry
will be unnecessarily forced out because all entries are currently allocated.

For the clear variants of check load, any ALAT entry with the same ALAT register tag is invalidated independently of
whether the address or size fields of the check load and the corresponding advanced load match. For chk.a.clr, the entry
is guaranteed to be invalidated only when the instruction falls through (the recovery code is not executed). Thus, a failing
chk.a.clr may or may not clear any matching ALAT entries. In such cases, the recovery code must explicitly invalidate
the entry in question if program correctness depends on the entry being absent after a failed chk.a.clr.



4-16 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Non-clear variants of both kinds of data speculation checks act as a hint to the processor that an existing entry should be
maintained in the ALAT or that a new entry should be allocated when a matching ALAT entry doesn’t exist. Such variants
can be used within loops to check advanced loads which were presumed loop-invariant and moved out of the loop by the
compiler. This behavior ensures that if the check load fails on one iteration, then the check load will not necessarily fail on
all subsequent iterations. Whenever a new entry is inserted into the ALAT or when the contents of an entry are updated,
the information written into the ALAT only uses information from the check load and does not use any residual informa-
tion from a prior entry. The non-clear variant of chk.a, chk.a.nc, does not allocate entries and the ‘nc’ completer acts as
a hint to the processor that the entry should not be cleared.

Table 4-16 and Table 4-17 summarize state and instructions relating to data speculation.

4.4.6 Memory Hierarchy Control and Consistency

4.4.6.1 Hierarchy Control and Hints

IA-64 memory access instructions are defined to specify whether the data being accessed possesses temporal locality. In
addition, memory access instructions can specify which levels of the memory hierarchy are affected by the access. This
leads to an architectural view of the memory hierarchy depicted in Figure 4-4 composed of zero or more levels of cache
between the register files and memory where each level may consist of two parallel structures: a temporal structure and a
non-temporal structure. Note that this view applies to data accesses and not instruction accesses.

Structure Function
ALAT Advanced load address table

Table 4-16. State Relating to Data Speculation

Mnemonic Operation
ld.a, ldf.a, ldfp.a GR and FR advanced load
st, st.rel, st8.spill, stf, stf.spill GR and FR store
cmpxchg, fetchadd, xchg GR semaphore
ld.c.clr, ld.c.clr.acq, ldf.c.clr, ldfp.c.clr GR and FR check load, clear on ALAT hit
ld.c.nc, ldf.c.nc, ldfp.c.nc GR and FR check load, re-allocate on ALAT miss
ld.sa, ldf.sa, ldfp.sa GR and FR speculative advanced load
chk.a.clr, chk.a.nc GR and FR advanced load check
invala Invalidate all ALAT entries
invala.e Invalidate individual ALAT entry for GR or FR

Table 4-17. Instructions Relating to Data Speculation

Figure 4-4. Memory Hierarchy

Structure
Temporal

Non-
temporal
Structure

Memory
Register

Files

Structure
Temporal

Non-
temporal
Structure

Structure
Temporal

Non-
temporal
Structure

Level 1 Level 2 Level N

Cache



HP/Intel IA-64 Application Programming Model 4-17

IA-64 Application ISA Guide 1.0

The temporal structures cache memory accessed with temporal locality; the non-temporal structures cache memory
accessed without temporal locality. Both structures assume that memory accesses possess spatial locality. The existence of
separate temporal and non-temporal structures, as well as the number of levels of cache, is implementation dependent. 

Three mechanisms are defined for allocation control: locality hints; explicit prefetch; and implicit prefetch. Locality hints
are specified by load, store, and explicit prefetch (lfetch) instructions. A locality hint specifies a hierarchy level (e.g., 1,
2, all). An access that is temporal with respect to a given hierarchy level is treated as temporal with respect to all lower
(higher numbered) levels. An access that is non-temporal with respect to a given hierarchy level is treated as temporal
with respect to all lower levels. Finding a cache line closer in the hierarchy than specified in the hint does not demote the
line. This enables the precise management of lines using lfetch and then subsequent uses by .nta loads and stores to
retain that level in the hierarchy. For example, specifying the .nt2 hint by a prefetch indicates that the data should be
cached at level 3. Subsequent loads and stores can specify .nta and have the data remain at level 3.

Locality hints do not affect the functional behavior of the program and may be ignored by the implementation. The local-
ity hints available to loads, stores, and explicit prefetch instructions are given in Table 4-18. Instruction accesses are con-
sidered to possess both temporal and spatial locality with respect to level 1.

Each locality hint implies a particular allocation path in the memory hierarchy. The allocation paths corresponding to the
locality hints are depicted in Figure 4-5. The allocation path specifies the structures in which the line containing the data
being referenced would best be allocated. If the line is already at the same or higher level in the hierarchy no movement
occurs. Hinting that a datum should be cached in a temporal structure indicates that it is likely to be read in the near future.

Explicit prefetch is defined in the form of the line prefetch instruction (lfetch, lfetch.fault). The lfetch instructions
moves the line containing the addressed byte to a location in the memory hierarchy specified by the locality hint. If the
line is already at the same or higher level in the hierarchy, no movement occurs. Both immediate and register post-incre-
ment are defined for lfetch and lfetch.fault. The lfetch instruction does not cause any exceptions, does not affect
program behavior, and may be ignored by the implementation. The lfetch.fault instruction affects the memory hierar-
chy in exactly the same way as lfetch but takes exceptions as if it were a 1-byte load instruction.

Table 4-18. Locality Hints Specified by Each Instruction Class

Mnemonic Locality Hint
Instruction Type

Load Store
lfetch, 

lfetch.fault
none Temporal, level 1 x x x
nt1 Non-temporal, level 1 x x
nt2 Non-temporal, level 2 x
nta Non-temporal, all levels x x x

Figure 4-5. Allocation Paths Supported in the Memory Hierarchy

Level 1 Level 2

Temporal

Non-temporal

Temporal

Structure Structure
Non-temporal

Memory

temporal, level 1

non-temporal, level 1

non-temporal, all levels

Level 3

Non-temporal

Temporal

Structure

non-temporal, level 2

Cache

Structure Structure Structure



4-18 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Implicit prefetch is based on the address post-increment of loads, stores, lfetch and lfetch.fault. The line containing
the post-incremented address is moved in the memory hierarchy based on the locality hint of the originating load, store,
lfetch or lfetch.fault. If the line is already at the same or higher level in the hierarchy then no movement occurs.
Implicit prefetch does not cause any exceptions, does not affect program behavior, and may be ignored by the implemen-
tation.

Another form of hint that can be provided on loads is the ld.bias load type. This is a hint to the implementation to
acquire exclusive ownership of the line containing the addressed data. The bias hint does not affect program functionality
and may be ignored by the implementation.

The fc instruction invalidates the cache line in all levels of the memory hierarchy above memory. If the cache line is not
consistent with memory, then it is copied into memory before invalidation.

Table 4-19 summarizes the memory hierarchy control instructions and hint mechanisms.

4.4.6.2 Memory Consistency

IA-64 instruction accesses made by a processor are not coherent with respect to instruction and/or data accesses made by
any other processor, nor are instruction accesses made by a processor coherent with respect to data accesses made by that
same processor. Therefore, hardware is not required to keep a processor’s instruction caches consistent with respect to any
processor’s data caches, including that processor’s own data caches; nor is hardware required to keep a processor’s
instruction caches consistent with respect to any other processor’s instruction caches. Data accesses from different proces-
sors in the same coherence domain are coherent with respect to each other; this consistency is provided by the hardware.
Data accesses from the same processor are subject to data dependency rules; see Section 4.4.7, “Memory Access Order-
ing” below. 

The mechanism(s) by which coherence is maintained is implementation dependent. Separate or unified structures for
caching data and instructions are not architecturally visible. Within this context there are two categories of data memory
hierarchy control: allocation and flush. Allocation refers to movement towards the processor in the hierarchy (lower num-
bered levels) and flush refers to movement away from the processor in the hierarchy (higher numbered levels). Allocation
and flush occur in line-sized units; the minimum architecturally visible line size is 32-bytes (aligned on a 32-byte bound-
ary). The line size in an implementation may be smaller in which case the implementation will need to move multiple
lines for each allocation and flush event. An implementation may allocate and flush in units larger than 32-bytes.

In order to guarantee that a write from a given processor becomes visible to the instruction stream of that same, and other,
processors, the affected line(s) must be flushed to memory. Software may use the fc instruction for this purpose. Memory
updates by DMA devices are coherent with respect to instruction and data accesses of processors. The consistency
between instruction and data caches of processors with respect to memory updates by DMA devices is provided by the
hardware. In case a program modifies its own instructions, the sync.i and srlz.i instructions are used to ensure that
prior coherency actions are observed by a given point in the program. Refer to the description sync.i on page 6-172 for
an example of self-modifying code.

4.4.7 Memory Access Ordering

Memory data access ordering must satisfy read-after-write (RAW), write-after-write (WAW), and write-after-read (WAR)
data dependencies to the same memory location. In addition, memory writes and flushes must observe control dependen-
cies. Except for these restrictions, reads, writes, and flushes may occur in an order different from the specified program
order. Note that no ordering exists between instruction accesses and data accesses or between any two instruction
accesses. The mechanisms described below are defined to enforce a particular memory access order. In the following dis-
cussion, the terms “previous” and “subsequent” are used to refer to the program specified order. The term “visible” is used

Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms

Mnemonic Operation
.nt1 and .nta completer on loads Load usage hints

.nta completer on stores Store usage hints

prefetch line at post-increment address on loads and stores Prefetch hint

lfetch, lfetch.fault with .nt1, .nt2, and .nta hints Prefetch line
fc Flush cache



HP/Intel IA-64 Application Programming Model 4-19

IA-64 Application ISA Guide 1.0

to refer to all architecturally visible effects of performing a memory access (at a minimum this involves reading or writing
memory).

Memory accesses follow one of four memory ordering semantics: unordered, release, acquire or fence. Unordered data
accesses may become visible in any order. Release data accesses guarantee that all previous data accesses are made visible
prior to being made visible themselves. Acquire data accesses guarantee that they are made visible prior to all subsequent
data accesses. Fence operations combine the release and acquire semantics into a bi-directional fence, i.e., they guarantee
that all previous data accesses are made visible prior to any subsequent data accesses being made visible. 

Explicit memory ordering takes the form of a set of instructions: ordered load and ordered check load (ld.acq,
ld.c.clr.acq), ordered store (st.rel), semaphores (cmpxchg, xchg, fetchadd), and memory fence (mf). The ld.acq
and ld.c.clr.acq instructions follow acquire semantics. The st.rel follows release semantics. The mf instruction is a
fence operation. The xchg, fetchadd.acq, and cmpxchg.acq instructions have acquire semantics. The cmpxchg.rel,
and fetchadd.rel instructions have release semantics. The semaphore instructions also have implicit ordering. If there
is a write, it will always follow the read. In addition, the read and write will be performed atomically with no intervening
accesses to the same memory region.

Table 4-20 illustrates the ordering interactions between memory accesses with different ordering semantics. “O” indicates
that the first and second reference are performed in order with respect to each other. A “-” indicates that no ordering is
implied other than data dependencies (and control dependencies for writes and flushes).

Table 4-21 summarizes memory ordering instructions related to cacheable memory. 

4.5 Branch Instructions
Branch instructions effect a transfer of control flow to a new address. Branch targets are bundle-aligned, which means
control is always passed to the first instruction slot of the target bundle (slot 0). Branch instructions are not required to be
the last instruction in an instruction group. In fact, an instruction group can contain arbitrarily many branches (provided
that the normal RAW and WAW dependency requirements are met). If a branch is taken, only instructions up to the taken
branch will be executed. After a taken branch, the next instruction executed will be at the target of the branch. 

There are two categories of branches: IP-relative branches, and indirect branches. IP-relative branches specify their target
with a signed 21-bit displacement, which is added to the IP of the bundle containing the branch to give the address of the
target bundle. The displacement allows a branch reach of ±16MBytes and is bundle-aligned. Indirect branches use the
branch registers to specify the target address.

There are several branch types, as shown in Table 4-22. The conditional branch br is a branch which is taken if the speci-
fied predicate is 1, and not-taken otherwise. The conditional call branch br.call does the same thing, and in addition,
writes a link address to a specified branch register and adjusts the general register stack (see “Register Stack” on

Table 4-20. Memory Ordering Rules

First Reference
Second Reference

Fence Acquire Release Unordered

 fence O O O O

acquire O O O O

release O – O –

unordered O – O –

Table 4-21. Memory Ordering Instructions

Mnemonic Operation
ld.acq, ld.c.clr.acq Ordered load and ordered check load
st.rel Ordered store
xchg Exchange memory and general register
cmpxchg.acq, cmpxchg.rel Conditional exchange of memory and general register
fetchadd.acq,fetchadd.rel Add immediate to memory
mf Memory ordering fence



4-20 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

page 4-1). The conditional return br.ret does the same thing as an indirect conditional branch, plus it adjusts the general
register stack. Unconditional branches, calls and returns are executed by specifying PR 0 (which is always 1) as the pred-
icate for the branch instruction.

The counted loop type (CLOOP) uses the Loop Count (LC) application register. If LC is non-zero then it is decremented
and the branch is taken. If LC is zero, the branch falls through. The modulo-scheduled loop type branches (CTOP, CEXIT,
WTOP, WEXIT) are described in “Modulo-Scheduled Loop Support” on page 4-20. The loop type branches (CLOOP,
CTOP, CEXIT, WTOP, WEXIT) are allowed only in slot 2 of a bundle. A loop type branch executed in slot 0 or 1 will
cause an Illegal Operation fault.

Instructions are provided to move data between branch registers and general registers (mov =br, mov br=). Table 4-23
summarizes state and instructions relating to branching.

4.5.1 Modulo-Scheduled Loop Support

Support for software-pipelined loops is provided through rotating registers and loop branch types. Software pipelining of
a loop is analogous to hardware pipelining of a functional unit. The loop body is partitioned into multiple “stages” with
zero or more instructions in each stage. Modulo-scheduled loops have 3 phases: prolog, kernel, and epilog. During the
prolog phase, new loop iterations are started each time around (filling the software pipeline). During the kernel phase, the
pipeline is full. A new loop iteration is started, and another is finished each time around. During the epilog phase, no new
iterations are started, but previous iterations are completed (draining the software pipeline).

A predicate is assigned to each stage to control the activation of the instructions in that stage (this predicate is called the
“stage predicate”). To support the pipelining effect of stage predicates and registers in a software-pipelined loop, a fixed
sized area of the predicate and floating-point register files (PR16-PR63 and FR32-FR127), and a programmable sized area
of the general register file, are defined to “rotate.” The size of the rotating area in the general register file is determined by
an immediate in the alloc instruction. This immediate must be either zero or a multiple of 8. The general register rotating
area is defined to start at GR32 and overlay the local and output areas, depending on their relative sizes. The stage predi-

Table 4-22. Branch Types

Mnemonic Function Branch Condition Target Address
br.cond or br Conditional branch Qualifying predicate IP-rel or Indirect
br.call Conditional procedure call Qualifying predicate IP-rel or Indirect
br.ret Conditional procedure return Qualifying predicate Indirect
br.ia Invoke the IA-32 instruction set Unconditional Indirect
br.cloop Counted loop branch Loop count IP-rel

br.ctop, br.cexit Modulo-scheduled counted loop Loop count and Epilog count IP-rel

br.wtop, br.wexit Modulo-scheduled while loop Qualifying predicate and Epilog 
count

IP-rel

Table 4-23. State Relating to Branching

Register Function
BRs Branch registers

PRs Predicate registers

CFM Current Frame Marker

PFS Previous Function State application register

LC Loop Count application register

EC Epilog Count application register

Table 4-24. Instructions Relating to Branching

Mnemonic Operation
br Branch
mov =br Move from BR to GR
mov br= Move from GR to BR



HP/Intel IA-64 Application Programming Model 4-21

IA-64 Application ISA Guide 1.0

cates are allocated in the rotating area of the predicate register file. For counted loops, PR16 is architecturally defined to
be the first stage predicate with subsequent stage predicates extending to higher predicate register numbers. For while
loops, the first stage predicate may be any rotating predicate with subsequent stage predicates extending to higher predi-
cate register numbers. Software is required to initialize the stage (rotating) predicates prior to entering the loop. An alloc
instruction may not change the size of the rotating portion of the register stack frame unless all rotating register bases
(rrb’s) in the CFM are zero. All rrb’s can be set to zero with the clrrrb instruction. The clrrrb.pr form can be used to
clear just the rrb for the predicate registers. The clrrrb instruction must be the last instruction in an instruction group.

Rotation by one register position occurs when a software-pipelined loop type branch is executed. Registers are rotated
towards larger register numbers in a wrap-around fashion. For example, the value in register X will be located in register
X+1 after one rotation. If X is the highest addressed rotating register its value will wrap to the lowest addressed rotating
register. Rotation is implemented by renaming register numbers based upon the value of a rotating register base (rrb) con-
tained in CFM. A rrb is defined for each of the three rotating register files: CFM.rrb.gr for the general registers;
CFM.rrb.fr for the floating-point registers; CFM.rrb.pr for the predicate registers. General registers only rotate when the
size of the rotating region is not equal to zero. Floating-point and predicate registers always rotate. When rotation occurs,
two or all three rrb’s are decremented in unison. Each rrb is decremented modulo the size of their respective rotating
regions (e.g., 96 for rrb.fr). The operation of the rotating register rename mechanism is not otherwise visible to software.
The instructions that modify the rrb’s are listed in Table 4-25.

There are two categories of software-pipelined loop branch types: counted and while. Both categories have two forms: top
and exit. The “top” variant is used when the loop decision is located at the bottom of the loop body. A taken branch will
continue the loop while a not-taken branch will exit the loop. The “exit” variant is used when the loop decision is located
somewhere other than the bottom of the loop. A not-taken branch will continue the loop and a taken branch will exit the
loop. The “exit” variant is also used at intermediate points in an unrolled pipelined loop.

The branch condition of a counted loop branch is determined by the specific counted loop type (ctop or cexit), the value of
the loop count application register (LC), and the value of the epilog count application register (EC). Note that the counted
loop branches do not use a qualifying predicate. LC is initialized to one less than the number of iterations for the counted
loop and EC is initialized to the number of stages into which the loop body has been partitioned. While LC is greater than
zero, the branch direction will continue the loop, LC will be decremented, registers will be rotated (rrb’s are decre-
mented), and PR 16 will be set to 1 after rotation. (For each of the loop-type branches, PR 63 is written by the branch, and
after rotation this value will be in PR 16.)

Execution of a counted loop branch with LC equal to zero signals the start of the epilog. While in the epilog and while EC
is greater than one, the branch direction will continue the loop, EC will be decremented, registers will be rotated, and PR
16 will be set to 0 after rotation. Execution of a counted loop branch with LC equal to zero and EC equal to one signals the
end of the loop; the branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 16 will
be set to 0 after rotation. A counted loop type branch executed with both LC and EC equal to zero will have a branch
direction to exit the loop. LC, EC, and the rrb’s will not be modified (no rotation) and PR 63 will be set to 0. LC and EC
equal to zero can occur in some types of optimized, unrolled software-pipelined loops if the target of a cexit branch is set
to the next sequential bundle and the loop trip count is not evenly divisible by the unroll amount.

The direction of a while loop branch is determined by the specific while loop type (wtop or wexit), the value of the quali-
fying predicate, and the value of EC. The while loop branches do not use LC. While the qualifying predicate is one, the
branch direction will continue the loop, registers will be rotated, and PR 16 will be set to 0 after rotation. While the quali-
fying predicate is zero and EC is greater than one, the branch direction will continue the loop, EC will be decremented,
registers will be rotated, and PR 16 will be set to 0 after rotation. The qualifying predicate is one during the kernel and
zero during the epilog. During the prolog, the qualifying predicate may be zero or one depending upon the scheme used to
program the pipelined while loop. Execution of a while loop branch with qualifying predicate equal to zero and EC equal
to one signals the end of the loop; the branch direction will exit the loop, EC will be decremented, registers will be rotated,

Table 4-25. Instructions that Modify RRBs

Mnemonic Operation
clrrrb Clears all rrb’s
clrrrb.pr Clears rrb.pr
br.call Clears all rrb’s
br.ret Restores CFM.rrb’s from PFM.rrb’s
br.ctop, br.cexit, br.wtop, and br.wexit Decrements all rrb’s



4-22 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

and PR 16 will be set to 0 after rotation. A while loop branch executed with a zero qualifying predicate and with EC equal
to zero has a branch direction to exit the loop. EC and the rrb’s will not be modified (no rotation) and PR 63 will be set to
0.

For while loops, the initialization of EC depends upon the scheme used to program the pipelined while loop. Often, the
first valid condition for the while loop branch is not computed until several stages into the prolog. Therefore, software
pipelines for while loops often have several speculative prolog stages. During these stages, the qualifying predicate can be
set to zero or one depending upon the scheme used to program the loop. If the qualifying predicate is one throughout the
prolog, EC will be decremented only during the epilog phase and is initialized to one more than the number of epilog
stages. If the qualifying predicate is zero during the speculative stages of the prolog, EC will be decremented during this
part of the prolog, and the initialization value for EC is increased accordingly.

4.5.2 Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch prediction. This information can
be encoded with branch hints as part of a branch instruction (referred to as hints). Hints do not affect the functional behav-
ior of the program and may be ignored by the processor.

Branch instructions can provide three types of hints:

• Whether prediction strategy: This describes (for COND, CALL and RET type branches) how the processor should
predict the branch condition. (For the loop type branches, prediction is based on LC and EC.) The suggested strate-
gies that can be hinted are shown in Table 4-26. 

• Sequential prefetch: This indicates how much code the processor should prefetch at the branch target (shown in
Table 4-27). 

• Predictor deallocation: This provides re-use information to allow the hardware to better manage branch prediction
resources. Normally, prediction resources keep track of the most-recently executed branches. However, sometimes
the most-recently executed branch is not useful to remember, either because it will not be re-visited any time soon or
because a hint instruction will re-supply the information prior to re-visiting the branch. In such cases, this hint can be
used to free up the prediction resources.

Table 4-26. Whether Prediction Hint on Branches

Completer Strategy Operation
spnt Static Not-Taken Ignore this branch, do not allocate prediction resources for this branch.
sptk Static Taken Always predict taken, do not allocate prediction resources for this branch.
dpnt Dynamic Not-Taken Use dynamic prediction hardware. If no dynamic history information exists 

for this branch, predict not-taken.
dptk Dynamic Taken Use dynamic prediction hardware. If no dynamic history information exists 

for this branch, predict taken.

Table 4-27. Sequential Prefetch Hint on Branches

Completer Sequential Prefetch Hint Operation
few Prefetch few lines When prefetching code at the branch target, stop prefetching after a 

few (implementation-dependent number of) lines.
many Prefetch many lines When prefetching code at the branch target, prefetch more lines (also 

an implementation-dependent number).

Table 4-28. Predictor Deallocation Hint

Completer Operation
none Don’t deallocate
clr Deallocate branch information



HP/Intel IA-64 Application Programming Model 4-23

IA-64 Application ISA Guide 1.0

4.6 Multimedia Instructions
Multimedia instructions (see Table 4-29) treat the general registers as concatenations of eight 8-bit, four 16-bit, or two 32-
bit elements. They operate on each element independently and in parallel. The elements are always aligned on their natu-
ral boundaries within a general register. Most multimedia instructions are defined to operate on multiple element sizes.
Three classes of multimedia instructions are defined: arithmetic, shift and data arrangement.

4.6.1 Parallel Arithmetic

There are three forms of parallel addition and subtraction: modulo (padd, psub), signed saturation (padd.sss,
psub.sss), and unsigned saturation (padd.uuu, padd.uus, psub.uuu, psub.uus). The modulo forms have the result
wrap around the largest or smallest representable value in the range of the result element. In the saturating forms, results
larger than the largest representable value of the range of the result element, or smaller than the smallest representable
value of the range, are clamped to the largest or smallest value in the range of the result element respectively. The signed
saturation form treats both sources as signed and clamps the result to the limits of a signed range. The unsigned saturation
form treats one source as unsigned and clamps the result to the limits of an unsigned range. Two variants are defined that
treat the second source as either signed (.uus) or unsigned (.uuu).

The parallel average instruction (pavg, pavg.raz) adds corresponding elements from each source and right shifts each
result by one bit. In the simple form of the instruction, the carry out of the most-significant bit of each sum is written into
the most significant bit of the result element. In the round-away-from-zero form, a 1 is added to each sum before shifting.
The parallel average subtract instruction (pavgsub) performs a similar operation on the difference of the sources.

The parallel shift left and add instruction (pshladd) performs a left shift on the elements of the first source and then adds
them to the corresponding elements from the second source. Signed saturation is performed on both the shift and the add
operations. The parallel shift right and add instruction (pshradd) is similar to pshladd. Both of these instructions are
defined for 2-byte elements only.

The parallel compare instruction (pcmp) compares the corresponding elements of both sources and writes all ones (if true)
or all zeroes (if false) into the corresponding elements of the target according to one of two relations (== or >).

The parallel multiply right instruction (pmpy.r) multiplies the corresponding two even-numbered signed 2-byte elements
of both sources and writes the results into two 4-byte elements in the target. The pmpy.l instruction performs a similar
operation on odd-numbered 2-byte elements. The parallel multiply and shift right instruction (pmpyshr, pmpyshr.u) mul-
tiplies the corresponding 2-byte elements of both sources producing four 4-byte results. The 4-byte results are shifted right
by 0, 7, 15, or 16 bits as specified by the instruction. The least-significant 2 bytes of the 4-byte shifted results are then
stored in the target register.

The parallel sum of absolute difference instruction (psad) accumulates the absolute difference of corresponding 1-byte
elements and writes the result in the target.

The parallel minimum (pmin.u, pmin) and the parallel maximum (pmax.u, pmax) instructions deliver the minimum or
maximum, respectively, of the corresponding 1-byte or 2-byte elements in the target. The 1-byte elements are treated as
unsigned values and the 2-byte elements are treated as signed values.

Table 4-29. Parallel Arithmetic Instructions

Mnemonic Operation 1-byte 2-byte 4-byte
padd Parallel modulo addition x x x
padd.sss Parallel addition with signed saturation x x
padd.uuu, padd.uus Parallel addition with unsigned saturation x x
psub Parallel modulo subtraction x x x
psub.sss Parallel subtraction with signed saturation x x
psub.uuu, psub.uus Parallel subtraction with unsigned saturation x x
pavg Parallel arithmetic average x x
pavg.raz Parallel arithmetic average with round away from zero x x
pavgsub Parallel average of a difference x x
pshladd Parallel shift left and add with signed saturation x
pshradd Parallel shift right and add with signed saturation x



4-24 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

4.6.2 Parallel Shifts

The parallel shift left instruction (pshl) individually shifts each element of the first source by a count contained in either
a general register or an immediate. The parallel shift right instruction (pshr) performs an individual arithmetic right shift
of each element of one source by a count contained in either a general register or an immediate. The pshr.u instruction
performs an unsigned right shift. Table 4-30 summarizes the types of parallel shift instructions.

4.6.3 Data Arrangement

The mix right instruction (mix.r) interleaves the even-numbered elements from both sources into the target. The mix left
instruction (mix.l) interleaves the odd-numbered elements. The unpack low instruction (unpack.l) interleaves the ele-
ments in the least-significant 4 bytes of each source into the target register. The unpack high instruction (unpack.h) inter-
leaves elements from the most significant 4 bytes. The pack instructions (pack.sss, pack.uss) convert from 32-bit or
16-bit elements to 16-bit or 8-bit elements respectively. The least-significant half of larger elements in both sources are
extracted and written into smaller elements in the target register. The pack.sss instruction treats the extracted elements
as signed values and performs signed saturation on them. The pack.uss instruction performs unsigned saturation. The
mux instruction (mux) copies individual 2-byte or 1-byte elements in the source to arbitrary positions in the target accord-
ing to a specified function. For 2-byte elements, an 8-bit immediate allows all possible permutations to be specified. For
1-byte elements the copy function is selected from one of five possibilities (reverse, mix, shuffle, alternate, broadcast).
Table 4-31 describes the various types of parallel data arrangement instructions.

4.7 Register File Transfers
Table 4-32 shows the instructions defined to move values between the general register file and the floating-point, branch,
predicate, performance monitor, processor identification, and application register files. Several of the transfer instructions
share the same mnemonic (mov). The value of the operand identifies which register file is accessed.

pcmp Parallel compare x x x
pmpy.l Parallel signed multiply of odd elements x
pmpy.r Parallel signed multiply of even elements x
pmpyshr Parallel signed multiply and shift right x
pmpyshr.u Parallel unsigned multiply and shift right x
psad Parallel sum of absolute difference x
pmin Parallel minimum x x
pmax Parallel maximum x x

Table 4-30. Parallel Shift Instructions

Mnemonic Operation 1-byte 2-byte 4-byte
pshl Parallel shift left x x
pshr Parallel signed shift right x x
pshr.u Parallel unsigned shift right x x

Table 4-31. Parallel Data Arrangement Instructions

Mnemonic Operation 1-byte 2-byte 4-byte
mix.l Interleave odd elements from both sources x x x
mix.r Interleave even elements from both sources x x x
mux Arbitrary copy of individual source elements x x
pack.sss Convert from larger to smaller elements with signed saturation x x
pack.uss Convert from larger to smaller elements with unsigned saturation x
unpack.l Interleave least-significant elements from both sources x x x
unpack.h Interleave most significant elements from both sources x x x

Table 4-29. Parallel Arithmetic Instructions (Continued)

Mnemonic Operation 1-byte 2-byte 4-byte



HP/Intel IA-64 Application Programming Model 4-25

IA-64 Application ISA Guide 1.0

Memory access instructions only target or source the general and floating-point register files. It is necessary to use the
general register file as an intermediary for transfers between memory and all other register files except the floating-point
register file.

Two classes of move are defined between the general registers and the floating-point registers. The first type moves the
significand or the sign/exponent (getf.sig, setf.sig, getf.exp, setf.exp). The second type moves entire single or
double precision numbers (getf.s, setf.s, getf.d, setf.d). These instructions also perform a conversion between the
deferred exception token formats.

Instructions are provided to transfer between the branch registers and the general registers.

Instructions are defined to transfer between the predicate register file and a general register. These instructions operate in
a “broadside” manner whereby multiple predicate registers are transferred in parallel (predicate register N is transferred to
and from bit N of a general register). The move to predicate instruction (mov pr=) transfers a general register to multiple
predicate registers according to a mask specified by an immediate. The mask contains one bit for each of the static predi-
cate registers (PR 1 through PR 15 – PR 0 is hardwired to 1) and one bit for all of the rotating predicates (PR 16 through
PR63). A predicate register is written from the corresponding bit in a general register if the corresponding mask bit is set.
If the mask bit is clear then the predicate register is not modified. The rotating predicates are transferred as if CFM.rrb.pr
were zero. The actual value in CFM.rrb.pr is ignored and remains unchanged. The move from predicate instruction (mov

=pr) transfers the entire predicate register file into a general register target.

The mov =pmd[] instruction is defined to move from a performance monitor data (PMD) register to a general register. If
the operating system has not enabled reading of performance monitor data registers in user level then all zeroes are
returned. The mov =cpuid[] instruction is defined to move from a processor identification register to a general register.

The mov =ip instruction is provided for copying the current value of the instruction pointer (IP) into a general register.

4.8 Character Strings and Population Count
A small set of special instructions accelerate operations on character and bit-field data.

4.8.1 Character Strings

The compute zero index instructions (czx.l, czx.r) treat the general register source as either eight 1-byte or four 2-byte
elements and write the general register target with the index of the first zero element found. If there are no zero elements
in the source, the target is written with a constant one higher than the largest possible index (8 for the 1-byte form, 4 for
the 2-byte form). The czx.l instruction scans the source from left to right with the left-most element having an index of
zero. The czx.r instruction scans from right to left with the right-most element having an index of zero. Table 4-33 sum-
marizes the compute zero index instructions.

Table 4-32. Register File Transfer Instructions

Mnemonic Operation
getf.exp, getf.sig Move FR exponent or significand to GR
getf.s, getf.d Move single/double precision memory format from FR to GR
setf.s, setf.d Move single/double precision memory format from GR to FR
setf.exp, setf.sig Move from GR to FR exponent or significand
mov =br Move from BR to GR
mov br= Move from GR to BR
mov =pr Move from predicates to GR
mov pr=, mov pr.rot= Move from GR to predicates
mov ar= Move from GR to AR
mov =ar Move from AR to GR
sum, rum Set and reset user mask
mov =pmd[...] Move from performance monitor data register to GR
mov =cpuid[...] Move from processor identification register to GR
mov =ip Move from Instruction Pointer



4-26 IA-64 Application Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

4.8.2 Population Count

The population count instruction (popcnt) writes the number of bits which have a value of 1 in the source register into the
target register.

Table 4-33. String Support Instructions

Mnemonic Operation 1-byte 2-byte
czx.l Locate first zero element, left to right x x
czx.r Locate first zero element, right to left x x



HP/Intel IA-64 Floating-point Programming Model 5-1

IA-64 Application ISA Guide 1.0

5 IA-64 Floating-point Programming Model

The IA-64 floating-point architecture is fully compliant with the ANSI/IEEE Standard for Binary Floating-Point Arith-
metic (Std. 754-1985). There is full IEEE support for single, double, and double-extended real formats. The two IEEE
methods for controlling rounding precision are supported. The first method converts results to the double-extended expo-
nent range. The second method converts results to the destination precision. Some IEEE extensions such as fused multiply
and add, minimum and maximum operations, and a register file format with a larger range than the minimum double-
extended format are also included.

5.1 Data Types and Formats
Six data types are supported directly: single, double, double-extended real (IEEE real types); 64-bit signed integer, 64-bit
unsigned integer, and the 82-bit floating-point register format. A “Parallel FP” format where a pair of IEEE single preci-
sion values occupy a floating-point register’s significand is also supported. A seventh data type, IEEE-style quad-preci-
sion, is supported by software routines. A future architecture extension may include additional support for the quad-
precision real type.

5.1.1 Real Types

The parameters for the supported IEEE real types are summarized in Table 5-1.

5.1.2 Floating-point Register Format

Data contained in the floating-point registers can be either integer or real type. The format of data in the floating-point
registers is designed to accommodate both of these types with no loss of information.

Real numbers reside in 82-bit floating-point registers in a three-field binary format (see Figure 5-1). The three fields are:

• The 64-bit significand field, b63. b62b61 .. b1b0, contains the number's significant digits. This field is composed of an
explicit integer bit (significand{63}), and 63 bits of fraction (significand{62:0}). For Parallel FP data, the significand
field holds a pair of 32-bit IEEE single real numbers.

• The 17-bit exponent field locates the binary point within or beyond the significant digits (i.e., it determines the num-
ber's magnitude). The exponent field is biased by 65535 (0xFFFF). An exponent field of all ones is used to encode the

Table 5-1. IEEE Real-Type Properties

Single Double
Double-

Extended
Quad-

Precision

IEEE Real-Type Parameters
Sign + or − + or − + or − + or −
Emax +127 +1023 +16383 +16383

Emin −126 −1022 −16382 −16382

Exponent bias +127 +1023 +16383 +16383

Precision (bits) 24 53 64 113

IEEE Memory Formats
Total memory format width (bits) 32 64 80 128

Sign field width (bits) 1 1 1 1

Exponent field width (bits) 8 11 15 15

Significand field width (bits) 23 52 64 112



5-2 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

special values for IEEE signed infinity and NaNs. An exponent field of all zeros and a significand field of all zeros is
used to encode the special values for IEEE signed zeros. An exponent field of all zeros and a non-zero significand
field encodes the double-extended real denormals and double-extended real pseudo-denormals.

• The 1-bit sign field indicates whether the number is positive (sign=0) or negative (sign=1). For Parallel FP data, this
bit is always 0.

The value of a finite floating-point number, encoded with non-zero exponent field, can be calculated using the expression:

(-1)(sign) * 2(exponent – 65535) * (significand{63}.significand{62:0}2)

The value of a finite floating-point number, encoded with zero exponent field, can be calculated using the expression:

(-1)(sign) * 2(-16382) * (significand{63}.significand{62:0}2)

Integers (64-bit signed/unsigned) and Parallel FP numbers reside in the 64-bit significand field. In their canonical form,
the exponent field is set to 0x1003E (biased 63) and the sign field is set to 0.

5.1.3 Representation of Values in Floating-point Registers

The floating-point register encodings are grouped into classes and subclasses and listed below in Table 5-2 (shaded encod-
ings are unsupported). The last two table entries contain the values of the constant floating-point registers, FR 0 and FR 1.
The constant value in FR 1 does not change for the parallel single precision instructions or for the integer multiply accu-
mulate instruction and would not generally be useful.

81 80 64 63 0

sign exponent significand (with explicit integer bit)
1 17 64

Figure 5-1. Floating-point Register Format

Table 5-2. Floating-point Register Encodings

Class or Subclass
Sign

(1 bit)

Biased 
Exponent
(17-bits)

Significand
i.bb...bb (explicit integer bit is shown)

(64-bits)

 NaNs 0/1 0x1FFFF 1.000...01 through 1.111...11

Quiet NaNs 0/1 0x1FFFF 1.100...00 through 1.111...11

Quiet NaN Indefinitea 1 0x1FFFF 1.100...00

Signaling NaNs 0/1 0x1FFFF 1.000...01 through 1.011...11

Infinity 0/1 0x1FFFF 1.000...00

Pseudo-NaNs 0/1 0x1FFFF 0.000...01 through 0.111...11 

Pseudo-Infinity 0/1 0x1FFFF 0.000...00

Normalized Numbers
(Floating-point Register Format Normals)

0/1 0x00001
through
0x1FFFE

1.000...00 through 1.111...11

Integers or Parallel FP
(large unsigned or negative signed integers)

0 0x1003E 1.000...00 through 1.111...11

Integer Indefiniteb 0 0x1003E 1.000...00

IEEE Single Real Normals 0/1 0x0FF81
through
0x1007E

1.000...00...(40)0s
through 
1.111...11...(40)0s

IEEE Double Real Normals 0/1 0x0FC01
through
0x103FE

1.000...00...(11)0s
through
1.111...11...(11)0s

IEEE Double-Extended Real Normals 0/1 0x0C001
through
0x13FFE

1.000...00 through 1.111...11



HP/Intel IA-64 Floating-point Programming Model 5-3

IA-64 Application ISA Guide 1.0

All register file encodings are allowed as inputs to arithmetic operations. The result of an arithmetic operation is always
the most normalized register file representation of the computed value, with the exponent range limited from Emin to
Emax of the destination type, and the significand precision limited to the number of precision bits of the destination type.

Normal numbers with the same value as Dou-
ble-Extended Real Pseudo-Denormals

0/1 0x0C001 1.000...00 through 1.111...11

IA-32 Stack Single Real Normals
(produced when the computation model is IA-32 
Stack Single)

0/1 0x0C001
through
0x13FFE

1.000...00...(40)0s
through
1.111...11...(40)0s

IA-32 Stack Double Real Normals
(produced when the computation model is IA-32 
Stack Double)

0/1 0x0C001
through
0x13FFE

1.000...00...(11)0s
through
1.111...11...(11)0s

Unnormalized Numbers
(Floating-point Register Format unnormalized num-
bers)

0/1 0x00000 0.000...01 through 1.111...11

0x00001
through
0x1FFFE

0.000...01 through 0.111...11

0x00001 
through 
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00

Integers or Parallel FP
(positive signed/unsigned integers)

0 0x1003E 0.000...00 through 0.111...11

Single Real Denormals 0/1 0x0FF81 0.000...01...(40)0s
through 
0.111...11...(40)0s

Double Real Denormals 0/1 0x0FC01 0.000...01...(11)0s
through 
0.111...11...(11)0s

Register Format Denormals 0/1 0x00001 0.000...01 through 0.111...11

Double-Extended Real Denormals 0/1 0x00000 0.000...01 through 0.111...11

Unnormal numbers with the same value as 
Double-Extended Real Denormals

0/1 0x0C001 0.000...01 through 0.111...11

Double-Extended Real Pseudo-Denormals
(IA-32 stack and memory format)

0/1 0x00000 1.000...00 through 1.111...11

IA-32 Stack Single Real Denormals
(produced when computation model is IA-32 
Stack Single)

0/1 0x00000 0.000...01...(40)0s
through
0.111...11...(40)0s

IA-32 Stack Double Real Denormals
(produced when computation model is IA-32 
Stack Double)

0/1 0x00000 0.000...01...(11)0s
through
0.111...11...(11)0s

Pseudo-Zeros 0/1 0x00001
through
0x1FFFD

0.000...00

1 0x1FFFE 0.000...00

NaTValc 0 0x1FFFE 0.000...00

Zero 0/1 0x00000 0.000...00

FR 0 (positive zero) 0 0x00000 0.000...00

FR 1 (positive one) 0 0x0FFFF 1.000...00

a. Default response on a masked real invalid operation.
b. Default response on a masked integer invalid operation.
c. Created by unsuccessful speculative memory operation.

Table 5-2. Floating-point Register Encodings (Continued)



5-4 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Computed values, such as zeros, infinities, and NaNs that are outside these bounds are represented by the corresponding
unique register file encoding. Double-extended real denormal results are mapped to the register file exponent of 0x00000
(instead of 0x0C001). Unsupported encodings (Pseudo-NaNs and Pseudo-Infinities), Pseudo-zeros and Double-extended
Real Pseudo-denormals are never produced as a result of an arithmetic operation. 

Arithmetic on pseudo-zeros operates exactly as an equivalently signed zero, with one exception. Pseudo-zero multiplied
by infinity returns the correctly signed infinity instead of an Invalid Operation Floating-Point Exception fault (and
QNaN). Also, pseudo-zeros are classified as unnormalized numbers, not zeros.

5.2 Floating-point Status Register
The Floating-Point Status Register (FPSR) contains the dynamic control and status information for floating-point opera-
tions. There is one main set of control and status information (FPSR.sf0), and three alternate sets (FPSR.sf1, FPSR.sf2,
FPSR.sf3). The FPSR layout is shown in Figure 5-2 and its fields are defined in Table 5-3. Table 5-4 gives the FPSR’s sta-
tus field description and Figure 5-3 shows their layout.

63 58 57 45 44 32 31 19 18 6 5 0

rv sf3 sf2 sf1 sf0 traps
6 13 13 13 13 6

Figure 5-2. Floating-point Status Register Format

Table 5-3. Floating-point Status Register Field Description

Field Bits Description

traps.vd 0 Invalid Operation Floating-Point Exception fault (IEEE Trap) disabled when this bit is set

traps.dd 1 Denormal/Unnormal Operand Floating-Point Exception fault disabled when this bit is set

traps.zd 2 Zero Divide Floating-Point Exception fault (IEEE Trap) disabled when this bit is set

traps.od 3 Overflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.ud 4 Underflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

traps.id 5 Inexact Floating-Point Exception trap (IEEE Trap) disabled when this bit is set

sf0 18:6 Main status field

sf1 31:19 Alternate status field 1

sf2 44:32 Alternate status field 2

sf3 57:45 Alternate status field 3

rv 63:58 Reserved

12 11 10 9 8 7 6 5 4 3 2 1 0

FPSR.sfx

flags controls

i u o z d v td rc pc wre ftz
6 7

Figure 5-3. Floating-point Status Field Format

Table 5-4. Floating-point Status Register’s Status Field Description

Field Bits Description

ftz 0 Flush-to-Zero mode

wre 1 Widest range exponent (see Table 5-6)

pc 3:2 Precision control (see Table 5-6)

rc 5:4 Rounding control (see Table 5-5)

td 6 Traps disableda

v 7 Invalid Operation (IEEE Flag)



HP/Intel IA-64 Floating-point Programming Model 5-5

IA-64 Application ISA Guide 1.0

The Denormal/Unnormal Operand status flag is an IEEE-style sticky flag that is set if the value is used in an arithmetic
instruction and in an arithmetic calculation; e.g. unorm*NaN doesn’t set the d flag. Canonical single/double/double-
extended denormal/double-extended pseudo-denormal/register format denormal encodings are a subset of the floating-
point register format unnormalized numbers.

Note that the Floating-Point Exception fault/trap occurs only if an enabled floating-point exception occurs during the pro-
cessing of the instruction. Hence, setting a flag bit of a status field to 1 in software will not cause an interruption. The sta-
tus fields flags are merely indications of the occurrence of floating-point exceptions.

Flush-to-Zero (FTZ) mode causes results which encounter “tininess” to be truncated to the correctly signed zero. Flush-to-
Zero mode can be enabled only if Underflow is disabled. This can be accomplished by disabling all traps (FPSR.sfx.td
being set to 1), or by disabling it individually (FPSR.traps.ud set to 1). If Underflow is enabled then it takes priority and
Flush-to-Zero mode is ignored. Note that the software exception handler could examine the Flush-to Zero mode bit and
choose to emulate the Flush-to-Zero operation when an enabled Underflow exception arises.

The FPSR.sfx.u and FPSR.sfx.i bits will be set to 1 when a result is flushed to the correctly signed zero because of Flush-
to-Zero mode. If enabled, an inexact result exception is signaled.

A floating-point result is rounded based on the instruction’s .pc completer and the status field’s wre, pc, and rc control
fields. The result’s significand precision and exponent range are determined as described in Table 5-6 "Floating-point
Computation Model Control Definitions". If the result isn’t exact, FPSR.sfx.rc specifies the rounding direction (see
Table 5-5).

d 8 Denormal/Unnormal Operand

z 9 Zero Divide (IEEE Flag)

o 10 Overflow (IEEE Flag)

u 11 Underflow (IEEE Flag)

i 12 Inexact (IEEE Flag)

a. td is a reserved bit in the main status field, FPSR.sf0.

Table 5-5. Floating-point Rounding Control Definitions

Nearest (or even) – Infinity (down) + Infinity (up) Zero (truncate/chop)
FPSR.sfx.rc 00 01 10 11

Table 5-6. Floating-point Computation Model Control Definitions

Computation Model Control Fields Computation Model Selected

Instruction’s 
.pc Completer

FPSR.sfx’s 
Dynamic 
pc Field

FPSR.sfx’s 
Dynamic 
wre Field

Significand
Precision

Exponent
Range

Computational Style

.s ignored 0 24 bits 8 bits IEEE real single

.d ignored 0 53 bits 11 bits IEEE real double

.s ignored 1 24 bits 17 bits Register file range, single precision

.d ignored 1 53 bits 17 bits Register file range, double precision

none 00 0 24 bits 15 bits IA-32 stack single

none 01 0 N.A. N.A. Reserved

none 10 0 53 bits 15 bits IA-32 stack double

none 11 0 64 bits 15 bits IA-32 double-extended

none 00 1 24 bits 17 bits Register file range, single precision

none 01 1 N.A. N.A. Reserved

none 10 1 53 bits 17 bits Register file range, double precision

Table 5-4. Floating-point Status Register’s Status Field Description (Continued)

Field Bits Description



5-6 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

The trap disable (sfx.td) control bit allows one to easily set up a local IEEE exception trap default environment. If
FPSR.sfx.td is clear (enabled), the FPSR.traps bits are used. If FPSR.sfx.td is set, the FPSR.traps bits are treated as if they
are all set (disabled). Note that FPSR.sf0.td is a reserved field which returns 0 when read.

5.3 Floating-point Instructions
This section describes the IA-64 floating-point instructions. 

5.3.1 Memory Access Instructions

There are floating-point load and store instructions for the single, double, double-extended floating-point real data types,
and the Parallel FP or signed/unsigned integer data type. The addressing modes for floating-point load and store instruc-
tions are the same as for integer load and store instructions, except for floating-point load pair instructions which can have
an implicit base-register post increment. The memory hint options for floating-point load and store instructions are the
same as those for integer load and store instructions. (See “Memory Hierarchy Control and Consistency” on page 4-16.)
Table 5-7 lists the types of floating-point load and store instructions. The floating-point load pair instructions require the
two target registers to be odd/even or even/odd. The floating-point store instructions (stfs, stfd, stfe) require the value
in the floating-point register to have the same type as the store for the format conversion to be correct.

Unsuccessful speculative loads write a NaTVal into the destination register or registers (see Section 4.4.4). Storing a
NaTVal to memory will cause a Register NaT Consumption fault, except for the spill instruction (stf.spill).

Saving and restoring floating-point registers is accomplished by the spill and fill instructions (stf.spill, ldf.fill)
using a 16-byte memory container. These are the only instructions that can be used for saving and restoring the actual reg-
ister contents since they do not fault on NaTVal. They save and restore all types (single, double, double-extended, register
format and integer or Parallel FP) and will ensure compatibility with possible future architecture extensions.

Figure 5-4, Figure 5-5, Figure 5-6 and Figure 5-7 describe how single precision, double precision, double-extended preci-
sion, and spill/fill data is translated during transfers between floating-point registers and memory.

none 11 1 64 bits 17 bits Register file range, double-extended 
precision

not applicablea ignored ignored 24 bits 8 bits A pair of IEEE real singles

not applicableb ignored ignored 64 bits 17 bits Register file range, double-extended 
precision

a. For parallel FP instructions which have no .pc completer (e.g., fpma).
b. For non-parallel FP instructions which have no .pc completer (e.g., fmerge).

Table 5-7. Floating-point Memory Access Instructions

Operations Load to FR Load Pair to FR Store from FR

Single ldfs ldfps stfs

Integer/Parallel FP ldf8 ldfp8 stf8

Double ldfd ldfpd stfd

Double-extended ldfe stfe

Spill/fill ldf.fill stf.spill

Table 5-6. Floating-point Computation Model Control Definitions (Continued)

Computation Model Control Fields Computation Model Selected

Instruction’s 
.pc Completer

FPSR.sfx’s 
Dynamic 
pc Field

FPSR.sfx’s 
Dynamic 
wre Field

Significand
Precision

Exponent
Range

Computational Style



HP/Intel IA-64 Floating-point Programming Model 5-7

IA-64 Application ISA Guide 1.0

Figure 5-4. Memory to Floating-point Register Data Translation – Single Precision

sign exponent
integer

significand

FR:

Memory:

Single-precision Load – normal numbers

bit

01

sign exponent
integer

significand

FR:

Memory:

Single-precision Load – infinities and NaNs

bit

01

sign exponent
integer

significand

FR:

Memory:

Single-precision Load – zeros

bit

00

0x1FFFF

1111111 1

0

0000000 0 0

sign exponent
integer

significand

FR:

Memory:

Single-precision Load – denormal numbers

bit

00x0FF81

0000000 0

0

00



5-8 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Figure 5-5. Memory to Floating-point Register Data Translation – Double Precision

sign exponent
integer

significand

FR:

Memory:

Double-precision Load – normal numbers

bit

01

sign exponent
integer

significand

FR:

Memory:

Double-precision Load – infinities and NaNs

bit

01

sign exponent
integer

significand

FR:

Memory:

Double-precision Load – zeros

bit

00

0x1FFFF

1111111 1

0

0000000 0 0

sign exponent
integer

significand

FR:

Memory:

Double-precision Load – denormal numbers

bit

00x0FC01

0000000 0

0

111

000

000

0 0 0 0 00



HP/Intel IA-64 Floating-point Programming Model 5-9

IA-64 Application ISA Guide 1.0

Figure 5-6. Memory to Floating-point Register Data Translation – Double Extended, Integer and Fill

sign exponent
integer

significand

FR:

Memory:

Double-extended-precision Load – normal/unnormal numbers

bit

sign exponent
integer

significand

FR:

Memory:

Double-extended-precision Load – infinities and NaNs

bit

sign exponent
integer

significand

FR:

Memory:

Double-extended-precision Load – denormal/pseudo-denormals and zeros

bit

0x1FFFF

0

1111111 11111111

0000000 00000000

sign exponent
integer

significand

FR:

Memory:

Integer Load

bit

0 0x1003E

sign exponent significand

FR:

Memory:

Register Fill

integer
bit



5-10 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

Figure 5-7. Floating-point Register to Memory Data Translation

sign exponent
integer

significand

FR:

Memory:

Single-precision Store

bit

sign exponent significand

FR:

Memory:

Double-precision Store

integer
bit

sign exponent significand

FR:

Memory:

Double-extended-precision Store

integer
bit

sign exponent significand

FR:

Memory:

Register Spill

integer
bit

0 00 0 0 0

= AND

sign exponent
integer

significand

FR:

Memory:

Integer Store

bit



HP/Intel IA-64 Floating-point Programming Model 5-11

IA-64 Application ISA Guide 1.0

Both little-endian and big-endian byte ordering is supported on floating-point loads and stores. For both single and double
memory formats, the byte ordering is identical to the 32-bit and 64-bit integer data types (see Section 3.2.3). The byte-
ordering for the spill/fill memory and double-extended formats is shown in Figure 5-8.

5.3.2 Floating-Point Register to/from General Register Transfer Instructions

The setf and getf instructions (see Table 5-8) transfer data between floating-point registers (FR) and general registers
(GR). These instructions will translate a general register NaT to/from a floating-point register NaTVal. For all other oper-
ands, the .s and .d variants of the setf and getf instructions translate to/from FR as per Figure 5-4, Figure 5-5 and
Figure 5-7. The memory representation is read from or written to the GR. The .exp and .sig variants of the setf and
getf instructions operate on the sign/exponent and significand portions of a floating-point register, respectively, and their
translation formats are described in Table 5-9 and Table 5-10.

Figure 5-8. Spill/Fill and Double-Extended (80-bit) Floating-point Memory Formats

Table 5-8. Floating-point Register Transfer Instructions

Operations GR to FR FR to GR

Single setf.s getf.s

Double setf.d getf.d

Sign and Exponent setf.exp getf.exp

Significand/Integer setf.sig getf.sig

s0

s1

s2

s3

s4

s5

s6

s7

0

1

2

3

4

5

6

7

7 0

Memory Formats Floating-Point Register Format (82-bit)

e0

e1

se2

0

0

0

0

0

8

9

10

11

12

13

14

15

0

0

0

0

0

se2

e1

e0

0

1

2

3

4

5

6

7

7 0

s7

s6

s5

s4

s3

s2

s1

s0

8

9

10

11

12

13

14

15

s0

s1

s2

s3

s4

s5

s6

s7

0

1

2

3

4

5

6

7

7 0

e0’

se1’

8

9

s3 s0s2 s1s7 s4s6 s5

63 0

se2 e1 e0

s3 s0s2 s1s7 s4s6 s5se1’e0’

81
significandexp.s

Double-Extended (80-bit) interpretation

se1’

e0’

s7

s6

s5

s4

s3

s2

0

1

2

3

4

5

6

7

7 0

s1

s0

8

9

Spill/Fill (128-bit) Double-Extended (80-bit)

LE BE LE BE



5-12 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

5.3.3 Arithmetic Instructions

All of the arithmetic floating-point instructions (except fcvt.xf which is always exact) have a .sf specifier. This indicates
which of the four FPSR’s status fields will both control and record the status of the execution of the instruction (see
Table 5-11). The status field specifies: enabled exceptions, rounding mode, exponent width, precision control, and which
status field’s flags to update. See “Floating-point Status Register” on page 5-4.

Most arithmetic floating-point instructions can specify the precision of the result statically by using a .pc completer, or
dynamically using the .pc field of the FPSR status field. (see Table 5-6). Arithmetic instructions that do not have a .pc
completer use the floating-point register file range and precision.

Table 5-12 lists the floating-point arithmetic instructions and Table 5-13 lists the pseudo-operation definitions. 

Table 5-9. General Register (Integer) to Floating-point Register Data Translation

General Register Floating-Point Register (.sig) Floating-Point Register (.exp)

Class NaT Integer Sign Exponent Significand Sign Exponent Significand

NaT 1 ignore NaTVal NaTVal

integers 0 000...00
through
111...11

0 0x1003E integer integer{17} integer{16:0} 0x8000000000000000

Table 5-10. Floating-point Register to General Register (Integer) Data Translation

Floating-Point Register General Register (.sig) General Register (.exp)

Class Sign Exponent Significand NaT Integer NaT Integer

NaTVal 0 0x1FFFE 0.000...00 1 0x0000000000000000 1 0x1FFFE

integers 
or paral-
lel FP

0 0x1003E 0.000...00
through

1.111...11

0 significand 0 0x1003E

other ignore ignore ignore 0 significand 0 ((sign<<17) | exponent)

Table 5-11. Floating-point Instruction Status Field Specifier Definition

.sf Specifier .s0 .s1 .s2 .s3
Status field FPSR.sf0 FPSR.sf1 FPSR.sf2 FPSR.sf3

Table 5-12. Floating-point Arithmetic Instructions

Operation Normal FP Mnemonic(s) Parallel FP Mnemonic(s)
Floating-point multiply and add fma.pc.sf fpma.sf

Floating-point multiply and subtract fms.pc.sf fpms.sf

Floating-point negate multiply and add fnma.pc.sf fpnma.sf

Floating-point reciprocal approximation frcpa.sf fprcpa.sf

Floating-point reciprocal square root approximation frsqrta.sf fprsqrta.sf

Floating-point compare fcmp.frel.fctype.sf fpcmp.frel.sf

Floating-point minimum fmin.sf fpmin.sf

Floating-point maximum fmax.sf fpmax.sf

Floating-point absolute minimum famin.sf fpamin.sf

Floating-point absolute maximum famax.sf fpamax.sf

Convert floating-point to signed integer fcvt.fx.sf 
fcvt.fx.trunc.sf

fpcvt.fx.sf 
fpcvt.fx.trunc.sf

Convert floating-point to unsigned integer fcvt.fxu.sf 
fcvt.fxu.trunc.sf

fpcvt.fxu.sf 
fpcvt.fxu.trunc.sf

Convert signed integer to floating-point fcvt.xf N.A.



HP/Intel IA-64 Floating-point Programming Model 5-13

IA-64 Application ISA Guide 1.0

There are no pseudo-operations for Parallel FP addition, subtraction, negation or normalization since FR 1 does not con-
tain a packed pair of single precision 1.0 values. A parallel FP addition can be performed by first forming a pair of 1.0 val-
ues in a register (using the fpack instruction) and then using the fpma instruction. Similarly, an integer add operation can
be generated by first forming an integer 1 in a floating-point register and then using the xma instruction.

5.3.4 Non-Arithmetic Instructions

Table 5-14 lists the non-arithmetic floating-point instructions. The fclass instruction is used to classify the contents of a
floating-point register. The fmerge instruction is used to merge data from two floating-point registers into one floating-
point register. The fmix, fsxt, fpack, and fswap instructions are used to manipulate the Parallel FP data in the floating-
point significand. The fand, fandcm, for, and fxor instructions are used to perform logical operations on the floating-
point significand. The fselect instruction is used for conditional selects.

The non-arithmetic floating-point instructions always use the floating-point register (82-bit) precision since they do not
have a .pc completer nor a .sf specifier.

Table 5-13. Floating-point Pseudo-Operations

Operation Mnemonic Operation Used

Floating-point multiplication (IEEE)
Parallel FP multiplication

fmpy.pc.sf
fpmpy.sf

fma, using FR 0 for addend
fpma, using FR 0 for addend

Floating-point negate multiplication (IEEE)
Parallel FP negate multiplication

fnmpy.pc.sf
fpnmpy.sf

fnma, using FR 0 for addend
fpnma, using FR 0 for addend

Floating-point addition (IEEE) fadd.pc.sf fma, using FR 1 for multiplicand

Floating-point subtraction (IEEE) fsub.pc.sf fms, using FR 1 for multiplicand

Floating-point negation (IEEE) fnma.pc.sf fnma, using FR 1 for multiplicand and FR 0 for 
addend

Floating-point absolute value
Parallel FP absolute value

fabs
fpabs

fmerge.s, with sign from FR 0
fpmerge.s, with sign from FR 0

Floating-point negate
Parallel FP negate

fneg
fpneg

fmerge.ns
fpmerge.ns

Floating-point negate absolute value
Parallel FP negate absolute value

fnegabs
fpnegabs

fmerge.ns, with sign from FR 0
fpmerge.ns, with sign from FR 0

Floating-point normalization fnorm.pc.sf fma, using FR 1 for multiplicand and FR 0 for 
addend

Convert unsigned integer to floating-point fcvt.xuf.pc.sf fma, using FR 1 for multiplicand and FR 0 for 
addend

Table 5-14. Non-Arithmetic Floating-point Instructions

Operation Mnemonic(s)

Floating-point classify fclass.fcrel.fctype

Floating-point merge sign
Parallel FP merge sign

fmerge.s
fpmerge.s

Floating-point merge negative sign
Parallel FP merge negative sign

fmerge.ns
fpmerge.ns

Floating-point merge sign and exponent
Parallel FP merge sign and exponent

fmerge.se
fpmerge.se

Floating-point mix left fmix.l

Floating-point mix right fmix.r

Floating-point mix left-right fmix.lr

Floating-point sign-extend left fsxt.l

Floating-point sign-extend right fsxt.r

Floating-point pack fpack

Floating-point swap fswap



5-14 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0

5.3.5 Floating-point Status Register (FPSR) Status Field Instructions

Speculation of floating-point operations requires that the status flags be stored temporarily in one of the alternate status
fields (not FPSR.sf0). After a speculative execution chain has been committed, a fchkf instruction can be used to update
the normal flags (FPSR.sf0.flags). This operation will preserve the correctness of the IEEE flags. The fchkf instruction
does this by comparing the flags of the status field with the FPSR.sf0.flags and FPSR.traps. If the flags of the alternate sta-
tus field indicate the occurrence of an event that corresponds to an enabled floating-point exception in FPSR.traps, or an
event that is not already registered in the FPSR.sf0.flags (i.e., the flag for that event in FPSR.sf0.flags is clear), then the
fchkf instruction causes a Speculative Operation fault. If neither of these cases arise then the fchkf instruction does
nothing.

The fsetc instruction allows bit-wise modification of a status field’s control bits. The FPSR.sf0.controls are ANDed with
a 7-bit immediate and-mask and ORed with a 7-bit immediate or-mask to produce the control bits for the status field. The
fclrf instruction clears all of the status field’s flags to zero.

5.3.6 Integer Multiply and Add Instructions

Integer (fixed-point) multiply is executed in the floating-point unit using the three-operand xma instructions. The operands
and result of these instructions are floating-point registers. The xma instructions ignore the sign and exponent fields of the
floating-point register, except for a NaTVal check. The product of two 64-bit source significands is added to the third 64-
bit significand (zero extended) to produce a 128-bit result. The low and high versions of the instruction select the appro-
priate low/high 64-bits of the 128-bit result, respectively, and write it into the destination register as a canonical integer.
The signed and unsigned versions of the instructions treat the input registers as signed and unsigned 64-bit integers
respectively.

Floating-point swap and negate left fswap.nl

Floating-point swap and negate right fswap.nr

Floating-point And fand

Floating-point And Complement fandcm

Floating-point Or for

Floating-point Xor fxor

Floating-point Select fselect

Table 5-15. FPSR Status Field Instructions

Operation Mnemonic(s)

Floating-point check flags fchkf.sf

Floating-point clear flags fclrf.sf

Floating-point set controls fsetc.sf

Table 5-16. Integer Multiply and Add Instructions

Integer Multiply and Add Low High

Signed xma.l xma.h

Unsigned xma.lu (pseudo-op) xma.hu

Table 5-14. Non-Arithmetic Floating-point Instructions (Continued)

Operation Mnemonic(s)



HP/Intel IA-64 Floating-point Programming Model 5-15

IA-64 Application ISA Guide 1.0

5.4 Additional IEEE Considerations

5.4.1 Definition of SNaNs, QNaNs, and Propagation of NaNs

Signaling NaNs have a zero in the most significant fractional bit of the significand. Quiet NaNs have a one in the most
significant fractional bit of the significand. This definition of signaling and quiet NaNs easily preserves “NaNness” when
converting between different precisions. When propagating NaNs in operations that have more than one NaN operand, the
result NaN is chosen from one of the operand NaNs in the following priority based on register encoding fields: first f4,
then f2, and lastly f3.

5.4.2 IEEE Standard Mandated Operations Deferred to Software

The following IEEE mandated operations will be implemented in software:

• String to floating-point conversion.

• Floating-point to string conversion.

• Divide (with help from frcpa or fprcpa instruction).

• Square root (with help from frsqrta or fprsqrta instruction).

• Remainder (with help from frcpa or fprcpa instruction).

• Floating-point to integer valued floating-point conversion.

• Correctly wrapping the exponent for single, double, and double-extended overflow and underflow values, as recom-
mended by the IEEE standard.

5.4.3 Additions beyond the IEEE Standard

• The fused multiply and add (fma, fms, fnma, fpma, fpms, fpnma) operations enable efficient software divide,
square root, and remainder algorithms.

• The extended range of the 17-bit exponent in the register file format allows simplified implementation of many basic
numeric algorithms by the careful numeric programmer.

• The NaTVal is a natural extension of the IEEE concept of NaNs. It is used to support speculative execution.

• Flush-to-Zero mode is an industry standard addition.

• The minimum and maximum instructions allow the efficient execution of the common Fortran Intrinsic Functions:
MIN(), MAX(), AMIN(), AMAX(); and C language idioms such as a<b?a:b.

• All mixed precision operations are allowed. The IEEE standard suggests that implementations allow lower precision
operands to produce higher precision results; this is supported. The IEEE standard also suggests that implementations
not allow higher precision operands to produce lower precision results; this suggestion is not followed. 

• An IEEE style quad-precision real type that is supported in software.



5-16 IA-64 Floating-point Programming Model HP/Intel

IA-64 Application ISA Guide 1.0



HP/Intel IA-64 Instruction Reference 6-1

IA-64 Application ISA Guide 1.0

6 IA-64 Instruction Reference

This chapter describes the function of IA-64 instruction. The pages of this chapter are sorted alphabetically by assembly
language mnemonic. 

6.1 Instruction Page Conventions
The instruction pages are divided into multiple sections as listed in Table 6-1. The first four sections are present on all
instruction pages. The last three sections are present only when necessary. Table 6-2 lists the font conventions which are
used by the instruction pages.

In the Format section, register addresses are specified using the assembly mnemonic field names given in the third column
of Table 6-3. For instructions that are predicated, the Description section assumes that the qualifying predicate is true
(except for instructions that modify architectural state when their qualifying predicate is false). The test of the qualifying
predicate is included in the Operation section (when applicable).

In the Operation section, registers are addressed using the notation reg[addr].field. The register file being accessed is
specified by reg, and has a value chosen from the second column of Table 6-3. The addr field specifies a register address
as an assembly language field name or a register mnemonic. For the general, floating-point, and predicate register files
which undergo register renaming, addr is the register address prior to renaming and the renaming is not shown. The
field option specifies a named bit field within the register. If field is absent, then all fields of the register are accessed.
The only exception is when referencing the data field of the general registers (64-bits not including the NaT bit) where the
notation GR[addr] is used. The syntactical differences between the code found in the Operation section and standard C is
listed in Table 6-4.

Table 6-1. Instruction Page Description

Section Name Contents
Format Assembly language syntax, instruction type and encoding format

Description Instruction function in English

Operation Instruction function in C code

FP Exceptions IEEE floating-point traps

Table 6-2. Instruction Page Font Conventions

Font Interpretation
regular (Format section) Required characters in an assembly language mnemonic

italic (Format section) Assembly language field name that must be filled with one of a range 
of legal values listed in the Description section

code (Operation section) C code specifying instruction behavior
code_italic (Operation section) Assembly language field name corresponding to a italic field listed 

in the Format section

Table 6-3. Register File Notation

Register File C Notation
Assembly 
Mnemonic

Indirect 
Access

Application registers AR ar

Branch registers BR b

CPU identification registers CPUID cpuid Y



6-2 IA-64 Instruction Reference HP/Intel

IA-64 Application ISA Guide 1.0

6.2 Instruction Descriptions
The remainder of this chapter provides a description of IA-64 instruction.

Floating-point registers FR f

General registers GR r

Performance monitor data registers PMD pmd Y

Predicate registers PR p

Table 6-4. C Syntax Differences

Syntax Function
{msb:lsb}, {bit} Bit field specifier. When appended to a variable, denotes a bit field extending from the most sig-

nificant bit specified by “msb” to the least significant bit specified by “lsb” including bits “msb” 
and “lsb”. If “msb” and “lsb” are equal then a single bit is accessed. The second form denotes a 
single bit.

u>, u>=, u<, u<= Unsigned inequality relations. Variables on either side of the operator are treated as unsigned.

u>>, u>>= Unsigned right shift. Zeroes are shifted into the most significant bit position.

u+ Unsigned addition. Operands are treated as unsigned, and zero-extended.

u* Unsigned multiplication. Operands are treated as unsigned.

Table 6-3. Register File Notation (Continued)

Register File C Notation
Assembly 
Mnemonic

Indirect 
Access



HP/Intel IA-64 Instruction Reference 6-3

IA-64 Application ISA Guide 1.0 add

Add

Format: (qp) add r1 = r2, r3 register_form A1
(qp) add r1 = r2, r3, 1 plus1_form, register_form A1
(qp) add r1 = imm, r3 pseudo-op
(qp) adds r1 = imm14, r3 imm14_form A4
(qp) addl r1 = imm22, r3 imm22_form A5

Description: The two source operands (and an optional constant 1) are added and the result placed in GR r1. In the reg-
ister form the first operand is GR r2; in the imm_14 form the first operand is taken from the sign extended
imm14 encoding field; in the imm22_form the first operand is taken from the sign extended imm22 encod-
ing field. In the imm22_form, GR r3 can specify only GRs 0, 1, 2 and 3.

The plus1_form is available only in the register_form (although the equivalent effect in the immediate
forms can be achieved by adjusting the immediate).

The immediate-form pseudo-op chooses the imm14_form or imm22_form based upon the size of the
immediate operand and the value in GR r3.

Operation: if (PR[qp]) {
check_target_register(r1);

if (register_form) // register form
tmp_src = GR[r2];

else if (imm14_form) // 14-bit immediate form
tmp_src = sign_ext(imm14, 14);

else // 22-bit immediate form
tmp_src = sign_ext(imm22, 22);

tmp_nat = (register_form ? GR[r2].nat : 0);

if (plus1_form)
GR[r1] = tmp_src + GR[r3] + 1;

else
GR[r1] = tmp_src + GR[r3];

GR[r1].nat = tmp_nat || GR[r3].nat;
}



6-4 IA-64 Instruction Reference HP/Intel

addp4 IA-64 Application ISA Guide 1.0

Add Pointer

Format: (qp) addp4 r1 = r2, r3 register_form A1
(qp) addp4 r1 = imm14, r3 imm14_form A4

Description: The two source operands are added. The upper 32 bits of the result are forced to zero, and then bits
{31:30} of GR r3 are copied to bits {62:61} of the result. This result is placed in GR r1. In the
register_form the first operand is GR r2; in the imm14_form the first operand is taken from the sign
extended imm14 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm14, 14));
tmp_nat = (register_form ? GR[r2].nat : 0);

tmp_res = tmp_src + GR[r3];
tmp_res = zero_ext(tmp_res{31:0}, 32);
tmp_res{62:61} = GR[r3]{31:30};
GR[r1] = tmp_res;
GR[r1].nat = tmp_nat || GR[r3].nat;

}

Figure 6-1. Add Pointer

GR r3:

GR r1:

GR r2:

+

00

032 30

63

032

03261



HP/Intel IA-64 Instruction Reference 6-5

IA-64 Application ISA Guide 1.0 alloc

Allocate Stack Frame

Format: alloc r1 = ar.pfs, i, l, o, r M34

Description: A new stack frame is allocated on the general register stack, and the Previous Function State register
(PFS) is copied to GR r1. The change of frame size is immediate. The write of GR r1 and subsequent
instructions in the same instruction group use the new frame. This instruction cannot be predicated.

The four parameters, i (size of inputs), l (size of locals), o (size of outputs), and r (size of rotating) specify
the sizes of the regions of the stack frame.

The size of the frame (sof) is determined by i + l + o. Note that this instruction may grow or shrink the size
of the current register stack frame. The size of the local region (sol) is given by i + l. There is no real dis-
tinction between inputs and locals. They are given as separate operands in the instruction only as a hint to
the assembler about how the local registers are to be used.

The rotating registers must fit within the stack frame and be a multiple of 8 in number. If this instruction
attempts to change the size of CFM.sor, and the register rename base registers (CFM.rrb.gr, CFM.rrb.fr,
CFM.rrb.pr) are not all zero, then the instruction will cause a Reserved Register/Field fault.

Although the assembler does not allow illegal combinations of operands for alloc, illegal combinations
can be encoded in the instruction. Attempting to allocate a stack frame larger than 96 registers, or with the
rotating region larger than the stack frame, or with the size of locals larger than the stack frame, will cause
an Illegal Operation fault. An alloc instruction must be the first instruction in an instruction group. Oth-
erwise, the results are undefined.

If insufficient registers are available to allocate the desired frame alloc will stall the processor until
enough dirty registers are written to the backing store. Such mandatory RSE stores may cause the data
related faults listed below.

Operation: tmp_sof = i + l + o;
tmp_sol = i + l;
tmp_sor = r u>> 3;
check_target_register_sof(r1, tmp_sof);
if (tmp_sof u> 96 || r u> tmp_sof || tmp_sol u> tmp_sof)

illegal_operation_fault();
if (tmp_sor != CFM.sor &&

(CFM.rrb.gr != 0 || CFM.rrb.fr != 0 || CFM.rrb.pr != 0))
reserved_register_field_fault();

alat_frame_update(0, tmp_sof - CFM.sof);
rse_new_frame(CFM.sof, tmp_sof);// Make room for new registers; Mandatory RSE

// stores can raise faults listed below.
CFM.sof = tmp_sof;
CFM.sol = tmp_sol;
CFM.sor = tmp_sor;

GR[r1] = AR[PFS];
GR[r1].nat = 0;

Figure 6-2. Stack Frame

Local

GR32

sof
sol

Output



6-6 IA-64 Instruction Reference HP/Intel

and IA-64 Application ISA Guide 1.0

Logical And

Format: (qp) and r1 = r2, r3 register_form A1
(qp) and r1 = imm8, r3 imm8_form A3

Description: The two source operands are logically ANDed and the result placed in GR r1. In the register_form the first
operand is GR r2; in the imm8_form the first operand is taken from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src & GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}



HP/Intel IA-64 Instruction Reference 6-7

IA-64 Application ISA Guide 1.0 andcm

And Complement

Format: (qp) andcm r1 = r2, r3 register_form A1
(qp) andcm r1 = imm8, r3 imm8_form A3

Description: The first source operand is logically ANDed with the 1’s complement of the second source operand and
the result placed in GR r1. In the register_form the first operand is GR r2; in the imm8_form the first oper-
and is taken from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src & ~GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}



6-8 IA-64 Instruction Reference HP/Intel

br IA-64 Application ISA Guide 1.0

Branch

Format: (qp) br.btype.bwh.ph.dh target25  ip_relative_form B1
(qp) br.btype.bwh.ph.dh b1 = target25 call_form, ip_relative_form B3

br.btype.bwh.ph.dh target25 counted_form, ip_relative_form B2
br.ph.dh target25 pseudo-op

(qp) br.btype.bwh.ph.dh b2  indirect_form B4
(qp) br.btype.bwh.ph.dh b1 = b2 call_form, indirect_form B5

br.ph.dh b2  pseudo-op

Description: A branch calculation is evaluated, and either a branch is taken, or execution continues with the next
sequential instruction. The execution of a branch logically follows the execution of all previous non-
branch instructions in the same instruction group. On a taken branch, execution begins at slot 0.

Branches can be either IP-relative, or indirect. For IP-relative branches, the target25 operand, in assembly,
specifies a label to branch to. This is encoded in the branch instruction as a signed immediate displace-
ment (imm21) between the target bundle and the bundle containing this instruction (imm21 = target25 – IP
>> 4). For indirect branches, the target address is taken from BR b2.

There are two pseudo-ops for unconditional branches. These are encoded like a conditional branch (btype
= cond), with the qp field specifying PR 0, and with the bwh hint of sptk.

The branch type determines how the branch condition is calculated and whether the branch has other
effects (such as writing a link register). For the basic branch types, the branch condition is simply the
value of the specified predicate register. These basic branch types are:

• cond: If the qualifying predicate is 1, the branch is taken. Otherwise it is not taken.

• call: If the qualifying predicate is 1, the branch is taken and several other actions occur:

• The current values of the Current Frame Marker (CFM), the EC application register and the cur-
rent privilege level are saved in the Previous Function State application register.

• The caller’s stack frame is effectively saved and the callee is provided with a frame containing
only the caller’s output region.

• The rotation rename base registers in the CFM are reset to 0.

• A return link value is placed in BR b1.

• return: If the qualifying predicate is 1, the branch is taken and the following occurs:

• CFM, EC, and the current privilege level are restored from PFS. (The privilege level is restored
only if this does not increase privilege.)

• The caller’s stack frame is restored.

• If the return lowers the privilege, and PSR.lp is 1, then a Lower-privilege Transfer trap is taken.

• ia: The branch is taken unconditionally, if it is not intercepted by the OS. The effect of the branch is to
invoke the IA-32 instruction set (by setting PSR.is to 1) and begin processing IA-32 instructions at
the virtual linear target address contained in BR b2{31:0}. If the qualifying predicate is not PR 0, an
Illegal Operation fault is raised.

Table 6-5. Branch Types

btype Function Branch Condition Target Address
cond or none Conditional branch Qualifying predicate IP-rel or Indirect

call Conditional procedure call Qualifying predicate IP-rel or Indirect

ret Conditional procedure return Qualifying predicate Indirect

ia Invoke IA-32 instruction set Unconditional Indirect

cloop Counted loop branch Loop count IP-rel

ctop, cexit Mod-scheduled counted loop Loop count and epilog count IP-rel

wtop, wexit Mod-scheduled while loop Qualifying predicate and epilog count IP-rel



HP/Intel IA-64 Instruction Reference 6-9

IA-64 Application ISA Guide 1.0 br

The IA-32 target effective address is calculated relative to the current code segment, i.e. EIP{31:0} =
BR b2{31:0} – CSD.base. The IA-32 instruction set can be entered at any privilege level, provided
instruction set transitions are not disabled.

Software must ensure the code segment descriptor (CSD) and selector (CS) are loaded before issuing
the branch. If the target EIP value exceeds the code segment limit or has a code segment privilege
violation, an IA-32_Exception(GPFault) is raised on the target IA-32 instruction. For entry into 16-bit
IA-32 code, if BR b2 is not within 64K-bytes of CSD.base a GPFault is raised on the target instruc-
tion. EFLAG.rf is unmodified until the successful completion of the first IA-32 instruction.
EFLAG.rf is not cleared until the target IA-32 instruction successfully completes.

Software must issue a mf instruction before the branch if memory ordering is required between IA-32
processor consistent and IA-64 unordered memory references. The processor does not ensure IA-64-
instruction-set-generated writes into the instruction stream are seen by subsequent IA-32 instruction
fetches. br.ia does not perform an instruction serialization operation. The processor does ensure that
prior writes (even in the same instruction group) to GRs and FRs are observed by the first IA-32
instruction. Writes to ARs within the same instruction group as br.ia are not allowed, since br.ia
may implicitly reads all ARs. If an illegal RAW dependency is present between an AR write and
br.ia, the first IA-32 instruction fetch and execution may or may not see the updated AR value.

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely on
ALAT values being preserved across an instruction set transition. On entry to IA-32 code, existing
entries in the ALAT are ignored. If the register stack contains any dirty registers, an Illegal Operation
fault is raised on the br.ia instruction. All registers left in the current register stack frame are left
undefined during IA-32 instruction set execution. The current register stack frame is forced to zero.
To flush the register file of dirty registers, the flushrs instruction must be issued in an instruction
group proceeding the br.ia instruction. To enhance the performance of the instruction set transition,
software can start the IA-64 register stack flush in parallel with starting the IA-32 instruction set by 1)
ensuring flushrs is exactly one instruction group before the br.ia, and 2) br.ia is in the first B-
slot. br.ia should always be executed in the first B-slot with a hint of “static-taken” (default), other-
wise processor performance will be degraded.

Another branch type is provided for simple counted loops. This branch type uses the Loop Count applica-
tion register (LC) to determine the branch condition, and does not use a qualifying predicate:

• cloop: If the LC register is not equal to zero, it is decremented and the branch is taken.

In addition to these simple branch types, there are four types which are used for accelerating modulo-
scheduled loops. Two of these are for counted loops (which use the LC register), and two for while loops
(which use the qualifying predicate). These loop types use register rotation to provide register renaming,
and they use predication to turn off instructions that correspond to empty pipeline stages.

The Epilog Count application register (EC) is used to count epilog stages and, for some while loops, a por-
tion of the prolog stages. In the epilog phase, EC is decremented each time around and, for most loops,
when EC is one, the pipeline has been drained, and the loop is exited. For certain types of optimized,
unrolled software-pipelined loops, the target of a br.cexit or br.wexit is set to the next sequential bun-
dle. In this case, the pipeline may not be fully drained when EC is one, and continues to drain while EC is
zero.

For these modulo-scheduled loop types, the calculation of whether the branch is taken or not depends on
the kernel branch condition (LC for counted types, and the qualifying predicate for while types) and on the
epilog condition (whether EC is greater than one or not).

These branch types are of two categories: top and exit. The top types (ctop and wtop) are used when the
loop decision is located at the bottom of the loop body and therefore a taken branch will continue the loop
while a fall through branch will exit the loop. The exit types (cexit and wexit) are used when the loop deci-
sion is located somewhere other than the bottom of the loop and therefore a fall though branch will con-
tinue the loop and a taken branch will exit the loop. The exit types are also used at intermediate points in
an unrolled pipelined loop. 



6-10 IA-64 Instruction Reference HP/Intel

br IA-64 Application ISA Guide 1.0

The modulo-scheduled loop types are:

• ctop and cexit: These branch types behave identically, except in the determination of whether to
branch or not. For br.ctop, the branch is taken if either LC is non-zero or EC is greater than one. For
br.cexit, the opposite is true. It is not taken if either LC is non-zero or EC is greater than one and is
taken otherwise.

These branch types also use LC and EC to control register rotation and predicate initialization. During
the prolog and kernel phase, when LC is non-zero, LC counts down. When br.ctop or br.cexit is
executed with LC equal to zero, the epilog phase is entered, and EC counts down. When br.ctop or
br.cexit is executed with LC equal to zero and EC equal to one, a final decrement of EC and a final
register rotation are done. If LC and EC are equal to zero, register rotation stops. These other effects
are the same for the two branch types, and are described in Figure 6-3.

wtop and wexit: These branch types behave identically, except in the determination of whether to
branch or not. For br.wtop, the branch is taken if either the qualifying predicate is one or EC is
greater than one. For br.wexit, the opposite is true. It is not taken if either the qualifying predicate is
one or EC is greater than one, and is taken otherwise.

These branch types also use the qualifying predicate and EC to control register rotation and predicate
initialization. During the prolog phase, the qualifying predicate is either zero or one, depending upon
the scheme used to program the loop. During the kernel phase, the qualifying predicate is one. During
the epilog phase, the qualifying predicate is zero, and EC counts down. When br.wtop or br.wexit
is executed with the qualifying predicate equal to zero and EC equal to one, a final decrement of EC
and a final register rotation are done. If the qualifying predicate and EC are zero, register rotation
stops. These other effects are the same for the two branch types, and are described in Figure 6-4.

Figure 6-3. Operation of br.ctop and br.cexit

LC?
== 0 (epilog)

ctop, cexit

ctop: branch
cexit: fall-thru

ctop: fall-thru
cexit: branch

EC?

EC--

PR[63] = 0

RRB--

EC = EC

PR[63] = 1

RRB--

EC--

PR[63] = 0

RRB--

> 1

== 1

== 0

EC = EC

PR[63] = 0

RRB = RRB

LC = LCLC-- LC = LC LC = LC

kernel)

!= 0(prolog /

(special
unrolled
loops)



HP/Intel IA-64 Instruction Reference 6-11

IA-64 Application ISA Guide 1.0 br

The loop-type branches (br.cloop, br.ctop, br.cexit, br.wtop, and br.wexit) are only allowed in
instruction slot 2 within a bundle. Executing such an instruction in either slot 0 or 1 will cause an Illegal
Operation fault, whether the branch would have been taken or not.

Read after Write (RAW) and Write after Read (WAR) dependency requirements are slightly different for
branch instructions. Changes to BRs, PRs, and PFS by non-branch instructions are visible to a subsequent
branch instruction in the same instruction group (i.e., a limited RAW is allowed for these resources). This
allows for a low-latency compare-branch sequence, for example. The normal RAW requirements apply to
the LC and EC application registers, and the RRBs.

Within an instruction group, a WAR dependency on PR 63 is not allowed if both the reading and writing
instructions are branches. For example, a br.wtop or br.wexit may not use PR[63] as its qualifying
predicate and PR[63] cannot be the qualifying predicate for any branch preceding a br.wtop or
br.wexit in the same instruction group.

For dependency purposes, the loop-type branches effectively always write their associated resources,
whether they are taken or not. The cloop type effectively always writes LC. When LC is 0, a cloop branch
leaves it unchanged, but hardware may implement this as a re-write of LC with the same value. Similarly,
br.ctop and br.cexit effectively always write LC, EC, the RRBs, and PR[63]. br.wtop and br.wexit
effectively always write EC, the RRBs, and PR[63].

Values for various branch hint completers are shown in the following tables. Whether Prediction Strategy
hints are shown in Table 6-6. Sequential Prefetch hints are shown in Table 6-7. Branch Cache Dealloca-
tion hints are shown in Table 6-8. 

Figure 6-4. Operation of br.wtop and br.wexit

Table 6-6. Branch Whether Hint

bwh Completer Branch Whether Hint
spnt Static Not-Taken

sptk Static Taken

dpnt Dynamic Not-Taken

dptk Dynamic Taken

Table 6-7. Sequential Prefetch Hint

ph Completer Sequential Prefetch Hint
few or none Few lines

many Many lines

PR[qp]?

wtop, wexit

wtop: branch
wexit: fall-thru

wtop: fall-thru
wexit: branch

EC?

EC--

PR[63] = 0

RRB--

EC--

PR[63] = 0

RRB--

> 1

== 1

== 0

EC = EC

PR[63] = 0

RRB--

EC = EC

PR[63] = 0

RRB = RRB

(prolog /
epilog) (epilog)

==0 (prolog / epilog)
(special
unrolled
loops)

== 1
kernel)

(prolog /



6-12 IA-64 Instruction Reference HP/Intel

br IA-64 Application ISA Guide 1.0

Operation: if (ip_relative_form) // determine branch target
tmp_IP = IP + sign_ext((imm21 << 4), 25);

else // indirect_form
tmp_IP = BR[b2];

if (btype != ‘ia’) // for IA-64 branches,
tmp_IP = tmp_IP & ~0xf; // ignore bottom 4 bits of target

lower_priv_transition = 0;

switch ( btype) {
case ‘cond’: // simple conditional branch

tmp_taken = PR[ qp];
break;

case ‘call’: // call saves a return link
tmp_taken = PR[ qp];
if (tmp_taken) {

BR[b1] = IP + 16;

AR[PFS].pfm = CFM; // ... and saves the stack frame
AR[PFS].pec = AR[EC];
AR[PFS].ppl = PSR.cpl;

alat_frame_update(CFM.sol, 0);
rse_preserve_frame(CFM.sol);
CFM.sof -= CFM.sol; // new frame size is size of outs
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

}
break;

case ‘ret’: // return restores stack frame
tmp_taken = PR[ qp];
if (tmp_taken) {

// tmp_growth indicates the amount to move logical TOP *up*:
// tmp_growth = sizeof(previous out) - sizeof(current frame)
// a negative amount indicates a shrinking stack
tmp_growth = (AR[PFS].pfm.sof - AR[PFS].pfm.sol) - CFM.sof;
alat_frame_update(-AR[PFS].pfm.sol, 0);
rse_fatal = rse_restore_frame(AR[PFS].pfm.sol, tmp_growth, CFM.sof);
if (rse_fatal) {  

CFM.sof = 0;
CFM.sol = 0;
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

} else // normal branch return
CFM = AR[PFS].pfm;

rse_enable_current_frame_load();
AR[EC] = AR[PFS].pec;
if (PSR.cpl u< AR[PFS].ppl) { // ... and restores privilege

PSR.cpl = AR[PFS].ppl;
lower_priv_transition = 1;

}
}

Table 6-8. Branch Cache Deallocation Hint

dh Completer Branch Cache Deallocation Hint
none Don’t deallocate

clr Deallocate branch information



HP/Intel IA-64 Instruction Reference 6-13

IA-64 Application ISA Guide 1.0 br

break;

case ‘ia’: // switch to IA mode
tmp_taken = 1;
if (qp != 0)

illegal_operation_fault();
if (AR[BSPSTORE] != AR[BSP])

illegal_operation_fault();
if (PSR.di)

disabled_instruction_set_transition_fault();
PSR.is = 1; // set IA-32 Instruction Set Mode
CFM.sof = 0; //force current stack frame
CFM.sol = 0; //to zero
CFM.sor = 0;
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;
rse_invalidate_non_current_regs();

// Note the register stack is disabled during IA-32 instruction set execution
break;

case ‘cloop’: // simple counted loop
if (slot != 2)

illegal_operation_fault();
tmp_taken = (AR[LC] != 0);
if (AR[LC] != 0)

AR[LC]--;
break;

case ‘ctop’: 
case ‘cexit’: // SW pipelined counted loop

if (slot != 2)
illegal_operation_fault();

if ( btype == ‘ctop’) tmp_taken = ((AR[LC] != 0) || (AR[EC] u> 1));
if ( btype == ‘cexit’)tmp_taken = !((AR[LC] != 0) || (AR[EC] u> 1));
if (AR[LC] != 0) {

AR[LC]--;
AR[EC] = AR[EC];
PR[63] = 1;
rotate_regs();

} else if (AR[EC] != 0) {
AR[LC] = AR[LC];
AR[EC]--;
PR[63] = 0;
rotate_regs();

} else {
AR[LC] = AR[LC];
AR[EC] = AR[EC];
PR[63] = 0;
CFM.rrb.gr = CFM.rrb.gr;
CFM.rrb.fr = CFM.rrb.fr;
CFM.rrb.pr = CFM.rrb.pr;

}
break;

case ‘wtop’:
case ‘wexit’: // SW pipelined while loop

if (slot != 2)
illegal_operation_fault();

if ( btype == ‘wtop’) tmp_taken = (PR[ qp] || (AR[EC] u> 1));
if ( btype == ‘wexit’)tmp_taken = !(PR[ qp] || (AR[EC] u> 1));
if (PR[ qp]) {

AR[EC] = AR[EC];
PR[63] = 0;
rotate_regs();

} else if (AR[EC] != 0) {
AR[EC]--;



6-14 IA-64 Instruction Reference HP/Intel

br IA-64 Application ISA Guide 1.0

PR[63] = 0;
rotate_regs();

} else {
AR[EC] = AR[EC];
PR[63] = 0;
CFM.rrb.gr = CFM.rrb.gr;
CFM.rrb.fr = CFM.rrb.fr;
CFM.rrb.pr = CFM.rrb.pr;

}
break;

}
if (tmp_taken) {

taken_branch = 1;
IP = tmp_IP; // set the new value for IP
if ((PSR.it && unimplemented_virtual_address(tmp_IP))

 || (!PSR.it && unimplemented_physical_address(tmp_IP)))
unimplemented_instruction_address_trap(lower_priv_transition,tmp_IP);

if (lower_priv_transition && PSR.lp)
lower_privilege_transfer_trap();

if (PSR.tb)
taken_branch_trap();

}



HP/Intel IA-64 Instruction Reference 6-15

IA-64 Application ISA Guide 1.0 break

Break

Format: (qp) break imm21 pseudo-op
(qp) break.i imm21 i_unit_form I19
(qp) break.b imm21 b_unit_form B9
(qp) break.m imm21 m_unit_form M37
(qp) break.f imm21 f_unit_form F15
(qp) break.x imm62 x_unit_form X1

Description: A Break Instruction fault is taken. For the i_unit_form, f_unit_form and m_unit_form, the value specified
by imm21 is zero-extended and placed in the Interruption Immediate control register (IIM).

For the b_unit_form, imm21 is ignored and the value zero is placed in the Interruption Immediate control
register (IIM).

For the x_unit_form, the lower 21 bits of the value specified by imm62 is zero-extended and placed in the
Interruption Immediate control register (IIM). The L slot of the bundle contains the upper 41 bits of
imm62.

This instruction has five forms, each of which can be executed only on a particular execution unit type.
The pseudo-op can be used if the unit type to execute on is unimportant.

Operation: if (PR[qp]) {
if (b_unit_form)

immediate = 0;
else if (x_unit_form)

immediate = zero_ext(imm62, 21);
else // i_unit_form || m_unit_form || f_unit_form

immediate = zero_ext(imm21, 21);

break_instruction_fault(immediate);
}



6-16 IA-64 Instruction Reference HP/Intel

chk IA-64 Application ISA Guide 1.0

Speculation Check

Format: (qp) chk.s r2, target25 pseudo-op
(qp) chk.s.i r2, target25 control_form, i_unit_form, gr_form I20
(qp) chk.s.m r2, target25 control_form, m_unit_form, gr_form M20
(qp) chk.s f2, target25 control_form, fr_form M21
(qp) chk.a.aclr r1, target25 data_form, gr_form M22
(qp) chk.a.aclr f1, target25 data_form, fr_form M23

Description: The result of a control- or data-speculative calculation is checked for success or failure. If the check fails,
a branch to target25 is taken.

In the control_form, success is determined by a NaT indication for the source register. If the NaT bit cor-
responding to GR r2 is 1 (in the gr_form), or FR f2 contains a NaTVal (in the fr_form), the check fails.

In the data_form, success is determined by the ALAT. The ALAT is queried using the general register
specifier r1 (in the gr_form), or the floating-point register specifier f1 (in the fr_form). If no ALAT entry
matches, the check fails. An implementation may optionally cause the check to fail independent of
whether an ALAT entry matches.

The target25 operand, in assembly, specifies a label to branch to. This is encoded in the instruction as a
signed immediate displacement (imm21) between the target bundle and the bundle containing this instruc-
tion (imm21 = target25 – IP >> 4).

The control_form of this instruction for checking general registers can be encoded on either an I-unit or an
M-unit. The pseudo-op can be used if the unit type to execute on is unimportant.

For the data_form, if an ALAT entry matches, the matching ALAT entry can be optionally invalidated,
based on the value of the aclr completer (See Table 6-9).

Note that if the clr value of the aclr completer is used and the check succeeds, the matching ALAT entry is
invalidated. However, if the check fails (which may happen even if there is a matching ALAT entry), any
matching ALAT entry may optionally be invalidated, but this is not required. Recovery code for data spec-
ulation, therefore, cannot rely on the absence of a matching ALAT entry.

Table 6-9. ALAT Clear Completer

aclr Completer Effect on ALAT
clr Invalidate matching ALAT entry

nc Don’t invalidate



HP/Intel IA-64 Instruction Reference 6-17

IA-64 Application ISA Guide 1.0 chk

Operation: if (PR[qp]) {
if (control_form) {

if (fr_form && (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0)))
disabled_fp_register_fault(tmp_isrcode, 0);

check_type = gr_form ? CHKS_GENERAL : CHKS_FLOAT;
fail = (gr_form && GR[r2].nat) || (fr_form && FR[f2] == NATVAL);

} else { // data_form
reg_type = gr_form ? GENERAL : FLOAT;
alat_index = gr_form ? r1 : (data_form ? f1 : f2); 

check_type = gr_form ? CHKA_GENERAL : CHKA_FLOAT;
fail = !alat_cmp(reg_type, alat_index);

}
if (fail) {

taken_branch = 1;
IP = IP + sign_ext((imm21 << 4), 25);
if ((PSR.it && unimplemented_virtual_address(IP))

 || (!PSR.it && unimplemented_physical_address(IP)))
unimplemented_instruction_address_trap(0, IP);

if (PSR.tb)
taken_branch_trap();

}
if (!fail && data_form && (aclr == ‘clr’))

alat_inval_single_entry(reg_type, alat_index);
}



6-18 IA-64 Instruction Reference HP/Intel

clrrrb IA-64 Application ISA Guide 1.0

Clear RRB

Format: clrrrb all_form B8
clrrrb.pr pred_form B8

Description: In the all_form, the register rename base registers (CFM.rrb.gr, CFM.rrb.fr, and CFM.rrb.pr) are cleared.
In the pred_form, the single register rename base register for the predicates (CFM.rrb.pr) is cleared.

This instruction must be the last instruction in an instruction group, or an Illegal Operation fault is taken.

This instruction cannot be predicated.

Operation: if (!followed_by_stop())
illegal_operation_fault();

if (all_form) {
CFM.rrb.gr = 0;
CFM.rrb.fr = 0;
CFM.rrb.pr = 0;

} else { // pred_form
CFM.rrb.pr = 0;

}



HP/Intel IA-64 Instruction Reference 6-19

IA-64 Application ISA Guide 1.0 cmp

Compare

Format: (qp) cmp.crel.ctype p1, p2 = r2, r3 register_form A6
(qp) cmp.crel.ctype p1, p2 = imm8, r3 imm8_form A8
(qp) cmp.crel.ctype p1, p2 = r0, r3 parallel_inequality_form A7
(qp) cmp.crel.ctype p1, p2 = r3, r0 pseudo-op

Description: The two source operands are compared for one of ten relations specified by crel. This produces a boolean
result which is 1 if the comparison condition is true, and 0 otherwise. This result is written to the two pred-
icate register destinations, p1 and p2. The way the result is written to the destinations is determined by the
compare type specified by ctype.

The compare types describe how the predicate targets are updated based on the result of the comparison.
The normal type simply writes the compare result to one target, and the complement to the other. The par-
allel types update the targets only for a particular comparison result. This allows multiple simultaneous
OR-type or multiple simultaneous AND-type compares to target the same predicate register.

The unc type is special in that it first initializes both predicate targets to 0, independent of the qualifying
predicate. It then operates the same as the normal type. The behavior of the compare types is described in
Table 6-10. A blank entry indicates the predicate target is left unchanged.

In the register_form the first operand is GR r2; in the imm8_form the first operand is taken from the sign
extended imm8 encoding field; and in the parallel_inequality_form the first operand must be GR 0. The
parallel_inequality_form is only used when the compare type is one of the parallel types, and the relation
is an inequality (>, >=, <, <=). See below.

If the two predicate register destinations are the same (p1 and p2 specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare type is
unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually pseudo-ops. For
these, the assembler simply switches the source operand specifiers and/or switches the predicate target
specifiers and uses an implemented relation. For some of the pseudo-op compares in the imm8_form, the
assembler subtracts 1 from the immediate value, making the allowed immediate range slightly different.
Of the six parallel compare types, three of the types are actually pseudo-ops. The assembler simply uses
the negative relation with an implemented type. The implemented relations and how the pseudo-ops map
onto them are shown in Table 6-11 (for normal and unc type compares), and Table 6-12 (for parallel type
compares).

Table 6-10. Comparison Types

ctype
Pseudo-

op of
PR[qp]==0

PR[qp]==1

result==0,
No Source NaTs

result==1,
No Source NaTs

One or More
Source NaTs

PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2]
none 0 1 1 0 0 0

unc 0 0 0 1 1 0 0 0

or 1 1

and 0 0 0 0

or.andcm 1 0

orcm or 1 1

andcm and 0 0 0 0

and.orcm or.andcm 0 1



6-20 IA-64 Instruction Reference HP/Intel

cmp IA-64 Application ISA Guide 1.0

The parallel compare types can be used only with a restricted set of relations and operands. They can be
used with equal and not-equal comparisons between two registers or between a register and an immediate,
or they can be used with inequality comparisons between a register and GR 0. Unsigned relations are not
provided, since they are not of much use when one of the operands is zero. For the parallel inequality com-
parisons, hardware only directly implements the ones where the first operand (GR r2) is GR 0. Compari-
sons where the second operand is GR 0 are pseudo-ops for which the assembler switches the register
specifiers and uses the opposite relation.

Table 6-11. 64-bit Comparison Relations for Normal and unc Compares

crel
Compare 
Relation
(a rel b)

Register Form is a
Pseudo-op of

Immediate Form is 
a Pseudo-op of

Immediate Range

eq a == b -128 .. 127

ne a != b eq p1 ↔ p2 eq p1 ↔ p2 -128 .. 127

lt a < b

signed

-128 .. 127

le a <= b lt a ↔ b p1 ↔ p2 lt a-1 -127 .. 128

gt a > b lt a ↔ b lt a-1 p1 ↔ p2 -127 .. 128

ge a >= b lt p1 ↔ p2 lt p1 ↔ p2 -128 .. 127

ltu a < b

unsigned

0 .. 127, 264-128 .. 264-1

leu a <= b ltu a ↔ b p1 ↔ p2 ltu a-1 1 .. 128, 264-127 .. 264

gtu a > b ltu a ↔ b ltu a-1 p1 ↔ p2 1 .. 128, 264-127 .. 264

geu a >= b ltu p1 ↔ p2 ltu p1 ↔ p2 0 .. 127, 264-128 .. 264-1

Table 6-12. 64-bit Comparison Relations for Parallel Compares

crel
Compare 
Relation
(a rel b)

Register Form is a
Pseudo-op of

Immediate Range

eq a == b -128 .. 127

ne a != b -128 .. 127

lt 0 < b

signed no immediate forms

lt a < 0 gt a ↔ b

le 0 <= b

le a <= 0 ge a ↔ b

gt 0 > b

gt a > 0 lt a ↔ b

ge 0 >= b

ge a >= 0 le a ↔ b



HP/Intel IA-64 Instruction Reference 6-21

IA-64 Application ISA Guide 1.0 cmp

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

tmp_nat = (register_form ? GR[r2].nat : 0) || GR[r3].nat;
if (register_form)

tmp_src = GR[r2];
else if (imm8_form)

tmp_src = sign_ext(imm8, 8);
else // parallel_inequality_form

tmp_src = 0;

if (crel == ‘eq’) tmp_rel = tmp_src == GR[ r3];
else if ( crel == ‘ne’) tmp_rel = tmp_src != GR[ r3];
else if ( crel == ‘lt’) tmp_rel = lesser_signed(tmp_src,  GR[ r3]);
else if ( crel == ‘le’) tmp_rel = lesser_equal_signed(tmp_src, GR[ r3]);
else if ( crel == ‘gt’) tmp_rel = greater_signed(tmp_src,  GR[ r3]);
else if ( crel == ‘ge’) tmp_rel = greater_equal_signed(tmp_src, GR[ r3]);
else if ( crel == ‘ltu’) tmp_rel = lesser(tmp_src, GR[ r3]);
else if ( crel == ‘leu’) tmp_rel = lesser_equal(tmp_src, GR[ r3]);
else if ( crel == ‘gtu’) tmp_rel = greater(tmp_src, GR[ r3]);
else tmp_rel = greater_equal(tmp_src, GR[ r3]); // ‘geu’

switch ( ctype) {
case ‘and’: // and-type compare

if (tmp_nat || !tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

if (tmp_nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
break;

}
} else {

if ( ctype == ‘unc’) {
if ( p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}



6-22 IA-64 Instruction Reference HP/Intel

cmp4 IA-64 Application ISA Guide 1.0

Compare Word

Format: (qp) cmp4.crel.ctype p1, p2 = r2, r3 register_form A6
(qp) cmp4.crel.ctype p1, p2 = imm8, r3 imm8_form A8
(qp) cmp4.crel.ctype p1, p2 = r0, r3 parallel_inequality_form A7
(qp) cmp4.crel.ctype p1, p2 = r3, r0 pseudo-op

Description: The least significant 32 bits from each of two source operands are compared for one of ten relations spec-
ified by crel. This produces a boolean result which is 1 if the comparison condition is true, and 0 other-
wise. This result is written to the two predicate register destinations, p1 and p2. The way the result is
written to the destinations is determined by the compare type specified by ctype. See the Compare instruc-
tion and Table 6-10 on page 6-19.

In the register_form the first operand is GR r2; in the imm8_form the first operand is taken from the sign
extended imm8 encoding field; and in the parallel_inequality_form the first operand must be GR 0. The
parallel_inequality_form is only used when the compare type is one of the parallel types, and the relation
is an inequality (>, >=, <, <=). See the Compare instruction and Table 6-12 on page 6-20.

If the two predicate register destinations are the same (p1 and p2 specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare type is
unc.

Of the ten relations, not all are directly implemented in hardware. Some are actually pseudo-ops. See the
Compare instruction and Table 6-11 and Table 6-12 on page 6-20. The range for immediates is given
below.

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

tmp_nat = (register_form ? GR[r2].nat : 0) || GR[r3].nat;

if (register_form)
tmp_src = GR[r2];

else if (imm8_form)
tmp_src = sign_ext(imm8, 8);

else // parallel_inequality_form
tmp_src = 0;

if (crel == ‘eq’) tmp_rel = tmp_src{31:0} == GR[ r3]{31:0};
else if ( crel == ‘ne’) tmp_rel = tmp_src{31:0} != GR[ r3]{31:0};
else if ( crel == ‘lt’)

tmp_rel = lesser_signed(sign_ext(tmp_src, 32), sign_ext(GR[ r3], 32));
else if ( crel == ‘le’)

tmp_rel = lesser_equal_signed(sign_ext(tmp_src, 32),  sign_ext(GR[ r3], 32));
else if ( crel == ‘gt’)

Table 6-13. Immediate Range for 32-bit Compares

crel
Compare Relation

(a rel b)
Immediate Range

eq a == b -128 .. 127

ne a != b -128 .. 127

lt a < b

signed

-128 .. 127

le a <= b -127 .. 128

gt a > b -127 .. 128

ge a >= b -128 .. 127

ltu a < b

unsigned

0 .. 127, 232-128 .. 232-1

leu a <= b 1 .. 128, 232-127 .. 232

gtu a > b 1 .. 128, 232-127 .. 232

geu a >= b 0 .. 127, 232-128 .. 232-1



HP/Intel IA-64 Instruction Reference 6-23

IA-64 Application ISA Guide 1.0 cmp4

tmp_rel = greater_signed(sign_ext(tmp_src, 32), sign_ext(GR[r3], 32));
else if (crel == ‘ge’)

tmp_rel = greater_equal_signed(sign_ext(tmp_src,  32),  sign_ext(GR[ r3],  32));
else if ( crel == ‘ltu’)

tmp_rel = lesser(zero_ext(tmp_src, 32), zero_ext(GR[ r3], 32));
else if ( crel == ‘leu’)

tmp_rel = lesser_equal(zero_ext(tmp_src, 32), zero_ext(GR[ r3], 32));
else if ( crel == ‘gtu’)

tmp_rel = greater(zero_ext(tmp_src, 32), zero_ext(GR[ r3], 32));
else // ‘geu’

tmp_rel = greater_equal(zero_ext(tmp_src, 32), zero_ext(GR[ r3], 32));

switch ( ctype) {
case ‘and’: // and-type compare

if (tmp_nat || !tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (!tmp_nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

if (tmp_nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
break;

}
} else {

if ( ctype == ‘unc’) {
if ( p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}



6-24 IA-64 Instruction Reference HP/Intel

cmpxchg IA-64 Application ISA Guide 1.0

Compare And Exchange

Format: (qp) cmpxchgsz.sem.ldhint r1 = [r3], r2, ar.ccv M16

Description: A value consisting of sz bytes is read from memory starting at the address specified by the value in GR r3.
The value is zero extended and compared with the contents of the cmpxchg Compare Value application
register (AR[CCV]). If the two are equal, then the least significant sz bytes of the value in GR r2 are writ-
ten to memory starting at the address specified by the value in GR r3. The zero-extended value read from
memory is placed in GR r1 and the NaT bit corresponding to GR r1 is cleared.

The values of the sz completer are given in Table 6-14. The sem completer specifies the type of semaphore
operation. These operations are described in Table 6-15.

If the address specified by the value in GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the User Mask
alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

The memory read and write are guaranteed to be atomic.

Both read and write access privileges for the referenced page are required. The write access privilege
check is performed whether or not the memory write is performed.

The value of the ldhint completer specifies the locality of the memory access. The values of the ldhint
completer are given in Table 6-28 on page 6-102. Locality hints do not affect program functionality and
may be ignored by the implementation. See “Memory Hierarchy Control and Consistency” on page 4-16
for details.

Table 6-14. Memory Compare and Exchange Size

sz Completer Bytes Accessed
1 1

2 2

4 4

8 8

Table 6-15. Compare and Exchange Semaphore Types

sem
Completer

Ordering
Semantics

Semaphore Operation

acq Acquire
The memory read/write is made visible prior to all subsequent data 
memory accesses.

rel Release
The memory read/write is made visible after all previous data memory 
accesses.



HP/Intel IA-64 Instruction Reference 6-25

IA-64 Application ISA Guide 1.0 cmpxchg

Operation: if (PR[qp]) {
check_target_register(r1, SEMAPHORE);

if (GR[r3].nat || GR[r2].nat)
register_nat_consumption_fault(SEMAPHORE);

paddr = tlb_translate(GR[r3], sz, SEMAPHORE, PSR.cpl, &mattr, &tmp_unused);

if (!ma_supports_semaphores(mattr))
unsupported_data_reference_fault(SEMAPHORE, GR[r3]);

if (sem == ‘acq’) {
val = mem_xchg_cond(AR[CCV], GR[ r2], paddr, sz, UM.be, mattr, ACQUIRE,

ldhint);
} else { // ‘rel’

val = mem_xchg_cond(AR[CCV], GR[ r2], paddr, sz, UM.be, mattr, RELEASE,
ldhint);

}
val = zero_ext(val, sz * 8);

if (AR[CCV] == val)
alat_inval_multiple_entries(paddr, sz);

GR[r1] = val;
GR[r1].nat = 0;

}



6-26 IA-64 Instruction Reference HP/Intel

czx IA-64 Application ISA Guide 1.0

Compute Zero Index

Format: (qp) czx1.l r1 = r3 one_byte_form, left_form I29
(qp) czx1.r r1 = r3 one_byte_form, right_form I29
(qp) czx2.l r1 = r3 two_byte_form, left_form I29
(qp) czx2.r r1 = r3 two_byte_form, right_form I29

Description: GR r3 is scanned for a zero element. The element is either an 8-bit aligned byte (one_byte_form) or a 16-
bit aligned pair of bytes (two_byte_form). The index of the first zero element is placed in GR r1. If there
are no zero elements in GR r3, a default value is placed in GR r1. Table 6-16 gives the possible result val-
ues. In the left_form, the source is scanned from most significant element to least significant element, and
in the right_form it is scanned from least significant element to most significant element.

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) {
if (left_form) { // scan from most significant down

if ((GR[r3] & 0xff00000000000000) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x00ff000000000000) == 0) GR[r1] = 1;
else if ((GR[r3] & 0x0000ff0000000000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0x000000ff00000000) == 0) GR[r1] = 3;
else if ((GR[r3] & 0x00000000ff000000) == 0) GR[r1] = 4;
else if ((GR[r3] & 0x0000000000ff0000) == 0) GR[r1] = 5;
else if ((GR[r3] & 0x000000000000ff00) == 0) GR[r1] = 6;
else if ((GR[r3] & 0x00000000000000ff) == 0) GR[r1] = 7;
else GR[r1] = 8;

} else { // right_form scan from least significant up
if ((GR[r3] & 0x00000000000000ff) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x000000000000ff00) == 0) GR[r1] = 1;
else if ((GR[r3] & 0x0000000000ff0000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0x00000000ff000000) == 0) GR[r1] = 3;
else if ((GR[r3] & 0x000000ff00000000) == 0) GR[r1] = 4;
else if ((GR[r3] & 0x0000ff0000000000) == 0) GR[r1] = 5;
else if ((GR[r3] & 0x00ff000000000000) == 0) GR[r1] = 6;
else if ((GR[r3] & 0xff00000000000000) == 0) GR[r1] = 7;
else GR[r1] = 8;

}
} else { // two_byte_form

if (left_form) { // scan from most significant down
if ((GR[r3] & 0xffff000000000000) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x0000ffff00000000) == 0) GR[r1] = 1;
else if ((GR[r3] & 0x00000000ffff0000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0x000000000000ffff) == 0) GR[r1] = 3;
else GR[r1] = 4;

} else { // right_form scan from least significant up
if ((GR[r3] & 0x000000000000ffff) == 0) GR[r1] = 0;
else if ((GR[r3] & 0x00000000ffff0000) == 0) GR[r1] = 1;
else if ((GR[r3] & 0x0000ffff00000000) == 0) GR[r1] = 2;
else if ((GR[r3] & 0xffff000000000000) == 0) GR[r1] = 3;
else GR[r1] = 4;

}
}
GR[r1].nat = GR[r3].nat;

}

Table 6-16. Result Ranges for czx

Size
Element 
Width

Range of Result if 
Zero Element Found

Default Result if No 
Zero Element Found

1 8 bit 0-7 8

2 16 bit 0-3 4



HP/Intel IA-64 Instruction Reference 6-27

IA-64 Application ISA Guide 1.0 dep

Deposit

Format: (qp) dep r1 = r2, r3, pos6, len4 merge_form, register_form I15
(qp) dep r1 = imm1, r3, pos6, len6 merge_form, imm_form I14
(qp) dep.z r1 = r2, pos6, len6 zero_form, register_form I12
(qp) dep.z r1 = imm8, pos6, len6 zero_form, imm_form I13

Description: In the merge_form, a right justified bit field taken from the first source operand is deposited into the value
in GR r3 at an arbitrary bit position and the result is placed in GR r1. In the register_form the first source
operand is GR r2; and in the imm_form it is the sign-extended value specified by imm1 (either all ones or
all zeroes). The deposited bit field begins at the bit position specified by the pos6 immediate and extends
to the left (towards the most significant bit) a number of bits specified by the len immediate. Note that len
has a range of 1-16 in the register_form and 1-64 in the imm_form. The pos6 immediate has a range of 0 to
63.

In the zero_form, a right justified bit field taken from either the value in GR r2 (in the register_form) or the
sign extended value in imm8 (in the imm_form) is deposited into GR r1 and all other bits in GR r1 are
cleared to zero. The deposited bit field begins at the bit position specified by the pos6 immediate and
extends to the left (towards the most significant bit) a number of bits specified by the len immediate. The
len immediate has a range of 1-64 and the pos6 immediate has a range of 0 to 63.

In the event that the deposited bit field extends beyond bit 63 of the target, i.e., len + pos6 > 64, the most
significant len + pos6 – 64 bits of the deposited bit field are truncated. The len immediate is encoded as
len minus 1 in the instruction.

The operation of dep t = s, r, 36, 16 is illustrated in Figure 6-5.

Operation: if (PR[qp]) {
check_target_register(r1);

if (imm_form) {
tmp_src = (merge_form ? sign_ext(imm1,1) : sign_ext(imm8, 8));
tmp_nat = merge_form ? GR[r3].nat : 0;
tmp_len = len6 ;

} else { // register_form
tmp_src = GR[r2];
tmp_nat = (merge_form ? GR[r3].nat : 0) || GR[r2].nat;
tmp_len = merge_form ? len4 : len6 ;

}
if (pos6 + tmp_len u> 64)

tmp_len = 64 - pos6;

if (merge_form)
GR[r1] = GR[r3];

else // zero_form
GR[r1] = 0;

GR[r1]{(pos6 + tmp_len - 1):pos6} = tmp_src{(tmp_len - 1):0};
GR[r1].nat = tmp_nat;

}

Figure 6-5. Deposit Example

GR r:

GR t:

16

3652

3652

GR s:

0

0

0



6-28 IA-64 Instruction Reference HP/Intel

extr IA-64 Application ISA Guide 1.0

Extract

Format: (qp) extr r1 = r3, pos6, len6 signed_form I11
(qp) extr.u r1 = r3, pos6, len6 unsigned_form I11

Description: A field is extracted from GR r3, either zero extended or sign extended, and placed right-justified in GR r1.
The field begins at the bit position given by the second operand and extends len6 bits to the left. The bit
position where the field begins is specified by the pos6 immediate. The extracted field is sign extended in
the signed_form or zero extended in the unsigned_form. The sign is taken from the most significant bit of
the extracted field. If the specified field extends beyond the most significant bit of GR r3, the sign is taken
from the most significant bit of GR r3. The immediate value len6 can be any number in the range 1 to 64,
and is encoded as len6-1 in the instruction. The immediate value pos6 can be any value in the range 0 to
63.

The operation of extr t = r, 7, 50 is illustrated in Figure 6-6.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_len = len6;

if (pos6 + tmp_len u> 64)
tmp_len = 64 - pos6;

if (unsigned_form)
GR[r1] = zero_ext(shift_right_unsigned(GR[r3], pos6), tmp_len);

else // signed_form
GR[r1] = sign_ext(shift_right_unsigned(GR[r3], pos6), tmp_len);

GR[r1].nat = GR[r3].nat;
}

Figure 6-6. Extract Example

56 7 0

49 0

GR r:

GR t:

63

63

sign



HP/Intel IA-64 Instruction Reference 6-29

IA-64 Application ISA Guide 1.0 fabs

Floating-Point Absolute Value

Format: (qp) fabs f1 = f3 pseudo-op of: (qp) fmerge.s f1 = f0, f3

Description: The absolute value of the value in FR f3 is computed and placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 6-49.



6-30 IA-64 Instruction Reference HP/Intel

fadd IA-64 Application ISA Guide 1.0

Floating-Point Add

Format: (qp) fadd.pc.sf f1 = f3, f2 pseudo-op of: (qp) fma.pc.sf f1 = f3, f1, f2

Description: FR f3 and FR f2 are added (computed to infinite precision), rounded to the precision indicated by pc (and
possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR
f1. If either FR f3 or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 6-17. The mnemonic values for sf are given
in Table 6-18. For the encodings and interpretation of the status field’s pc, wre, and rc, refer to Table 5-5
and Table 5-6 on page 5-5.

Operation: See “Floating-Point Multiply Add” on page 6-47.

Table 6-17. Specified pc Mnemonic Values

pc Mnemonic Precision Specifed
.s single
.d double
none dynamic

(i.e., use pc value in status 
field)

Table 6-18. sf Mnemonic Values

sf Mnemonic Status Field Accessed
.s0 or none sf0
.s1 sf1
.s2 sf2
.s3 sf3



HP/Intel IA-64 Instruction Reference 6-31

IA-64 Application ISA Guide 1.0 famax

Floating-Point Absolute Maximum

Format: (qp) famax.sf f1 = f2, f3 F8

Description: The operand with the larger absolute value is placed in FR f1. If the magnitude of FR f2 equals the magni-
tude of FR f3, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.lt operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_right = fp_reg_read(FR[f2]);
tmp_left = fp_reg_read(FR[f3]);
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
FR[f1] = tmp_bool_res ? FR[f2] : FR[f3];

fp_update_fpsr(sf, tmp_fp_env);
}

fp_update_psr(f1);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



6-32 IA-64 Instruction Reference HP/Intel

famin IA-64 Application ISA Guide 1.0

Floating-Point Absolute Minimum

Format: (qp) famin.sf f1 = f2, f3 F8

Description: The operand with the smaller absolute value is placed in FR f1. If the magnitude of FR f2 equals the mag-
nitude of FR f3, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.lt operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_left = fp_reg_read(FR[f2]);
tmp_right = fp_reg_read(FR[f3]);
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
FR[f1] = tmp_bool_res ? FR[f2] : FR[f3];

fp_update_fpsr(sf, tmp_fp_env);
}

fp_update_psr(f1);
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



HP/Intel IA-64 Instruction Reference 6-33

IA-64 Application ISA Guide 1.0 fand

Floating-Point Logical And

Format: (qp) fand f1 = f2, f3 F9

Description: The bit-wise logical AND of the significand fields of FR f2 and FR f3 is computed. The resulting value is
stored in the significand field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063

(0x1003E) and the sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand & FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}
fp_update_psr(f1);

}

FP Exceptions: None



6-34 IA-64 Instruction Reference HP/Intel

fandcm IA-64 Application ISA Guide 1.0

Floating-Point And Complement

Format: (qp) fandcm f1 = f2, f3 F9

Description: The bit-wise logical AND of the significand field of FR f2 with the bit-wise complemented significand
field of FR f3 is computed. The resulting value is stored in the significand field of FR f1. The exponent
field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive
(0).

If either FR f2 or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand & ~FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}
fp_update_psr(f1);

}

FP Exceptions: None



HP/Intel IA-64 Instruction Reference 6-35

IA-64 Application ISA Guide 1.0 fc

Flush Cache

Format: (qp) fc r3 M28

Description: The cache line associated with the address specified by the value of GR r3 is invalidated from all levels of
the processor cache hierarchy. The invalidation is broadcast throughout the coherence domain. If, at any
level of the cache hierarchy, the line is inconsistent with memory it is written to memory before invalida-
tion.

The line size affected is at least 32-bytes (aligned on a 32-byte boundary). An implementation may flush a
larger region.

This instruction follows data dependency rules; it is ordered with respect to preceding and following
memory references to the same line. fc has data dependencies in the sense that any prior stores by this
processor will be included in the data written back to memory. fc is an unordered operation, and is not
affected by a memory fence (mf) instruction. It is ordered with respect to the sync.i instruction.

Operation: if (PR[qp]) {
itype = NON_ACCESS|FC|READ;
if (GR[r3].nat)

register_nat_consumption_fault(itype);
tmp_paddr = tlb_translate_nonaccess(GR[r3], itype);
mem_flush(tmp_paddr);

}



6-36 IA-64 Instruction Reference HP/Intel

fchkf IA-64 Application ISA Guide 1.0

Floating-Point Check Flags

Format: (qp) fchkf.sf target25 F14

Description: The flags in FPSR.sf.flags are compared with FPSR.s0.flags and FPSR.traps. If any flags set in
FPSR.sf.flags correspond to FPSR.traps which are enabled, or if any flags set in FPSR.sf.flags are not set
in FPSR.s0.flags, then a branch to target25 is taken.

The target25 operand, specifies a label to branch to. This is encoded in the instruction as a signed immedi-
ate displacement (imm21) between the target bundle and the bundle containing this instruction (imm21 =
target25 – IP >> 4).

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
switch (sf) {

case ‘s0’:
tmp_flags = AR[FPSR].sf0.flags;
break;

case ‘s1’:
tmp_flags = AR[FPSR].sf1.flags;
break;

case ‘s2’:
tmp_flags = AR[FPSR].sf2.flags;
break;

case ‘s3’:
tmp_flags = AR[FPSR].sf3.flags;
break;

}
if ((tmp_flags & ~AR[FPSR].traps) || (tmp_flags & ~AR[FPSR].sf0.flags)) {

if (check_branch_implemented(FCHKF)) {
taken_branch = 1; 
IP = IP + sign_ext(( imm21 << 4), 25);
if ((PSR.it && unimplemented_virtual_address(IP))

|| (!PSR.it && unimplemented_physical_address(IP)))
unimplemented_instruction_address_trap(0, IP);

if (PSR.tb)
taken_branch_trap();

} else
speculation_fault(FCHKF, zero_ext( imm21, 21));

}
}

FP Exceptions: None



HP/Intel IA-64 Instruction Reference 6-37

IA-64 Application ISA Guide 1.0 fclass

Floating-Point Class

Format: (qp) fclass.fcrel.fctype p1, p2 = f2, fclass9 F5

Description: The contents of FR f2 are classified according to the fclass9 completer as shown in Table 6-20. This pro-
duces a boolean result based on whether the contents of FR f2 agrees with the floating-point number for-
mat specified by fclass9, as specified by the fcrel completer. This result is written to the two predicate
register destinations, p1 and p2. The result written to the destinations is determined by the compare type
specified by fctype.

The allowed types are Normal (or none) and unc. See Table 6-21 on page 6-40. The assembly syntax
allows the specification of membership or non-membership and the assembler swaps the target predicates
to achieve the desired effect.

A number agrees with the pattern specified by fclass9 if:

• the number is NaTVal and fclass9 {8} is 1, or 

• the number is a quiet NaN and fclass9 {7} is 1, or

• the number is a signaling NaN and fclass9 {6} is 1, or

• the sign of the number agrees with the sign specified by one of the two low-order bits of fclass9, and
the type of the number (disregarding the sign) agrees with the number-type specified by the next 4
bits of fclass9, as shown in Table 6-20.

Note: a fclass9 of 0x1FF is equivalent to testing for any supported operand.

The class names used in Table 6-20 are defined in Table 5-2 on page 5-2.

Table 6-19. Floating-point Class Relations

fcrel Test Relation
m FR f2 agrees with the pattern specified by fclass9 (is a member)

nm FR f2 does not agree with the pattern specified by fclass9 (is not a member)

Table 6-20. Floating-point Classes

fclass9 Class Mnemonic
Either these cases can be tested for

0x0100 NaTVal @nat

0x080 Quiet NaN @qnan

0x040 Signaling NaN @snan

or the OR of the following two cases

0x001 Positive @pos

0x002 Negative @neg

AND’ed with OR of the following 4 
cases

0x004 Zero @zero

0x008 Unnormalized @unorm

0x010 Normalized @norm

0x020 Infinity @inf



6-38 IA-64 Instruction Reference HP/Intel

fclass IA-64 Application ISA Guide 1.0

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0))
disabled_fp_register_fault(tmp_isrcode, 0);

tmp_rel = ((fclass9{0} && !FR[f2].sign || fclass9{1} && FR[f2].sign)
&& ((fclass9{2} && fp_is_zero(FR[f2]))||

 (fclass9{3} && fp_is_unorm(FR[f2])) ||
 (fclass9{4} && fp_is_normal(FR[f2])) ||
 (fclass9{5} && fp_is_inf(FR[f2]))
)

)
|| (fclass9{6} && fp_is_snan(FR[f2]))
|| (fclass9{7} && fp_is_qnan(FR[f2]))
|| (fclass9{8} && fp_is_natval(FR[f2]));

tmp_nat = fp_is_natval(FR[f2]) && (!fclass9{8});

if (tmp_nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
} else {

if (fctype == ‘unc’) {
if ( p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}

FP Exceptions: None



HP/Intel IA-64 Instruction Reference 6-39

IA-64 Application ISA Guide 1.0 fclrf

Floating-Point Clear Flags

Format: (qp) fclrf.sf F13

Description: The status field’s 6-bit flags field is reset to zero.
The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_set_sf_flags(sf, 0);

}

FP Exceptions: None



6-40 IA-64 Instruction Reference HP/Intel

fcmp IA-64 Application ISA Guide 1.0

Floating-Point Compare

Format: (qp) fcmp.frel.fctype.sf p1, p2 = f2, f3 F4

Description: The two source operands are compared for one of twelve relations specified by frel. This produces a bool-
ean result which is 1 if the comparison condition is true, and 0 otherwise. This result is written to the two
predicate register destinations, p1 and p2. The way the result is written to the destinations is determined by
the compare type specified by fctype. The allowed types are Normal (or none) and unc.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

The relations are defined for each of the comparison types in Table 6-22. Of the twelve relations, not all
are directly implemented in hardware. Some are actually pseudo-ops. For these, the assembler simply
switches the source operand specifiers and/or switches the predicate target specifiers and uses an imple-
mented relation.

Table 6-21. Floating-point Comparison Types

fctype
PR[qp]==0

PR[qp]==1

result==0,
No Source 
NaTVals

result==1,
No Source 
NaTVals

One or More
Source NaTVals

PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2] PR[p1] PR[p2]
none 0 1 1 0 0 0

unc 0 0 0 1 1 0 0 0

Table 6-22. Floating-point Comparison Relations

frel 
frel Completer
Unabbreviated

Relation Pseudo-op of
Quiet NaN
as Operand

Signals Invalid
eq equal f2 == f3 No

lt less than f2 < f3 Yes

le less than or equal f2 <= f3 Yes

gt greater than f2 > f3 lt f2 ↔ f3 Yes

ge greater than or equal f2 >= f3 le f2 ↔ f3 Yes

unord unordered f2 ? f3 No

neq not equal !(f2 == f3) eq p1 ↔ p2 No

nlt not less than !(f2 < f3) lt p1 ↔ p2 Yes

nle not less than or equal !(f2 <= f3) le p1 ↔ p2 Yes

ngt not greater than !(f2 > f3) lt f2 ↔ f3 p1 ↔ p2 Yes

nge not greater than or equal !(f2 >= f3) le f2 ↔ f3 p1 ↔ p2 Yes

ord ordered !(f2 ? f3) unord p1 ↔ p2 No



HP/Intel IA-64 Instruction Reference 6-41

IA-64 Application ISA Guide 1.0 fcmp

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (tmp_isrcode = fp_reg_disabled(f2, f3, 0, 0))
disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
PR[p1] = 0;
PR[p2] = 0;

} else {
fcmp_exception_fault_check(f2, f3, frel, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = fp_reg_read(FR[f2]);
tmp_fr3 = fp_reg_read(FR[f3]);

if (frel == ‘eq’) tmp_rel = fp_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘lt’) tmp_rel = fp_less_than(tmp_fr2, tmp_fr3);
else if ( frel == ‘le’) tmp_rel = fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘gt’) tmp_rel = fp_less_than(tmp_fr3, tmp_fr2);
else if ( frel == ‘ge’) tmp_rel = fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else if ( frel == ‘unord’)tmp_rel = fp_unordered(tmp_fr2, tmp_fr3);
else if ( frel == ‘neq’) tmp_rel = !fp_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘nlt’) tmp_rel = !fp_less_than(tmp_fr2, tmp_fr3);
else if ( frel == ‘nle’) tmp_rel = !fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘ngt’) tmp_rel = !fp_less_than(tmp_fr3, tmp_fr2);
else if ( frel == ‘nge’) tmp_rel = !fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else tmp_rel = !fp_unordered(tmp_fr2, tmp_fr3); //‘ord’

PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

fp_update_fpsr(sf, tmp_fp_env);
}

} else {
if ( fctype == ‘unc’) {

if ( p1 == p2)
illegal_operation_fault();

PR[p1] = 0;
PR[p2] = 0;

}
}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



6-42 IA-64 Instruction Reference HP/Intel

fcvt.fx IA-64 Application ISA Guide 1.0

Convert Floating-Point to Integer

Format: (qp) fcvt.fx.sf f1 = f2 signed_form F10
(qp) fcvt.fx.trunc.sf f1 = f2 signed_form, trunc_form F10
(qp) fcvt.fxu.sf f1 = f2 unsigned_form F10
(qp) fcvt.fxu.trunc.sf f1 = f2 unsigned_form, trunc_form F10

Description: FR f2 is treated as a register format floating-point value and converted to a signed (signed_form) or
unsigned integer (unsigned_form) using either the rounding mode specified in the FPSR.sf.rc, or using
Round-to-Zero if the trunc_form of the instruction is used. The result is placed in the 64-bit significand
field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign
field of FR f1 is set to positive (0).

If FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fcvt_exception_fault_check(f2, sf,

signed_form, trunc_form, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result)) {
FR[f1].significand = INTEGER_INDEFINITE;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

} else {
tmp_res = fp_ieee_rnd_to_int(fp_reg_read(FR[f2]), &tmp_fp_env);
if (tmp_res.exponent)

tmp_res.significand = fp_U64_rsh(
tmp_res.significand, (FP_INTEGER_EXP - tmp_res.exponent));

if (signed_form && tmp_res.sign)
tmp_res.significand = (~tmp_res.significand) + 1;

FR[f1].significand = tmp_res.significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Inexact (I)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



HP/Intel IA-64 Instruction Reference 6-43

IA-64 Application ISA Guide 1.0 fcvt.xf

Convert Signed Integer to Floating-point

Format: (qp) fcvt.xf f1 = f2 F11

Description: The 64-bit significand of FR f2 is treated as a signed integer and its register file precision floating-point
representation is placed in FR f1.

If FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation is always exact and is unaffected by the rounding mode.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2])) {
FR[f1] = NATVAL;

} else {
tmp_res = FR[f2];
if (tmp_res.significand{63}) {

tmp_res.significand = (~tmp_res.significand) + 1;
tmp_res.sign = 1;

} else
tmp_res.sign = 0;

tmp_res.exponent = FP_INTEGER_EXP;
tmp_res = fp_normalize(tmp_res);

FR[f1].significand = tmp_res.significand;
FR[f1].exponent = tmp_res.exponent;
FR[f1].sign = tmp_res.sign;

}
fp_update_psr(f1);

}

FP Exceptions: None



6-44 IA-64 Instruction Reference HP/Intel

fcvt.xuf IA-64 Application ISA Guide 1.0

Convert Unsigned Integer to Floating-point

Format: (qp) fcvt.xuf.pc.sf f1 = f3 (unsigned form) pseudo-op of: (qp) fma.pc.sf f1 = f3, f1, f0

Description: FR f3 is multiplied with FR 1, rounded to the precision indicated by pc (and possibly FPSR.sf.pc and
FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f1.
Note: Multiplying FR f3 with FR 1 (a 1.0) normalizes the canonical representation of an integer in the
floating-point register file producing a normal floating-point value.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the status field’s pc, wre,
and rc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: See “Floating-Point Multiply Add” on page 6-47



HP/Intel IA-64 Instruction Reference 6-45

IA-64 Application ISA Guide 1.0 fetchadd

Fetch And Add Immediate

Format: (qp) fetchadd4.sem.ldhint r1 = [r3], inc3 four_byte_form M17
(qp) fetchadd8.sem.ldhint r1 = [r3], inc3 eight_byte_form M17

Description: A value consisting of four or eight bytes is read from memory starting at the address specified by the value
in GR r3. The value is zero extended and added to the sign-extended immediate value specified by inc3.
The values that may be specified by inc3 are: -16, -8, -4, -1, 1, 4, 8, 16. The least significant four or eight
bytes of the sum are then written to memory starting at the address specified by the value in GR r3. The
zero-extended value read from memory is placed in GR r1 and the NaT bit corresponding to GR r1 is
cleared.

The sem completer specifies the type of semaphore operation. These operations are described in
Table 6-23. 

The memory read and write are guaranteed to be atomic.  

If the address specified by the value in GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the User Mask
alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

Both read and write access privileges for the referenced page are required. The write access privilege
check is performed whether or not the memory write is performed.

The value of the ldhint completer specifies the locality of the memory access. The values of the ldhint
completer are given in Table 6-28 on page 6-102. Locality hints do not affect program functionality and
may be ignored by the implementation. 

Operation: if (PR[qp]) {
check_target_register(r1, SEMAPHORE);

if (GR[r3].nat)
register_nat_consumption_fault(SEMAPHORE);

size = four_byte_form ? 4 : 8;

paddr = tlb_translate(GR[r3], size, SEMAPHORE, PSR.cpl, &mattr, &tmp_unused);
if (!ma_supports_fetchadd(mattr))

unsupported_data_reference_fault(SEMAPHORE, GR[r3]);

if (sem == ‘acq’)
val = mem_xchg_add( inc3, paddr, size, UM.be, mattr, ACQUIRE, ldhint);

else // ‘rel’
val = mem_xchg_add( inc3, paddr, size, UM.be, mattr, RELEASE, ldhint);

alat_inval_multiple_entries(paddr, size);

GR[r1] = zero_ext(val, size * 8);
GR[r1].nat = 0;

}

Table 6-23. Fetch and Add Semaphore Types

sem
Completer

Ordering 
Semantics

Semaphore Operation

acq Acquire
The memory read/write is made visible prior to all subsequent data 
memory accesses.

rel Release
The memory read/write is made visible after all previous data mem-
ory accesses.



6-46 IA-64 Instruction Reference HP/Intel

flushrs IA-64 Application ISA Guide 1.0

Flush Register Stack

Format: flushrs M25

Description: All stacked general registers in the dirty partition of the register stack are written to the backing store
before execution continues. The dirty partition contains registers from previous procedure frames that
have not yet been saved to the backing store.  

After this instruction completes execution AR[BSPSTORE] is equal to AR[BSP].

This instruction must be the first instruction in an instruction group. Otherwise, the results are undefined.
This instruction cannot be predicated.

Operation: while (AR[BSPSTORE] != AR[BSP]) {
rse_store(MANDATORY); // increments AR[BSPSTORE]
deliver_unmasked_pending_external_interrupt();

}



HP/Intel IA-64 Instruction Reference 6-47

IA-64 Application ISA Guide 1.0 fma

Floating-Point Multiply Add

Format: (qp) fma.pc.sf f1 = f3, f4, f2 F1

Description: The product of FR f3 and FR f4 is computed to infinite precision and then FR f2 is added to this product,
again in infinite precision. The resulting value is then rounded to the precision indicated by pc (and possi-
bly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The rounded result is
placed in FR f1.

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

If f2 is f0, an IEEE multiply operation is performed instead of a multiply and add. See “Floating-Point
Multiply” on page 6-54.

The mnemonic values for the opcode’s pc are given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the status field’s pc, wre,
and rc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fma_exception_fault_check(f2, f3, f4,

pc, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;

} else {
tmp_res = fp_mul(fp_reg_read(FR[f3]), fp_reg_read(FR[f4]));
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read(FR[f2]), tmp_fp_env);
FR[f1] = fp_ieee_round(tmp_res, &tmp_fp_env);

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Overflow (O)
Denormal/Unnormal Operand (D) Inexact (I)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)



6-48 IA-64 Instruction Reference HP/Intel

fmax IA-64 Application ISA Guide 1.0

Floating-Point Maximum

Format: (qp) fmax.sf f1 = f2, f3 F8

Description: The operand with the larger value is placed in FR f1. If FR f2 equals FR f3, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.lt operation. 

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_bool_res = fp_less_than(fp_reg_read(FR[f3]), fp_reg_read(FR[f2]));
FR[f1] = (tmp_bool_res ? FR[f2] : FR[f3]);

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



HP/Intel IA-64 Instruction Reference 6-49

IA-64 Application ISA Guide 1.0 fmerge

Floating-Point Merge

Format: (qp) fmerge.ns f1 = f2, f3 neg_sign_form F9
(qp) fmerge.s f1 = f2, f3 sign_form F9
(qp) fmerge.se f1 = f2, f3 sign_exp_form F9

Description: Sign, exponent and significand fields are extracted from FR f2 and FR f3, combined, and the result is
placed in FR f1.

For the neg_sign_form, the sign of FR f2 is negated and concatenated with the exponent and the signifi-
cand of FR f3. This form can be used to negate a floating-point number by using the same register for FR
f2 and FR f3.

For the sign_form, the sign of FR f2 is concatenated with the exponent and the significand of FR f3.

For the sign_exp_form, the sign and exponent of FR f2 is concatenated with the significand of FR f3.

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Figure 6-7. Floating-point Merge Negative Sign Operation

Figure 6-8. Floating-point Merge Sign Operation

Figure 6-9. Floating-point Merge Sign and Exponent Operation

81 080 64 63 81 080 64 63

81 080 64 63

FR f2

negated
sign bit

FR f3

FR f1

81 080 64 63 81 080 64 63

81 080 64 63

FR f2 FR f3

FR f1

81 080 64 63 81 080 64 63

81 080 64 63

FR f1

FR f3FR f2



6-50 IA-64 Instruction Reference HP/Intel

fmerge IA-64 Application ISA Guide 1.0

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f3].significand;
if (neg_sign_form) {

FR[f1].exponent = FR[f3].exponent;
FR[f1].sign = !FR[f2].sign;

} else if (sign_form) {
FR[f1].exponent = FR[f3].exponent;
FR[f1].sign = FR[f2].sign;

} else { // sign_exp_form
FR[f1].exponent = FR[f2].exponent;
FR[f1].sign = FR[f2].sign;

}
}

fp_update_psr(f1);
}

FP Exceptions: None



HP/Intel IA-64 Instruction Reference 6-51

IA-64 Application ISA Guide 1.0 fmin

Floating-Point Minimum

Format: (qp) fmin.sf f1 = f2, f3 F8

Description: The operand with the smaller value is placed in FR f1. If FR f2 equals FR f3, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaN, FR f1 gets FR f3.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as the fcmp.lt operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_bool_res = fp_less_than(fp_reg_read(FR[f2]), fp_reg_read(FR[f3]));
FR[f1] = tmp_bool_res ? FR[f2] : FR[f3];

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



6-52 IA-64 Instruction Reference HP/Intel

fmix IA-64 Application ISA Guide 1.0

Floating-Point Parallel Mix

Format: (qp) fmix.l f1 = f2, f3 mix_l_form F9
(qp) fmix.r f1 = f2, f3 mix_r_form F9
(qp) fmix.lr f1 = f2, f3 mix_lr_form F9

Description: For the mix_l_form (mix_r_form), the left (right) single precision value in FR f2 is concatenated with the
left (right) single precision value in FR f3. For the mix_lr_form, the left single precision value in FR f2 is
concatenated with the right single precision value in FR f3.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign
field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Figure 6-10. Floating-point Mix Left

Figure 6-11. Floating-point Mix Right

Figure 6-12. Floating-point Mix Left-Right

f1

f2 f3

63 32 63 32

63 32 31 0

f1

f2 f3

31 0 31 0

63 32 31 0

f1

f2 f3

63 32 31 0

63 32 31 0



HP/Intel IA-64 Instruction Reference 6-53

IA-64 Application ISA Guide 1.0 fmix

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (mix_l_form) {

tmp_res_hi = FR[f2].significand{63:32};
tmp_res_lo = FR[f3].significand{63:32};

} else if (mix_r_form) {
tmp_res_hi = FR[f2].significand{31:0};
tmp_res_lo = FR[f3].significand{31:0};

} else { // mix_lr_form
tmp_res_hi = FR[f2].significand{63:32};
tmp_res_lo = FR[f3].significand{31:0};

}
FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None



6-54 IA-64 Instruction Reference HP/Intel

fmpy IA-64 Application ISA Guide 1.0

Floating-Point Multiply

Format: (qp) fmpy.pc.sf f1 = f3, f4 pseudo-op of: (qp) fma.pc.sf f1 = f3, f4, f0

Description: The product FR f3 and FR f4 is computed to infinite precision. The resulting value is then rounded to the
precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified
by FPSR.sf.rc. The rounded result is placed in FR f1.

If either FR f3 or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the status field’s pc, wre,
and rc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: See “Floating-Point Multiply Add” on page 6-47.



HP/Intel IA-64 Instruction Reference 6-55

IA-64 Application ISA Guide 1.0 fms

Floating-Point Multiply Subtract

Format: (qp) fms.pc.sf f1 = f3, f4, f2 F1

Description: The product of FR f3 and FR f4 is computed to infinite precision and then FR f2 is subtracted from this
product, again in infinite precision. The resulting value is then rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The
rounded result is placed in FR f1.

If any of FR f3, FR f4, or FR f2 is a NaTVal, a NaTVal is placed in FR f1 instead of the computed result.

If f2 is f0, an IEEE multiply operation is performed instead of a multiply and subtract.

The mnemonic values for the opcode’s pc are given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the status field’s pc, wre,
and rc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4)) 

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fms_fnma_exception_fault_check(f2, f3, f4,

pc, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;

} else {
tmp_res = fp_mul(fp_reg_read(FR[f3]), fp_reg_read(FR[f4]));
tmp_fr2 = fp_reg_read(FR[f2]);
tmp_fr2.sign = !tmp_fr2.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, tmp_fr2, tmp_fp_env);
FR[f1] = fp_ieee_round(tmp_res, &tmp_fp_env);

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Overflow (O)
Denormal/Unnormal Operand (D) Inexact (I)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)



6-56 IA-64 Instruction Reference HP/Intel

fneg IA-64 Application ISA Guide 1.0

Floating-Point Negate

Format: (qp) fneg f1 = f3 pseudo-op of: (qp) fmerge.ns f1 = f3, f3

Description: The value in FR f3 is negated and placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 6-49.



HP/Intel IA-64 Instruction Reference 6-57

IA-64 Application ISA Guide 1.0 fnegabs

Floating-Point Negate Absolute Value

Format: (qp) fnegabs f1 = f3 pseudo-op of: (qp) fmerge.ns f1 = f0, f3

Description: The absolute value of the value in FR f3 is computed, negated, and placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Merge” on page 6-49.



6-58 IA-64 Instruction Reference HP/Intel

fnma IA-64 Application ISA Guide 1.0

Floating-Point Negative Multiply Add

Format: (qp) fnma.pc.sf f1 = f3, f4, f2 F1

Description: The product of FR f3 and FR f4 is computed to infinite precision, negated, and then FR f2 is added to this
product, again in infinite precision. The resulting value is then rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc. The
rounded result is placed in FR f1.

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

If f2 is f0, an IEEE multiply operation is performed, followed by negation of the product.

The mnemonic values for the opcode’s pc are given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the status field’s pc, wre,
and rc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result = fms_fnma_exception_fault_check(f2, f3, f4,

pc, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;

} else {
tmp_res = fp_mul(fp_reg_read(FR[f3]), fp_reg_read(FR[f4]));
tmp_res.sign = !tmp_res.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read(FR[f2]), tmp_fp_env);
FR[f1] = fp_ieee_round(tmp_res, &tmp_fp_env);

}

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Overflow (O)
Denormal/Unnormal Operand (D) Inexact (I)
Software Assist (SWA) fault Software Assist (SWA) trap
Underflow (U)



HP/Intel IA-64 Instruction Reference 6-59

IA-64 Application ISA Guide 1.0 fnmpy

Floating-Point Negative Multiply

Format: (qp) fnmpy.pc.sf f1 = f3, f4 pseudo-op of: (qp) fnma.pc.sf f1 = f3, f4,f0

Description: The product FR f3 and FR f4 is computed to infinite precision and then negated. The resulting value is then
rounded to the precision indicated by pc (and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding
mode specified by FPSR.sf.rc. The rounded result is placed in FR f1.

If either FR f3 or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the status field’s pc, wre,
and rc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: See “Floating-Point Negative Multiply Add” on page 6-58.



6-60 IA-64 Instruction Reference HP/Intel

fnorm IA-64 Application ISA Guide 1.0

Floating-Point Normalize

Format: (qp) fnorm.pc.sf f1 = f3 pseudo-op of: (qp) fma.pc.sf f1 = f3, f1, f0

Description: FR f3 is normalized and rounded to the precision indicated by pc (and possibly FPSR.sf.pc and
FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed in FR f1.

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the status field’s pc, wre,
and rc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: See “Floating-Point Multiply Add” on page 6-47.



HP/Intel IA-64 Instruction Reference 6-61

IA-64 Application ISA Guide 1.0 for

Floating-Point Logical Or

Format: (qp) for f1 = f2, f3 F9

Description: The bit-wise logical OR of the significand fields of FR f2 and FR f3 is computed. The resulting value is
stored in the significand field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063

(0x1003E) and the sign field of FR f1 is set to positive (0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand | FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None



6-62 IA-64 Instruction Reference HP/Intel

fpabs IA-64 Application ISA Guide 1.0

Floating-Point Parallel Absolute Value

Format: (qp) fpabs f1 = f3 pseudo-op of: (qp) fpmerge.s f1 = f0, f3

Description: The absolute values of the pair of single precision values in the significand field of FR f3 are computed
and stored in the significand field of FR f1. The exponent field of FR f1 is set to the biased exponent for
2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 6-73.



HP/Intel IA-64 Instruction Reference 6-63

IA-64 Application ISA Guide 1.0 fpack

Floating-Point Pack

Format: (qp) fpack f1 = f2, f3 pack_form F9

Description: The register format numbers in FR f2 and FR f3 are converted to single precision memory format. These
two single precision numbers are concatenated and stored in the significand field of FR f1 . The exponent
field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive
(0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
tmp_res_hi = fp_single(FR[f2]);
tmp_res_lo = fp_single(FR[f3]);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}
fp_update_psr(f1);

}

FP Exceptions: None

Figure 6-13. Floating-point Pack

f1

f2 f3

81 0 81 0

82-bit FR to Single Mem Format Conversion

63 32 31 0



6-64 IA-64 Instruction Reference HP/Intel

fpamax IA-64 Application ISA Guide 1.0

Floating-Point Parallel Absolute Maximum

Format: (qp) fpamax.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 and FR f3 are compared. The operands with
the larger absolute value are returned in the significand field of FR f1.

If the magnitude of high (low) FR f3 is less than the magnitude of high (low) FR f2, high (low) FR f1 gets
high (low) FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, and neither FR f2 or FR f3 is a NaTVal, high (low) FR f1
gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is
set to positive (0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.lt operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_right = fp_reg_read_hi(f2);
tmp_fr3 = tmp_left = fp_reg_read_hi(f3);
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

tmp_fr2 = tmp_right = fp_reg_read_lo(f2);
tmp_fr3 = tmp_left = fp_reg_read_lo(f3);
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



HP/Intel IA-64 Instruction Reference 6-65

IA-64 Application ISA Guide 1.0 fpamin

Floating-Point Parallel Absolute Minimum

Format: (qp) fpamin.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 or FR f3 are compared. The operands with
the smaller absolute value is returned in the significand of FR f1.

If the magnitude of high (low) FR f2 is less than the magnitude of high (low) FR f3, high (low) FR f1 gets
high (low) FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, and neither FR f2 or FR f3 is a NaTVal, high (low) FR f1
gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is
set to positive (0).

If either FR f2 or FR f3 is NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.lt operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_left = fp_reg_read_hi(f2);
tmp_fr3 = tmp_right = fp_reg_read_hi(f3);
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

tmp_fr2 = tmp_left = fp_reg_read_lo(f2);
tmp_fr3 = tmp_right = fp_reg_read_lo(f3);
tmp_left.sign = FP_SIGN_POSITIVE;
tmp_right.sign = FP_SIGN_POSITIVE;
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



6-66 IA-64 Instruction Reference HP/Intel

fpcmp IA-64 Application ISA Guide 1.0

Floating-Point Parallel Compare

Format: (qp) fpcmp.frel.sf f1= f2, f3 F8

Description: The two pairs of single precision source operands in the significand fields of FR f2 and FR f3 are compared
for one of twelve relations specified by frel. This produces a boolean result which is a mask of 32 1’s if the
comparison condition is true, and a mask of 32 0’s otherwise. This result is written to a pair of 32-bit inte-
gers in the significand field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063

(0x1003E) and the sign field of FR f1 is set to positive (0).

The mnemonic values for sf are given in Table 6-18 on page 6-30.

The relations are defined for each of the comparison types in Table 6-24. Of the twelve relations, not all
are directly implemented in hardware. Some are actually pseudo-ops. For these, the assembler simply
switches the source operand specifiers and/or switches the predicate type specifiers and uses an imple-
mented relation.

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Table 6-24. Floating-point Parallel Comparison Results

PR[qp]==0

PR[qp]==1

result==false,
No Source 
NaTVals

result==true,
No Source 
NaTVals

One or More
Source 

NaTVal’s
unchanged 0...0 1...1 NaTVal

Table 6-25. Floating-point Parallel Comparison Relations

frel 
frel Completer
Unabbreviated

Relation Pseudo-op of
Quiet NaN
as Operand

Signals Invalid
eq equal f2 == f3 No

lt less than f2 < f3 Yes

le less than or equal f2 <= f3 Yes

gt greater than f2 > f3 lt f2 ↔ f3 Yes

ge greater than or equal f2 >= f3 le f2 ↔ f3 Yes

unord unordered f2 ? f3 No

neq not equal !(f2 == f3) No

nlt not less than !(f2 < f3) Yes

nle not less than or equal !(f2 <= f3) Yes

ngt not greater than !(f2 > f3) nlt f2 ↔ f3 Yes

nge not greater than or equal !(f2 >= f3) nle f2 ↔ f3 Yes

ord ordered !(f2 ? f3) No



HP/Intel IA-64 Instruction Reference 6-67

IA-64 Application ISA Guide 1.0 fpcmp

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2,f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpcmp_exception_fault_check(f2, f3, frel, sf, &tmp_fp_env);

if (fp_raise_fault(tmp_fp_env))
fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = fp_reg_read_hi(f2);
tmp_fr3 = fp_reg_read_hi(f3);

if  (frel == ‘eq’) tmp_rel = fp_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘lt’) tmp_rel = fp_less_than(tmp_fr2, tmp_fr3);
else if ( frel == ‘le’) tmp_rel = fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘gt’) tmp_rel = fp_less_than(tmp_fr3, tmp_fr2);
else if ( frel == ‘ge’) tmp_rel = fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else if ( frel == ‘unord’)tmp_rel = fp_unordered(tmp_fr2, tmp_fr3);
else if ( frel == ‘neq’) tmp_rel = !fp_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘nlt’) tmp_rel = !fp_less_than(tmp_fr2, tmp_fr3);
else if ( frel == ‘nle’) tmp_rel = !fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘ngt’) tmp_rel = !fp_less_than(tmp_fr3, tmp_fr2);
else if ( frel == ‘nge’) tmp_rel = !fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else tmp_rel = !fp_unordered(tmp_fr2, tmp_fr3); //‘ord’

tmp_res_hi = (tmp_rel ? 0xFFFFFFFF : 0x00000000);

tmp_fr2 = fp_reg_read_lo( f2);
tmp_fr3 = fp_reg_read_lo( f3);

if  ( frel == ‘eq’) tmp_rel = fp_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘lt’) tmp_rel = fp_less_than(tmp_fr2, tmp_fr3);
else if ( frel == ‘le’) tmp_rel = fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘gt’) tmp_rel = fp_less_than(tmp_fr3, tmp_fr2);
else if ( frel == ‘ge’) tmp_rel = fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else if ( frel == ‘unord’)tmp_rel = fp_unordered(tmp_fr2, tmp_fr3);
else if ( frel == ‘neq’) tmp_rel = !fp_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘nlt’) tmp_rel = !fp_less_than(tmp_fr2, tmp_fr3);
else if ( frel == ‘nle’) tmp_rel = !fp_lesser_or_equal(tmp_fr2, tmp_fr3);
else if ( frel == ‘ngt’) tmp_rel = !fp_less_than(tmp_fr3, tmp_fr2);
else if ( frel == ‘nge’) tmp_rel = !fp_lesser_or_equal(tmp_fr3, tmp_fr2);
else tmp_rel = !fp_unordered(tmp_fr2, tmp_fr3); //‘ord’

tmp_res_lo = (tmp_rel ? 0xFFFFFFFF : 0x00000000);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr( f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



6-68 IA-64 Instruction Reference HP/Intel

fpcvt.fx IA-64 Application ISA Guide 1.0

Convert Parallel Floating-Point to Integer

Format: (qp) fpcvt.fx.sf f1 = f2 signed_form F10
(qp) fpcvt.fx.trunc.sf f1 = f2 signed_form, trunc_form F10
(qp) fpcvt.fxu.sf f1 = f2 unsigned_form F10
(qp) fpcvt.fxu.trunc.sf f1 = f2 unsigned_form, trunc_form F10

Description: The pair of single precision values in the significand field of FR f2 is converted to a pair of 32-bit signed
integers (signed_form) or unsigned integers (unsigned_form) using either the rounding mode specified in
the FPSR.sf.rc, or using Round-to-Zero if the trunc_form of the instruction is used. The result is written as
a pair of 32-bit integers into the significand field of FR f1. The exponent field of FR f1 is set to the biased
exponent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive (0). If the result of the conver-
sion doesn’t fit in a 32-bit integer the 32-bit integer indefinite value 0x80000000 is used as the result if the
IEEE Invalid Operation Floating-Point Exception fault is disabled.

If FR f2 is a NaTVal, FR f1 is set to NatVal instead of the computed result.

The mnemonic values for sf are given in Table 6-18 on page 6-30.



HP/Intel IA-64 Instruction Reference 6-69

IA-64 Application ISA Guide 1.0 fpcvt.fx

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpcvt_exception_fault_check(f2, sf,

signed_form, trunc_form, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result_pair.hi)) {
tmp_res_hi = INTEGER_INDEFINITE_32_BIT;

} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_hi(f2), HIGH, &tmp_fp_env);
if (tmp_res.exponent)

tmp_res.significand = fp_U64_rsh(
tmp_res.significand, (FP_INTEGER_EXP - tmp_res.exponent));

if (signed_form && tmp_res.sign)
tmp_res.significand = (~tmp_res.significand) + 1;

tmp_res_hi = tmp_res.significand{31:0};
}

if (fp_is_nan(tmp_default_result_pair.lo)) {
tmp_res_lo = INTEGER_INDEFINITE_32_BIT;

} else {
tmp_res = fp_ieee_rnd_to_int_sp(fp_reg_read_lo(f2), LOW, &tmp_fp_env);
if (tmp_res.exponent)

tmp_res.significand = fp_U64_rsh(
tmp_res.significand, (FP_INTEGER_EXP - tmp_res.exponent));

if (signed_form && tmp_res.sign) 
tmp_res.significand = (~tmp_res.significand) + 1;

tmp_res_lo = tmp_res.significand{31:0};
}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Inexact (I)
Denormal/Unnormal Operand (D)
Software Assist (SWA) Fault



6-70 IA-64 Instruction Reference HP/Intel

fpma IA-64 Application ISA Guide 1.0

Floating-Point Parallel Multiply Add

Format: (qp) fpma.sf f1 = f3, f4, f2 F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR f3 and FR f4 are
computed to infinite precision and then the pair of single precision values in the significand field of FR f2
is added to these products, again in infinite precision. The resulting values are then rounded to single pre-
cision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the sig-
nificand field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and
the sign field of FR f1 is set to positive (0).

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed results.

Note: If f2 is f0 in the fpma instruction, just the IEEE multiply operation is performed. (See “Floating-
Point Parallel Multiply” on page 6-76.) FR f1, as an operand, is not a packed pair of 1.0 values, it is just
the register file format’s 1.0 value.

The mnemonic values for sf are given in Table 6-18 on page 6-30.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on page 5-5.



HP/Intel IA-64 Instruction Reference 6-71

IA-64 Application ISA Guide 1.0 fpma

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpma_exception_fault_check(f2,

f3, f4, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);

} else {
tmp_res = fp_mul(fp_reg_read_hi(f3), fp_reg_read_hi(f4));
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_hi(f2), tmp_fp_env);
tmp_res_hi = fp_ieee_round_sp(tmp_res, HIGH, &tmp_fp_env);

}

if (fp_is_nan_or_inf(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);

} else {
tmp_res = fp_mul(fp_reg_read_lo(f3), fp_reg_read_lo(f4));
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_lo(f2), tmp_fp_env);
tmp_res_lo = fp_ieee_round_sp(tmp_res, LOW, &tmp_fp_env);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (I)

Software Assist (SWA) trap



6-72 IA-64 Instruction Reference HP/Intel

fpmax IA-64 Application ISA Guide 1.0

Floating-Point Parallel Maximum

Format: (qp) fpmax.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 or FR f3 are compared. The operands with
the larger value is returned in the significand of FR f1.

If the value of high (low) FR f3 is less than the value of high (low) FR f2, high (low) FR f1 gets high (low)
FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, high (low) FR f1 gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is
set to positive (0).

If either FR f2 or FR f3 is NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.lt operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_right = fp_reg_read_hi(f2);
tmp_fr3 = tmp_left = fp_reg_read_hi(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2 : tmp_fr3);

tmp_fr2 = tmp_right = fp_reg_read_lo(f2);
tmp_fr3 = tmp_left = fp_reg_read_lo(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



HP/Intel IA-64 Instruction Reference 6-73

IA-64 Application ISA Guide 1.0 fpmerge

Floating-Point Parallel Merge

Format: (qp) fpmerge.ns f1 = f2, f3 neg_sign_form F9
(qp) fpmerge.s f1 = f2, f3 sign_form F9
(qp) fpmerge.se f1 = f2, f3 sign_exp_form F9

Description: For the neg_sign_form, the signs of the pair of single precision values in the significand field of FR f2 are
negated and concatenated with the exponents and the significands of the pair of single precision values in
the significand field of FR f3 and stored in the significand field of FR f1. This form can be used to negate a
pair of single precision floating-point numbers by using the same register for f2 and f3.

For the sign_form, the signs of the pair of single precision values in the significand field of FR f2 are con-
catenated with the exponents and the significands of the pair of single precision values in the significand
field of FR f3 and stored in FR f1.

For the sign_exp_form, the signs and exponents of the pair of single precision values in the significand
field of FR f2 are concatenated with the pair of single precision significands in the significand field of FR
f3 and stored in the significand field of FR f1.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign
field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Figure 6-14. Floating-point Merge Negative Sign Operation

Figure 6-15. Floating-point Merge Sign Operation

Figure 6-16. Floating-point Merge Sign and Exponent Operation

f1

negated

63 31

0303262

03163
f3

f2

sign bit

f1

sign bit

63 31

0303262

03163
f3

f2

f1

sign and

63 31

032

03163
f3

f2

exponent 23 2255 54

63 55 54 23 22

23 2255 54



6-74 IA-64 Instruction Reference HP/Intel

fpmerge IA-64 Application ISA Guide 1.0

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (neg_sign_form) {

tmp_res_hi = (!FR[f2].significand{63} << 31)
 | (FR[f3].significand{62:32});

tmp_res_lo = (!FR[f2].significand{31} << 31)
 | (FR[f3].significand{30:0});

} else if (sign_form) {
tmp_res_hi = (FR[f2].significand{63} << 31)

 | (FR[f3].significand{62:32});
tmp_res_lo = (FR[f2].significand{31} << 31)

 | (FR[f3].significand{30:0});
} else { // sign_exp_form

tmp_res_hi = (FR[f2].significand{63:55} << 23)
 | (FR[f3].significand{54:32});

tmp_res_lo = (FR[f2].significand{31:23} << 23)
 | (FR[f3].significand{22:0});

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None



HP/Intel IA-64 Instruction Reference 6-75

IA-64 Application ISA Guide 1.0 fpmin

Floating-Point Parallel Minimum

Format: (qp) fpmin.sf f1 = f2, f3 F8

Description: The paired single precision values in the significands of FR f2 or FR f3 are compared. The operands with
the smaller value is returned in significand of FR f1.

If the value of high (low) FR f2 is less than the value of high (low) FR f3, high (low) FR f1 gets high (low)
FR f2. Otherwise high (low) FR f1 gets high (low) FR f3.

If high (low) FR f2 or high (low) FR f3 is a NaN, high (low) FR f1 gets high (low) FR f3.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is
set to positive (0).

If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

This operation does not propagate NaNs the same way as other floating-point arithmetic operations. The
Invalid Operation is signaled in the same manner as for the fpcmp.lt operation.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
fpminmax_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

tmp_fr2 = tmp_left = fp_reg_read_hi(f2);
tmp_fr3 = tmp_right = fp_reg_read_hi(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_hi = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

tmp_fr2 = tmp_left = fp_reg_read_lo(f2);
tmp_fr3 = tmp_right = fp_reg_read_lo(f3);
tmp_bool_res = fp_less_than(tmp_left, tmp_right);
tmp_res_lo = fp_single(tmp_bool_res ? tmp_fr2: tmp_fr3);

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



6-76 IA-64 Instruction Reference HP/Intel

fpmpy IA-64 Application ISA Guide 1.0

Floating-Point Parallel Multiply

Format: (qp) fpmpy.sf f1 = f3, f4 pseudo-op of: (qp) fpma.sf f1 = f3, f4, f0

Description: The pair of products of the pairs of single precision values in the significand fields of FR f3 and FR f4 are
computed to infinite precision. The resulting values are then rounded to single precision using the round-
ing mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand field of FR f1.
The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is
set to positive (0).

If either FR f3, or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 6-18 on page 6-30.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on page 5-5.

Operation: See “Floating-Point Parallel Multiply Add” on page 6-70.



HP/Intel IA-64 Instruction Reference 6-77

IA-64 Application ISA Guide 1.0 fpms

Floating-Point Parallel Multiply Subtract

Format: (qp) fpms.sf f1 = f3, f4, f2 F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR f3 and FR f4 are
computed to infinite precision and then the pair of single precision values in the significand field of FR f2
is subtracted from these products, again in infinite precision. The resulting values are then rounded to sin-
gle precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in
the significand field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E)
and the sign field of FR f1 is set to positive (0).

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed results.

Note: If f2 is f0 in the fpms instruction, just the IEEE multiply operation is performed.

The mnemonic values for sf are given in Table 6-18 on page 6-30.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on page 5-5.



6-78 IA-64 Instruction Reference HP/Intel

fpms IA-64 Application ISA Guide 1.0

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpms_fpnma_exception_fault_check(f2, f3, f4,

sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);

} else {
tmp_res = fp_mul(fp_reg_read_hi(f3), fp_reg_read_hi(f4));
if (f2 != 0) {

tmp_sub = fp_reg_read_hi(f2);
tmp_sub.sign = !tmp_sub.sign;
tmp_res = fp_add(tmp_res, tmp_sub, tmp_fp_env);

}
tmp_res_hi = fp_ieee_round_sp(tmp_res, HIGH, &tmp_fp_env);

}

if (fp_is_nan_or_inf(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);

} else {
tmp_res = fp_mul(fp_reg_read_lo(f3), fp_reg_read_lo(f4));
if (f2 != 0) {

tmp_sub = fp_reg_read_lo(f2);
tmp_sub.sign = !tmp_sub.sign;
tmp_res = fp_add(tmp_res, tmp_sub, tmp_fp_env);

}
tmp_res_lo = fp_ieee_round_sp(tmp_res, LOW, &tmp_fp_env);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) Fault Inexact (I)

Software Assist (SWA) trap



HP/Intel IA-64 Instruction Reference 6-79

IA-64 Application ISA Guide 1.0 fpneg

Floating-Point Parallel Negate

Format: (qp) fpneg f1 = f3 pseudo-op of: (qp) fpmerge.ns f1 = f3, f3

Description: The pair of single precision values in the significand field of FR f3 are negated and stored in the signifi-
cand field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the
sign field of FR f1 is set to positive (0).

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 6-73.



6-80 IA-64 Instruction Reference HP/Intel

fpnegabs IA-64 Application ISA Guide 1.0

Floating-Point Parallel Negate Absolute Value

Format: (qp) fpnegabs f1 = f3 pseudo-op of: (qp) fpmerge.ns f1 = f0, f3

Description: The absolute values of the pair of single precision values in the significand field of FR f3 are computed,
negated and stored in the significand field of FR f1. The exponent field of FR f1 is set to the biased expo-
nent for 2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: See “Floating-Point Parallel Merge” on page 6-73.



HP/Intel IA-64 Instruction Reference 6-81

IA-64 Application ISA Guide 1.0 fpnma

Floating-Point Parallel Negative Multiply Add

Format: (qp) fpnma.sf f1 = f3, f4, f2 F1

Description: The pair of products of the pairs of single precision values in the significand fields of FR f3 and FR f4 are
computed to infinite precision, negated, and then the pair of single precision values in the significand field
of FR f2 are added to these (negated) products, again in infinite precision. The resulting values are then
rounded to single precision using the rounding mode specified by FPSR.sf.rc. The pair of rounded results
are stored in the significand field of FR f1. The exponent field of FR f1 is set to the biased exponent for
2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Note: If f2 is f0 in the fpnma instruction, just the IEEE multiply operation (with the product being negated
before rounding) is performed.

The mnemonic values for sf are given in Table 6-18 on page 6-30.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on page 5-5.



6-82 IA-64 Instruction Reference HP/Intel

fpnma IA-64 Application ISA Guide 1.0

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;
fp_update_psr(f1);

} else {
tmp_default_result_pair = fpms_fpnma_exception_fault_check(f2, f3, f4,

sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);

} else {
tmp_res = fp_mul(fp_reg_read_hi(f3), fp_reg_read_hi(f4));
tmp_res.sign = !tmp_res.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_hi(f2), tmp_fp_env);
tmp_res_hi = fp_ieee_round_sp(tmp_res, HIGH, &tmp_fp_env);

}

if (fp_is_nan_or_inf(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);

} else {
tmp_res = fp_mul(fp_reg_read_lo(f3), fp_reg_read_lo(f4));
tmp_res.sign = !tmp_res.sign;
if (f2 != 0)

tmp_res = fp_add(tmp_res, fp_reg_read_lo(f2), tmp_fp_env);
tmp_res_lo = fp_ieee_round_sp(tmp_res, LOW, &tmp_fp_env);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

fp_update_fpsr(sf, tmp_fp_env);
fp_update_psr(f1);
if (fp_raise_traps(tmp_fp_env))

fp_exception_trap(fp_decode_trap(tmp_fp_env));
}

}

FP Exceptions: Invalid Operation (V) Underflow (U)
Denormal/Unnormal Operand (D) Overflow (O)
Software Assist (SWA) fault Inexact (I)

Software Assist (SWA) trap



HP/Intel IA-64 Instruction Reference 6-83

IA-64 Application ISA Guide 1.0 fpnmpy

Floating-Point Parallel Negative Multiply

Format: (qp) fpnmpy.sf f1 = f3, f4 pseudo-op of: (qp) fpnma.sf f1 = f3, f4,f0

Description: The pair of products of the pairs of single precision values in the significand fields of FR f3 and FR f4 are
computed to infinite precision and then negated. The resulting values are then rounded to single precision
using the rounding mode specified by FPSR.sf.rc. The pair of rounded results are stored in the significand
field of FR f1. The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign
field of FR f1 is set to positive (0).

If either FR f3 or FR f4 is a NaTVal, FR f1 is set to NaTVal instead of the computed results.

The mnemonic values for sf are given in Table 6-18 on page 6-30.
The encodings and interpretation for the status field’s rc are given in Table 5-6 on page 5-5.

Operation: See “Floating-Point Parallel Negative Multiply Add” on page 6-81.



6-84 IA-64 Instruction Reference HP/Intel

fprcpa IA-64 Application ISA Guide 1.0

Floating-Point Parallel Reciprocal Approximation

Format: (qp) fprcpa.sf f1,p2 = f2, f3 F6

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged. 

If PR qp is 1, the following will occur:

• Each half of the significand of FR f1 is either set to an approximation (with a relative error < 2-8.886)
of the reciprocal of the corresponding half of FR f3, or set to the IEEE-754 mandated response for the
quotient FR f2/FR f3 of the corresponding half — if that half of FR f2 or of FR f3 is in the set {-Infin-
ity, -0, +0, +Infinity, NaN}.

• If either half of FR f1 is set to the IEEE-754 mandated quotient, or is set to an approximation of the
reciprocal which may cause the Newton-Raphson iterations to fail to produce the correct IEEE-754
divide result, then PR p2 is set to 0, otherwise it is set to 1.

For correct IEEE divide results, when PR p2 is cleared, user software is expected to compute the quo-
tient (FR f2/FR f3) for each half (using the non-parallel frcpa instruction), and merge the results into
FR f1, keeping PR p2 cleared.

• The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR
f1 is set to positive (0).

• If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result, and PR p2
is cleared. 

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result_pair = fprcpa_exception_fault_check(f2, f3, sf,

&tmp_fp_env, &limits_check);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result_pair.hi) || limits_check.hi_fr3) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);
tmp_pred_hi = 0;

} else {
num = fp_normalize(fp_reg_read_hi(f2));
den = fp_normalize(fp_reg_read_hi(f3));
if (fp_is_inf(num) && fp_is_finite(den)) {

tmp_res = FP_INFINITY;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_hi = 0;

} else if (fp_is_finite(num) && fp_is_inf(den)) {
tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_hi = 0;

} else if (fp_is_zero(num) && fp_is_finite(den)) {
tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_hi = 0;

} else {
tmp_res = fp_ieee_recip(den);
if (limits_check.hi_fr2_or_quot)

tmp_pred_hi = 0;
else

tmp_pred_hi = 1;
}



HP/Intel IA-64 Instruction Reference 6-85

IA-64 Application ISA Guide 1.0 fprcpa

tmp_res_hi = fp_single(tmp_res);
}
if (fp_is_nan_or_inf(tmp_default_result_pair.lo) || limits_check.lo_fr3) {

tmp_res_lo = fp_single(tmp_default_result_pair.lo);
tmp_pred_lo = 0;

} else {
num = fp_normalize(fp_reg_read_lo(f2));
den = fp_normalize(fp_reg_read_lo(f3));
if (fp_is_inf(num) && fp_is_finite(den)) {

tmp_res = FP_INFINITY;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_lo = 0;

} else if (fp_is_finite(num) && fp_is_inf(den)) {
tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_lo = 0;

} else if (fp_is_zero(num) && fp_is_finite(den)) {
tmp_res = FP_ZERO;
tmp_res.sign = num.sign ^ den.sign;
tmp_pred_lo = 0;

} else {
tmp_res = fp_ieee_recip(den);
if (limits_check.lo_fr2_or_quot)

tmp_pred_lo = 0;
else

tmp_pred_lo = 1;
}
tmp_res_lo = fp_single(tmp_res);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;
PR[p2] = tmp_pred_hi && tmp_pred_lo;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

} else {
PR[p2] = 0;

}

FP Exceptions: Invalid Operation (V)
Zero Divide (Z)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



6-86 IA-64 Instruction Reference HP/Intel

fprsqrta IA-64 Application ISA Guide 1.0

Floating-Point Parallel Reciprocal Square Root Approximation

Format: (qp) fprsqrta.sf f1,p2 = f3 F7

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged. 

If PR qp is 1, the following will occur:

• Each half of the significand of FR f1 is either set to an approximation (with a relative error < 2-8.831)
of the reciprocal square root of the corresponding half of FR f3, or set to the IEEE-754 compliant
response for the reciprocal square root of the corresponding half of FR f3 — if that half of FR f3 is in
the set {-Infinity, -Finite, -0, +0, +Infinity, NaN}.

• If either half of FR f1 is set to the IEEE-754 mandated reciprocal square root, or is set to an approxi-
mation of the reciprocal square root which may cause the Newton-Raphson iterations to fail to pro-
duce the correct IEEE-754 square root result, then PR p2 is set to 0, otherwise it is set to 1.

For correct IEEE square root results, when PR p2 is cleared, user software is expected to compute the
square root for each half (using the non-parallel frsqrta instruction), and merge the results in FR f1,
keeping PR p2 cleared.

• The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR
f1 is set to positive (0).

• If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result, and PR p2 is cleared. 

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f3, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result_pair = fprsqrta_exception_fault_check(f3, sf,

&tmp_fp_env, &limits_check);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result_pair.hi)) {
tmp_res_hi = fp_single(tmp_default_result_pair.hi);
tmp_pred_hi = 0;

} else {
tmp_fr3 = fp_normalize(fp_reg_read_hi(f3));
if (fp_is_zero(tmp_fr3)) {

tmp_res = FP_INFINITY;
tmp_res.sign = tmp_fr3.sign;
tmp_pred_hi = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
tmp_res = FP_ZERO;
tmp_pred_hi = 0;

} else {
tmp_res = fp_ieee_recip_sqrt(tmp_fr3);
if (limits_check.hi)

tmp_pred_hi = 0;
else

tmp_pred_hi = 1;
}
tmp_res_hi = fp_single(tmp_res);

}

if (fp_is_nan(tmp_default_result_pair.lo)) {
tmp_res_lo = fp_single(tmp_default_result_pair.lo);
tmp_pred_lo = 0;

} else {
tmp_fr3 = fp_normalize(fp_reg_read_lo(f3));



HP/Intel IA-64 Instruction Reference 6-87

IA-64 Application ISA Guide 1.0 fprsqrta

if (fp_is_zero(tmp_fr3)) {
tmp_res = FP_INFINITY;
tmp_res.sign = tmp_fr3.sign;
tmp_pred_lo = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
tmp_res = FP_ZERO;
tmp_pred_lo = 0;

} else {
tmp_res = fp_ieee_recip_sqrt(tmp_fr3);
if (limits_check.lo)

tmp_pred_lo = 0;
else

tmp_pred_lo = 1;
}
tmp_res_lo = fp_single(tmp_res);

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;
PR[p2] = tmp_pred_hi && tmp_pred_lo;

fp_update_fpsr(sf, tmp_fp_env);
}
fp_update_psr(f1);

} else {
PR[p2] = 0;

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



6-88 IA-64 Instruction Reference HP/Intel

frcpa IA-64 Application ISA Guide 1.0

Floating-Point Reciprocal Approximation

Format: (qp) frcpa.sf f1, p2 = f2, f3 F6

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged.

If PR qp is 1, the following will occur:

• FR f1 is either set to an approximation (with a relative error < 2-8.886) of the reciprocal of FR f3, or to
the IEEE-754 mandated quotient of FR f2/FR f3 — if either FR f2 or FR f3 is in the set {-Infinity, -0,
Pseudo-zero, +0, +Infinity, NaN, Unsupported}.

• If FR f1 is set to the approximation of the reciprocal of FR f3, then PR p2 is set to 1; otherwise, it is set
to 0.

• If FR f2 and FR f3 are such that the approximation of FR f3’s reciprocal may cause the Newton-Raph-
son iterations to fail to produce the correct IEEE-754 result of FR f2/FR f3, then a Floating-point
Exception fault for Software Assist occurs. 

System software is expected to compute the IEEE-754 quotient (FR f2/FR f3), return the result in FR
f1, and set PR p2 to 0.

• If either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result, and PR p2
is cleared. 

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result = frcpa_exception_fault_check(f2, f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan_or_inf(tmp_default_result)) {
FR[f1] = tmp_default_result;
PR[p2] = 0;

} else {
num = fp_normalize(fp_reg_read(FR[f2]));
den = fp_normalize(fp_reg_read(FR[f3]));
if (fp_is_inf(num) && fp_is_finite(den)) {

FR[f1] = FP_INFINITY;
FR[f1].sign = num.sign ^ den.sign;
PR[p2] = 0;

} else if (fp_is_finite(num) && fp_is_inf(den)) {
FR[f1] = FP_ZERO;
FR[f1].sign = num.sign ^ den.sign;
PR[p2] = 0;

} else if (fp_is_zero(num) && fp_is_finite(den)) {
FR[f1] = FP_ZERO;
FR[f1].sign = num.sign ^ den.sign;
PR[p2] = 0;

} else {
FR[f1] = fp_ieee_recip(den);
PR[p2] = 1;

}
}
fp_update_fpsr(sf, tmp_fp_env);

}
fp_update_psr(f1);

} else {
PR[p2] = 0;

}



HP/Intel IA-64 Instruction Reference 6-89

IA-64 Application ISA Guide 1.0 frcpa

// fp_ieee_recip()

fp_ieee_recip(den)
{

const EM_uint_t RECIP_TABLE[256] = {
0x3fc, 0x3f4, 0x3ec, 0x3e4, 0x3dd, 0x3d5, 0x3cd, 0x3c6,
0x3be, 0x3b7, 0x3af, 0x3a8, 0x3a1, 0x399, 0x392, 0x38b,
0x384, 0x37d, 0x376, 0x36f, 0x368, 0x361, 0x35b, 0x354,
0x34d, 0x346, 0x340, 0x339, 0x333, 0x32c, 0x326, 0x320,
0x319, 0x313, 0x30d, 0x307, 0x300, 0x2fa, 0x2f4, 0x2ee,
0x2e8, 0x2e2, 0x2dc, 0x2d7, 0x2d1, 0x2cb, 0x2c5, 0x2bf,
0x2ba, 0x2b4, 0x2af, 0x2a9, 0x2a3, 0x29e, 0x299, 0x293,
0x28e, 0x288, 0x283, 0x27e, 0x279, 0x273, 0x26e, 0x269,
0x264, 0x25f, 0x25a, 0x255, 0x250, 0x24b, 0x246, 0x241,
0x23c, 0x237, 0x232, 0x22e, 0x229, 0x224, 0x21f, 0x21b,
0x216, 0x211, 0x20d, 0x208, 0x204, 0x1ff, 0x1fb, 0x1f6,
0x1f2, 0x1ed, 0x1e9, 0x1e5, 0x1e0, 0x1dc, 0x1d8, 0x1d4,
0x1cf, 0x1cb, 0x1c7, 0x1c3, 0x1bf, 0x1bb, 0x1b6, 0x1b2,
0x1ae, 0x1aa, 0x1a6, 0x1a2, 0x19e, 0x19a, 0x197, 0x193,
0x18f, 0x18b, 0x187, 0x183, 0x17f, 0x17c, 0x178, 0x174,
0x171, 0x16d, 0x169, 0x166, 0x162, 0x15e, 0x15b, 0x157,
0x154, 0x150, 0x14d, 0x149, 0x146, 0x142, 0x13f, 0x13b,
0x138, 0x134, 0x131, 0x12e, 0x12a, 0x127, 0x124, 0x120,
0x11d, 0x11a, 0x117, 0x113, 0x110, 0x10d, 0x10a, 0x107,
0x103, 0x100, 0x0fd, 0x0fa, 0x0f7, 0x0f4, 0x0f1, 0x0ee,
0x0eb, 0x0e8, 0x0e5, 0x0e2, 0x0df, 0x0dc, 0x0d9, 0x0d6,
0x0d3, 0x0d0, 0x0cd, 0x0ca, 0x0c8, 0x0c5, 0x0c2, 0x0bf,
0x0bc, 0x0b9, 0x0b7, 0x0b4, 0x0b1, 0x0ae, 0x0ac, 0x0a9,
0x0a6, 0x0a4, 0x0a1, 0x09e, 0x09c, 0x099, 0x096, 0x094,
0x091, 0x08e, 0x08c, 0x089, 0x087, 0x084, 0x082, 0x07f,
0x07c, 0x07a, 0x077, 0x075, 0x073, 0x070, 0x06e, 0x06b,
0x069, 0x066, 0x064, 0x061, 0x05f, 0x05d, 0x05a, 0x058,
0x056, 0x053, 0x051, 0x04f, 0x04c, 0x04a, 0x048, 0x045,
0x043, 0x041, 0x03f, 0x03c, 0x03a, 0x038, 0x036, 0x033,
0x031, 0x02f, 0x02d, 0x02b, 0x029, 0x026, 0x024, 0x022,
0x020, 0x01e, 0x01c, 0x01a, 0x018, 0x015, 0x013, 0x011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001,

};

tmp_index = den.significand{62:55};
tmp_res.significand = (1 << 63) | (RECIP_TABLE[tmp_index] << 53);
tmp_res.exponent = FP_REG_EXP_ONES - 2 - den.exponent;
tmp_res.sign = den.sign;
return (tmp_res);

}

FP Exceptions: Invalid Operation (V)
Zero Divide (Z)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



6-90 IA-64 Instruction Reference HP/Intel

frsqrta IA-64 Application ISA Guide 1.0

Floating-Point Reciprocal Square Root Approximation

Format: (qp) frsqrta.sf f1, p2 = f3 F7

Description: If PR qp is 0, PR p2 is cleared and FR f1 remains unchanged.

If PR qp is 1, the following will occur:

• FR f1 is either set to an approximation (with a relative error < 2-8.831) of the reciprocal square root of
FR f3, or set to the IEEE-754 mandated square root of FR f3 — if FR f3 is in the set {-Infinity, -Finite,
-0, Pseudo-zero, +0, +Infinity, NaN, Unsupported}.

• If FR f1 is set to an approximation of the reciprocal square root of FR f3, then PR p2 is set to 1; other-
wise, it is set to 0.

• If FR f3 is such the approximation of its reciprocal square root may cause the Newton-Raphson itera-
tions to fail to produce the correct IEEE-754 square root result, then a Floating-point Exception fault
for Software Assist occurs. 

System software is expected to compute the IEEE-754 square root, return the result in FR f1, and set
PR p2 to 0.

• If FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result, and PR p2 is cleared. 

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f3, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;
PR[p2] = 0;

} else {
tmp_default_result = frsqrta_exception_fault_check(f3, sf, &tmp_fp_env);
if (fp_raise_fault(tmp_fp_env))

fp_exception_fault(fp_decode_fault(tmp_fp_env));

if (fp_is_nan(tmp_default_result)) {
FR[f1] = tmp_default_result;
PR[p2] = 0;

} else {
tmp_fr3 = fp_normalize(fp_reg_read(FR[f3]));
if (fp_is_zero(tmp_fr3)) {

FR[f1] = tmp_fr3;
PR[p2] = 0;

} else if (fp_is_pos_inf(tmp_fr3)) {
FR[f1] = tmp_fr3;
PR[p2] = 0;

} else {
FR[f1] = fp_ieee_recip_sqrt(tmp_fr3);
PR[p2] = 1;

}
}
fp_update_fpsr(sf, tmp_fp_env);

}
fp_update_psr(f1);

} else {
PR[p2] = 0;

}

// fp_ieee_recip_sqrt()

fp_ieee_recip_sqrt(root)
{

const EM_uint_t RECIP_SQRT_TABLE[256] = {
0x1a5, 0x1a0, 0x19a, 0x195, 0x18f, 0x18a, 0x185, 0x180,
0x17a, 0x175, 0x170, 0x16b, 0x166, 0x161, 0x15d, 0x158,



HP/Intel IA-64 Instruction Reference 6-91

IA-64 Application ISA Guide 1.0 frsqrta

0x153, 0x14e, 0x14a, 0x145, 0x140, 0x13c, 0x138, 0x133,
0x12f, 0x12a, 0x126, 0x122, 0x11e, 0x11a, 0x115, 0x111,
0x10d, 0x109, 0x105, 0x101, 0x0fd, 0x0fa, 0x0f6, 0x0f2,
0x0ee, 0x0ea, 0x0e7, 0x0e3, 0x0df, 0x0dc, 0x0d8, 0x0d5,
0x0d1, 0x0ce, 0x0ca, 0x0c7, 0x0c3, 0x0c0, 0x0bd, 0x0b9,
0x0b6, 0x0b3, 0x0b0, 0x0ad, 0x0a9, 0x0a6, 0x0a3, 0x0a0,
0x09d, 0x09a, 0x097, 0x094, 0x091, 0x08e, 0x08b, 0x088,
0x085, 0x082, 0x07f, 0x07d, 0x07a, 0x077, 0x074, 0x071,
0x06f, 0x06c, 0x069, 0x067, 0x064, 0x061, 0x05f, 0x05c,
0x05a, 0x057, 0x054, 0x052, 0x04f, 0x04d, 0x04a, 0x048,
0x045, 0x043, 0x041, 0x03e, 0x03c, 0x03a, 0x037, 0x035,
0x033, 0x030, 0x02e, 0x02c, 0x029, 0x027, 0x025, 0x023,
0x020, 0x01e, 0x01c, 0x01a, 0x018, 0x016, 0x014, 0x011,
0x00f, 0x00d, 0x00b, 0x009, 0x007, 0x005, 0x003, 0x001,
0x3fc, 0x3f4, 0x3ec, 0x3e5, 0x3dd, 0x3d5, 0x3ce, 0x3c7,
0x3bf, 0x3b8, 0x3b1, 0x3aa, 0x3a3, 0x39c, 0x395, 0x38e,
0x388, 0x381, 0x37a, 0x374, 0x36d, 0x367, 0x361, 0x35a,
0x354, 0x34e, 0x348, 0x342, 0x33c, 0x336, 0x330, 0x32b,
0x325, 0x31f, 0x31a, 0x314, 0x30f, 0x309, 0x304, 0x2fe,
0x2f9, 0x2f4, 0x2ee, 0x2e9, 0x2e4, 0x2df, 0x2da, 0x2d5,
0x2d0, 0x2cb, 0x2c6, 0x2c1, 0x2bd, 0x2b8, 0x2b3, 0x2ae,
0x2aa, 0x2a5, 0x2a1, 0x29c, 0x298, 0x293, 0x28f, 0x28a,
0x286, 0x282, 0x27d, 0x279, 0x275, 0x271, 0x26d, 0x268,
0x264, 0x260, 0x25c, 0x258, 0x254, 0x250, 0x24c, 0x249,
0x245, 0x241, 0x23d, 0x239, 0x235, 0x232, 0x22e, 0x22a,
0x227, 0x223, 0x220, 0x21c, 0x218, 0x215, 0x211, 0x20e,
0x20a, 0x207, 0x204, 0x200, 0x1fd, 0x1f9, 0x1f6, 0x1f3,
0x1f0, 0x1ec, 0x1e9, 0x1e6, 0x1e3, 0x1df, 0x1dc, 0x1d9,
0x1d6, 0x1d3, 0x1d0, 0x1cd, 0x1ca, 0x1c7, 0x1c4, 0x1c1,
0x1be, 0x1bb, 0x1b8, 0x1b5, 0x1b2, 0x1af, 0x1ac, 0x1aa,

};

tmp_index = (root.exponent{0} << 7) | root.significand{62:56};
tmp_res.significand = (1 << 63) | (RECIP_SQRT_TABLE[tmp_index] << 53);
tmp_res.exponent = FP_REG_EXP_HALF - ((root.exponent - FP_REG_BIAS) >> 1);
tmp_res.sign = FP_SIGN_POSITIVE;
return (tmp_res);

}

FP Exceptions: Invalid Operation (V)
Denormal/Unnormal Operand (D)
Software Assist (SWA) fault



6-92 IA-64 Instruction Reference HP/Intel

fselect IA-64 Application ISA Guide 1.0

Floating-Point Select

Format: (qp) fselect f1 = f3, f4, f2 F3

Description: The significand field of FR f3 is logically AND-ed with the significand field of FR f2 and the significand
field of FR f4 is logically AND-ed with the one’s complement of the significand field of FR f2. The two
results are logically OR-ed together. The result is placed in the significand field of FR f1.

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E). The sign bit field of FR f1 is
set to positive (0).

If any of FR f3, FR f4, or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = (FR[f3].significand & FR[f2].significand)

| (FR[f4].significand & ~FR[f2].significand);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None



HP/Intel IA-64 Instruction Reference 6-93

IA-64 Application ISA Guide 1.0 fsetc

Floating-Point Set Controls

Format: (qp) fsetc.sf amask7, omask7 F12

Description: The status field’s control bits are initialized to the value obtained by logically AND-ing the sf0.controls
and amask7 immediate field and logically OR-ing the omask7 immediate field.

The mnemonic values for sf are given in Table 6-18 on page 6-30.

Operation: if (PR[qp]) {
tmp_controls = (AR[FPSR].sf0.controls & amask7) | omask7;
if (is_reserved_field(FSETC, sf, tmp_controls))

reserved_register_field_fault(); 
fp_set_sf_controls(sf, tmp_controls);

}

FP Exceptions: None



6-94 IA-64 Instruction Reference HP/Intel

fsub IA-64 Application ISA Guide 1.0

Floating-Point Subtract

Format: (qp) fsub.pc.sf f1 = f3, f2 pseudo-op of: (qp) fms.pc.sf f1 = f3, f1, f2

Description: FR f2 is subtracted from FR f3 (computed to infinite precision), rounded to the precision indicated by pc
(and possibly FPSR.sf.pc and FPSR.sf.wre) using the rounding mode specified by FPSR.sf.rc, and placed
in FR f1.

If either FR f3 or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

The mnemonic values for the opcode’s pc are given in Table 6-17 on page 6-30. The mnemonic values for
sf are given in Table 6-18 on page 6-30. For the encodings and interpretation of the status field’s pc, wre,
and rc, refer to Table 5-5 and Table 5-6 on page 5-5.

Operation: See “Floating-Point Multiply Subtract” on page 6-55.



HP/Intel IA-64 Instruction Reference 6-95

IA-64 Application ISA Guide 1.0 fswap

Floating-Point Swap

Format: (qp) fswap f1 = f2, f3 swap_form F9
(qp) fswap.nl f1 = f2, f3 swap_nl_form F9
(qp) fswap.nr f1 = f2, f3 swap_nr_form F9

Description: For the swap_form, the left single precision value in FR f2 is concatenated with the right single precision
value in FR f3. The concatenated pair is then swapped.

For the swap_nl_form, the left single precision value in FR f2 is concatenated with the right single preci-
sion value in FR f3. The concatenated pair is then swapped, and the left single precision value is negated.

For the swap_nr_form, the left single precision value in FR f2 is concatenated with the right single preci-
sion value in FR f3. The concatenated pair is then swapped, and the right single precision value is negated.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign
field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Figure 6-17. Floating-point Swap

Figure 6-18. Floating-point Swap Negate Left or Right

f1

f2 f3

63 32 31 0

63 32 31 0

f1

f2 f3

63 32 31 062 30

negate left
negate rignt

63 62 32 31 30 0



6-96 IA-64 Instruction Reference HP/Intel

fswap IA-64 Application ISA Guide 1.0

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (swap_form) {

tmp_res_hi = FR[f3].significand{31:0};
tmp_res_lo = FR[f2].significand{63:32};

} else if (swap_nl_form) {
tmp_res_hi = (!FR[f3].significand{31} << 31)

 | (FR[f3].significand{30:0});
tmp_res_lo = FR[f2].significand{63:32};

} else { // swap_nr_form
tmp_res_hi = FR[f3].significand{31:0};
tmp_res_lo = (!FR[f2].significand{63} << 31)

 | (FR[f2].significand{62:32});
}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None



HP/Intel IA-64 Instruction Reference 6-97

IA-64 Application ISA Guide 1.0 fsxt

Floating-Point Sign Extend

Format: (qp) fsxt.l f1 = f2, f3 sxt_l_form F9
(qp) fsxt.r f1 = f2, f3 sxt_r_form F9

Description: For the sxt_l_form (sxt_r_form), the sign of the left (right) single precision value in FR f2 is extended to
32-bits and is concatenated with the left (right) single precision value in FR f3.

For all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign
field of FR f1 is set to positive (0).

For all forms, if either FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
if (sxt_l_form) {

tmp_res_hi = (FR[f2].significand{63} ? 0xFFFFFFFF : 0x00000000);
tmp_res_lo = FR[f3].significand{63:32};

} else { // sxt_r_form
tmp_res_hi = (FR[f2].significand{31} ? 0xFFFFFFFF : 0x00000000);
tmp_res_lo = FR[f3].significand{31:0};

}

FR[f1].significand = fp_concatenate(tmp_res_hi, tmp_res_lo);
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None

Figure 6-19. Floating-point Sign Extend Left

Figure 6-20. Floating-point Sign Extend Right

f1

f2 f3

63 32 63 32

63 32 31 0

f1

f2 f3

31 0 31 0

63 32 31 0



6-98 IA-64 Instruction Reference HP/Intel

fxor IA-64 Application ISA Guide 1.0

Floating-Point Exclusive Or

Format: (qp) fxor f1 = f2, f3 F9

Description: The bit-wise logical exclusive-OR of the significand fields of FR f2 and FR f3 is computed. The resulting
value is stored in the significand field of FR f1. The exponent field of FR f1 is set to the biased exponent
for 2.063 (0x1003E) and the sign field of FR f1 is set to positive (0).

If either of FR f2 or FR f3 is a NaTVal, FR f1 is set to NaTVal instead of the computed result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3])) {
FR[f1] = NATVAL;

} else {
FR[f1].significand = FR[f2].significand ^ FR[f3].significand;
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}

FP Exceptions: None



HP/Intel IA-64 Instruction Reference 6-99

IA-64 Application ISA Guide 1.0 getf

Get Floating-Point Value or Exponent or Significand

Format: (qp) getf.s r1 = f2 single_form M19
(qp) getf.d r1 = f2 double_form M19
(qp) getf.exp r1 = f2 exponent_form M19
(qp) getf.sig r1 = f2 significand_form M19

Description: In the single and double forms, the value in FR f2 is converted into a single precision (single_form) or
double precision (double_form) memory representation and placed in GR r1. In the single_form, the most-
significant 32 bits of GR r1 are set to 0.

In the exponent_form, the exponent field of FR f2 is copied to bits 16:0 of GR r1 and the sign bit of the
value in FR f2 is copied to bit 17 of GR r1. The most-significant 46-bits of GR r1 are set to zero.

In the significand_form, the significand field of the value in FR f2 is copied to GR r1

For all forms, if FR f2 contains a NaTVal, then the NaT bit corresponding to GR r1 is set to 1.

Operation: if (PR[qp]) {
check_target_register(r1);
if (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (single_form) {
GR[r1]{31:0} = fp_fr_to_mem_format(FR[f2], 4, 0);
GR[r1]{63:32} = 0;

} else if (double_form) {
GR[r1] = fp_fr_to_mem_format(FR[f2], 8, 0);

} else if (exponent_form) {
GR[r1]{63:18} = 0;
GR[r1]{16:0} = FR[f2].exponent;
GR[r1]{17} = FR[f2].sign;

} else // significand_form
GR[r1] = FR[f2].significand;

if (fp_is_natval(FR[f2]))
GR[r1].nat = 1;

else
GR[r1].nat = 0;

}

Figure 6-21. Function of getf.exp

Figure 6-22. Function of getf.sig

s significandexponentFR f2

GR r1 0

01618

17146

63

significandexponentsFR f2

GR r1

063

64



6-100 IA-64 Instruction Reference HP/Intel

invala IA-64 Application ISA Guide 1.0

Invalidate ALAT

Format: (qp) invala complete_form M24
(qp) invala.e r1 gr_form, entry_form M26
(qp) invala.e f1 fr_form, entry_form M27

Description: The selected entry or entries in the ALAT are invalidated.

In the complete_form, all ALAT entries are invalidated. In the entry_form, the ALAT is queried using the
general register specifier r1 (gr_form), or the floating-point register specifier f1 (fr_form), and if any
ALAT entry matches, it is invalidated.

Operation: if (PR[qp]) {
if (complete_form)

alat_inval();
else { // entry_form

if (gr_form)
alat_inval_single_entry(GENERAL, r1);

else // fr_form
alat_inval_single_entry(FLOAT, f1);

}
}



HP/Intel IA-64 Instruction Reference 6-101

IA-64 Application ISA Guide 1.0 ld

Load

Format: (qp) ldsz.ldtype.ldhint r1 = [r3] no_base_update_form M1
(qp) ldsz.ldtype.ldhint r1 = [r3], r2 reg_base_update_form M2
(qp) ldsz.ldtype.ldhint r1 = [r3], imm9 imm_base_update_form M3
(qp) ld8.fill.ldhint r1 = [r3] fill_form, no_base_update_form M1
(qp) ld8.fill.ldhint r1 = [r3], r2 fill_form, reg_base_update_form M2
(qp) ld8.fill.ldhint r1 = [r3], imm9 fill_form, imm_base_update_form M3

Description: A value consisting of sz bytes is read from memory starting at the address specified by the value in GR r3.
The value is then zero extended and placed in GR r1. The values of the sz completer are given in
Table 6-26. The NaT bit corresponding to GR r1 is cleared, except as described below for speculative
loads. The ldtype completer specifies special load operations, which are described in Table 6-27.

For the fill_form, an 8-byte value is loaded, and a bit in the UNAT application register is copied into the
target register NaT bit. This instruction is used for reloading a spilled register/NaT pair. See “Control
Speculation” on page 4-10 for details.

In the base update forms, the value in GR r3 is added to either a signed immediate value (imm9) or a value
from GR r2, and the result is placed back in GR r3. This base register update is done after the load, and
does not affect the load address. In the reg_base_update_form, if the NaT bit corresponding to GR r2 is
set, then the NaT bit corresponding to GR r3 is set and no fault is raised.

Table 6-26. sz Completers

sz Completer Bytes Accessed
1 1 byte

2 2 bytes

4 4 bytes

8 8 bytes

Table 6-27. Load Types

ldtype
Completer

Interpretation Special Load Operation

none Normal load

s Speculative load Certain exceptions may be deferred rather than generating a fault. Deferral 
causes the target register’s NaT bit to be set. The NaT bit is later used to 
detect deferral.

a Advanced load An entry is added to the ALAT. This allows later instructions to check for 
colliding stores. If the referenced data page has a non-speculative attribute, 
the target register and NaT bit is cleared, and the processor ensures that no 
ALAT entry exists for the target register. The absence of an ALAT entry is 
later used to detect deferral or collision.

sa Speculative
Advanced load

An entry is added to the ALAT, and certain exceptions may be deferred. 
Deferral causes the target register’s NaT bit to be set, and the processor 
ensures that no ALAT entry exists for the target register. The absence of an 
ALAT entry is later used to detect deferral or collision.

c.nc Check load
- no clear

The ALAT is searched for a matching entry. If found, no load is done and 
the target register is unchanged. Regardless of ALAT hit or miss, base regis-
ter updates are performed, if specified. An implementation may optionally 
cause the ALAT lookup to fail independent of whether an ALAT entry 
matches. If not found, a load is performed, and an entry is added to the 
ALAT (unless the referenced data page has a non-speculative attribute, in 
which case no ALAT entry is allocated).



6-102 IA-64 Instruction Reference HP/Intel

ld IA-64 Application ISA Guide 1.0

For more details on ordered, biased, speculative, advanced and check loads see “Control Speculation” on
page 4-10 and “Data Speculation” on page 4-12. For more details on ordered loads see “Memory Access
Ordering” on page 4-18. See “Memory Hierarchy Control and Consistency” on page 4-16 for details on
biased loads.

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT Consumption
fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred. For the base-update calculation, if the NaT bit associated with GR r2 is 1, the NaT bit associated
with GR r3 is set to 1 and no fault is raised.

The value of the ldhint completer specifies the locality of the memory access. The values of the ldhint
completer are given in Table 6-28. A prefetch hint is implied in the base update forms. The address speci-
fied by the value in GR r3 after the base update acts as a hint to prefetch the indicated cache line. This
prefetch uses the locality hints specified by ldhint. Prefetch and locality hints do not affect program func-
tionality and may be ignored by the implementation. See “Memory Hierarchy Control and Consistency”
on page 4-16 for details.

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is implied.

For the base update forms, specifying the same register address in r1 and r3 will cause an Illegal Operation
fault.

c.clr Check load
- clear

The ALAT is searched for a matching entry. If found, the entry is removed, 
no load is done and the target register is unchanged. Regardless of ALAT hit 
or miss, base register updates are performed, if specified. An implementa-
tion may optionally cause the ALAT lookup to fail independent of whether 
an ALAT entry matches. If not found, a clear check load behaves like a nor-
mal load.

c.clr.acq Ordered check 
load – clear

This type behaves the same as the unordered clear form, except that the 
ALAT lookup (and resulting load, if no ALAT entry is found) is performed 
with acquire semantics.

acq Ordered load An ordered load is performed with acquire semantics.

bias Biased load A hint is provided to the implementation to acquire exclusive ownership of 
the accessed cache line.

Table 6-28. Load Hints

ldhint Completer Interpretation
none Temporal locality, level 1

nt1 No temporal locality, level 1

nta No temporal locality, all levels

Table 6-27. Load Types (Continued)

ldtype
Completer

Interpretation Special Load Operation



HP/Intel IA-64 Instruction Reference 6-103

IA-64 Application ISA Guide 1.0 ld

Operation: if (PR[qp]) {
size = fill_form ? 8 : sz;

speculative = (ldtype == ‘s’ || ldtype == ‘sa’);
advanced = ( ldtype == ‘a’ || ldtype == ‘sa’);
check_clear = ( ldtype == ‘c.clr’ || ldtype == ‘c.clr.acq’);
check_no_clear = ( ldtype == ‘c.nc’);
check = check_clear || check_no_clear;
acquire = ( ldtype == ‘acq’ || ldtype == ‘c.clr.acq’);
bias = ( ldtype == ‘bias’) ? BIAS : 0 ;

itype = READ;
if (speculative) itype |= SPEC ;
if (advanced)itype |= ADVANCE ; 

if ((reg_base_update_form || imm_base_update_form) && ( r1 == r3))
illegal_operation_fault();

check_target_register( r1, itype);
if (reg_base_update_form || imm_base_update_form)

check_target_register( r3);

if (reg_base_update_form) {
tmp_r2 = GR[ r2];
tmp_r2nat = GR[ r2].nat;

}

if (!speculative && GR[ r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative && (GR[ r3].nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(GENERAL, r1)) { // no load on ld.c & ALAT hit
if (check_clear) // remove entry on ld.c.clr or ld.c.clr.acq

alat_inval_single_entry(GENERAL, r1);
} else {

if (!defer) {
paddr = tlb_translate(GR[ r3], size, itype, PSR.cpl, &mattr,

&defer);
if (!defer) {

otype = acquire ? ACQUIRE : UNORDERED;
val = mem_read(paddr, size, UM.be, mattr, otype, bias | ldhint);

}
}
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(GENERAL, r1);
if (defer) {

if (speculative) {
GR[r1] = natd_gr_read(paddr, size, UM.be, mattr, otype,

 bias | ldhint);
GR[r1].nat = 1;

} else {
GR[r1] = 0; // ld.a to sequential memory
GR[r1].nat = 0;

}
} else { // execute load normally

if (fill_form) { // fill NaT on ld8.fill
bit_pos = GR[ r3]{8:3};
GR[r1] = val;
GR[r1].nat = AR[UNAT]{bit_pos};

} else { // clear NaT on other types
GR[r1] = zero_ext(val, size * 8);
GR[r1].nat = 0;

}
if ((check_no_clear || advanced) && ma_is_speculative(mattr))

// add entry to ALAT
alat_write(GENERAL, r1, paddr, size);

}
}



6-104 IA-64 Instruction Reference HP/Intel

ld IA-64 Application ISA Guide 1.0

if (imm_base_update_form) { // update base register
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = GR[r3].nat;

} else if (reg_base_update_form) {
GR[r3] = GR[r3] + tmp_r2;
GR[r3].nat = GR[r3].nat || tmp_r2nat;

}

if ((reg_base_update_form || imm_base_update_form) && !GR[r3].nat)
mem_implicit_prefetch(GR[r3], bias | ldhint);

}



HP/Intel IA-64 Instruction Reference 6-105

IA-64 Application ISA Guide 1.0 ldf

Floating-Point Load

Format: (qp) ldffsz.fldtype.ldhint f1 = [r3] no_base_update_form M6
(qp) ldffsz.fldtype.ldhint f1 = [r3], r2 reg_base_update_form M7
(qp) ldffsz.fldtype.ldhint f1 = [r3], imm9 imm_base_update_form M8
(qp) ldf8.fldtype.ldhint f1 = [r3] integer_form, no_base_update_form M6
(qp) ldf8.fldtype.ldhint f1 = [r3], r2 integer_form, reg_base_update_form M7
(qp) ldf8.fldtype.ldhint f1 = [r3], imm9 integer_form, imm_base_update_form M8
(qp) ldf.fill.ldhint f1 = [r3] fill_form, no_base_update_form M6
(qp) ldf.fill.ldhint f1 = [r3], r2 fill_form, reg_base_update_form M7
(qp) ldf.fill.ldhint f1 = [r3], imm9 fill_form, imm_base_update_form M8

Description: A value consisting of fsz bytes is read from memory starting at the address specified by the value in GR r3.
The value is then converted into the floating-point register format and placed in FR f1. See “Data Types
and Formats” on page 5-1for details on conversion to floating-point register format. The values of the fsz
completer are given in Table 6-29. The fldtype completer specifies special load operations, which are
described in Table 6-30.

For the integer_form, an 8-byte value is loaded and placed in the significand field of FR f1 without conver-
sion. The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR
f1 is set to positive (0).

For the fill_form, a 16-byte value is loaded, and the appropriate fields are placed in FR f1 without conver-
sion. This instruction is used for reloading a spilled register. See “Control Speculation” on page 4-10for
details.

In the base update forms, the value in GR r3 is added to either a signed immediate value (imm9) or a value
from GR r2, and the result is placed back in GR r3. This base register update is done after the load, and
does not affect the load address. In the reg_base_update_form, if the NaT bit corresponding to GR r2 is
set, then the NaT bit corresponding to GR r3 is set and no fault is raised.

Table 6-29. fsz Completers

fsz Completer Bytes Accessed Memory Format
s 4 bytes Single precision

d 8 bytes Double precision

e 10 bytes Extended precision

Table 6-30. FP Load Types

fldtype
Completer

Interpretation Special Load Operation

none Normal load

s Speculative load
Certain exceptions may be deferred rather than generating a fault. Deferral 
causes NaTVal to be placed in the target register. The NaTVal value is later 
used to detect deferral.

a Advanced load

An entry is added to the ALAT. This allows later instructions to check for 
colliding stores. If the referenced data page has a non-speculative attribute, 
no ALAT entry is added to the ALAT and the target register is set as fol-
lows: for the integer_form, the exponent is set to 0x1003E and the sign and 
significand are set to zero; for all other forms, the sign, exponent and sig-
nificand are set to zero. The absence of an ALAT entry is later used to 
detect deferral or collision.

sa
Speculative 

Advanced load

An entry is added to the ALAT, and certain exceptions may be deferred. 
Deferral causes NaTVal to be placed in the target register, and the proces-
sor ensures that no ALAT entry exists for the target register. The absence of 
an ALAT entry is later used to detect deferral or collision.



6-106 IA-64 Instruction Reference HP/Intel

ldf IA-64 Application ISA Guide 1.0

For more details on speculative, advanced and check loads see “Control Speculation” on page 4-10 and
“Data Speculation” on page 4-12. 

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT Consumption
fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred. For the base-update calculation, if the NaT bit associated with GR r2 is 1, the NaT bit associated
with GR r3 is set to 1 and no fault is raised.

The value of the ldhint modifier specifies the locality of the memory access. The mnemonic values of
ldhint are given in Table 6-28 on page 6-102. A prefetch hint is implied in the base update forms. The
address specified by the value in GR r3 after the base update acts as a hint to prefetch the indicated cache
line. This prefetch uses the locality hints specified by ldhint. Prefetch and locality hints do not affect pro-
gram functionality and may be ignored by the implementation. See “Memory Hierarchy Control and Con-
sistency” on page 4-16 for details.

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is implied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f1.

c.nc
Check load -

no clear

The ALAT is searched for a matching entry. If found, no load is done and 
the target register is unchanged. Regardless of ALAT hit or miss, base reg-
ister updates are performed, if specified. An implementation may option-
ally cause the ALAT lookup to fail independent of whether an ALAT entry 
matches. If not found, a load is performed, and an entry is added to the 
ALAT (unless the referenced data page has a non-speculative attribute, in 
which case no ALAT entry is allocated).

c.clr
Check load – 

clear

The ALAT is searched for a matching entry. If found, the entry is removed, 
no load is done and the target register is unchanged. Regardless of ALAT 
hit or miss, base register updates are performed, if specified. An implemen-
tation may optionally cause the ALAT lookup to fail independent of 
whether an ALAT entry matches. If not found, a clear check load behaves 
like a normal load.

Table 6-30. FP Load Types (Continued)

fldtype
Completer

Interpretation Special Load Operation



HP/Intel IA-64 Instruction Reference 6-107

IA-64 Application ISA Guide 1.0 ldf

Operation: if (PR[qp]) {
size = (fill_form ? 16 : (integer_form ? 8 : fsz));
speculative = (fldtype == ‘s’ || fldtype == ‘sa’);
advanced = ( fldtype == ‘a’ || fldtype == ‘sa’);
check_clear = ( fldtype == ‘c.clr’ );
check_no_clear = ( fldtype == ‘c.nc’);
check = check_clear || check_no_clear;

itype = READ;
if (speculative) itype |= SPEC ;
if (advanced) itype |= ADVANCE ; 

if (reg_base_update_form || imm_base_update_form)
check_target_register( r3);

fp_check_target_register( f1);
if (tmp_isrcode = fp_reg_disabled( f1, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, itype);

if (!speculative && GR[ r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative && (GR[ r3].nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(FLOAT, f1)) { // no load on ldf.c & ALAT hit
if (check_clear) // remove entry on ldf.c.clr

alat_inval_single_entry(FLOAT, f1);
} else {

if (!defer) {
paddr = tlb_translate(GR[ r3], size, itype, PSR.cpl, &mattr,

&defer);
if (!defer)

val = mem_read(paddr, size, UM.be, mattr, UNORDERED, ldhint);
}
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(FLOAT, f1);
if (speculative && defer) {

FR[f1] = NATVAL;
} else if (advanced && !speculative && defer) {

FR[f1] = (integer_form ? FP_INT_ZERO : FP_ZERO);
} else { // execute load normally

FR[f1] = fp_mem_to_fr_format(val, size, integer_form);

if ((check_no_clear || advanced) && ma_is_speculative(mattr))
// add entry to ALAT

alat_write(FLOAT, f1, paddr, size);
}

}

if (imm_base_update_form) { // update base register
GR[r3] = GR[ r3] + sign_ext( imm9, 9);
GR[r3].nat = GR[ r3].nat;

} else if (reg_base_update_form) {
GR[r3] = GR[ r3] + GR[ r2];
GR[r3].nat = GR[ r3].nat || GR[ r2].nat;

}

if ((reg_base_update_form || imm_base_update_form) && !GR[ r3].nat)
mem_implicit_prefetch(GR[ r3], ldhint);

fp_update_psr( f1);
}



6-108 IA-64 Instruction Reference HP/Intel

ldfp IA-64 Application ISA Guide 1.0

Floating-Point Load Pair

Format: (qp) ldfps.fldtype.ldhint f1, f2 = [r3] single_form, no_base_update_form M11
(qp) ldfps.fldtype.ldhint f1, f2 = [r3], 8 single_form, base_update_form M12
(qp) ldfpd.fldtype.ldhint f1, f2 = [r3] double_form, no_base_update_form M11
(qp) ldfpd.fldtype.ldhint f1, f2 = [r3], 16 double_form, base_update_form M12
(qp) ldfp8.fldtype.ldhint f1, f2 = [r3] integer_form, no_base_update_form M11
(qp) ldfp8.fldtype.ldhint f1, f2 = [r3], 16 integer_form, base_update_form M12

Description: Eight (single_form) or sixteen (double_form/integer_form) bytes are read from memory starting at the
address specified by the value in GR r3. The value read is treated as a contiguous pair of floating-point
numbers for the single_form/double_form and as integer/Parallel FP data for the integer_form. Each num-
ber is converted into the floating-point register format. The value at the lowest address is placed in FR f1,
and the value at the highest address is placed in FR f2. See “Data Types and Formats” on page 5-1 for
details on conversion to floating-point register format. The fldtype completer specifies special load opera-
tions, which are described in Table 6-30 on page 6-105.

For more details on speculative, advanced and check loads see “Control Speculation” on page 4-10 and
“Data Speculation” on page 4-12.

For the non-speculative load types, if NaT bit associated with GR r3 is 1, a Register NaT Consumption
fault is taken. For speculative and speculative advanced loads, no fault is raised, and the exception is
deferred.

In the base_update_form, the value in GR r3 is added to an implied immediate value (equal to double the
data size) and the result is placed back in GR r3. This base register update is done after the load, and does
not affect the load address.

The value of the ldhint modifier specifies the locality of the memory access. The mnemonic values of
ldhint are given in Table 6-28 on page 6-102. A prefetch hint is implied in the base update form. The
address specified by the value in GR r3 after the base update acts as a hint to prefetch the indicated cache
line. This prefetch uses the locality hints specified by ldhint. Prefetch and locality hints do not affect pro-
gram functionality and may be ignored by the implementation. See “Memory Hierarchy Control and Con-
sistency” on page 4-16 for details.

In the no_base_update form, the value in GR r3 is not modified and no prefetch hint is implied.

The PSR.mfl and PSR.mfh bits are updated to reflect the modification of FR f1 and FR f2.

There is a restriction on the choice of target registers. Register specifiers f1 and f2 must specify one odd-
numbered physical FR and one even-numbered physical FR. Specifying two odd or two even registers
will cause an Illegal Operation fault to be raised. The restriction is on physical register numbers after reg-
ister rotation. This means that if f1 and f2 both specify static registers or both specify rotating registers,
then f1 and f2 must be odd/even or even/odd. If f1 and f2 specify one static and one rotating register, the
restriction depends on CFM.rrb.fr. If CFM.rrb.fr is even, the restriction is the same; f1 and f2 must be odd/
even or even/odd. If CFM.rrb.fr is odd, then f1 and f2 must be even/even or odd/odd. Specifying one static
and one rotating register should only be done when CFM.rrb.fr will have a predictable value (such as 0).

Operation: if (PR[qp]) {
size = single_form ? 8 : 16;

speculative = (fldtype == ‘s’ || fldtype == ‘sa’);
advanced = ( fldtype == ‘a’ || fldtype == ‘sa’);
check_clear = ( fldtype == ‘c.clr’);
check_no_clear = ( fldtype == ‘c.nc’);
check = check_clear || check_no_clear;

itype = READ;
if (speculative) itype |= SPEC;
if (advanced) itype |= ADVANCE; 

if (fp_reg_bank_conflict(f1, f2))
illegal_operation_fault();



HP/Intel IA-64 Instruction Reference 6-109

IA-64 Application ISA Guide 1.0 ldfp

if (base_update_form)
check_target_register(r3);

fp_check_target_register(f1);
fp_check_target_register(f2);
if (tmp_isrcode = fp_reg_disabled(f1, f2, 0, 0))

disabled_fp_register_fault(tmp_isrcode, itype);

if (!speculative && GR[r3].nat) // fault on NaT address
register_nat_consumption_fault(itype);

defer = speculative && (GR[r3].nat || PSR.ed);// defer exception if spec

if (check && alat_cmp(FLOAT, f1)) { // no load on ldfp.c & ALAT hit
if (check_clear) // remove entry on ldfp.c.clr

alat_inval_single_entry(FLOAT, f1);
} else {

if (!defer) {
paddr = tlb_translate(GR[r3], size, itype, PSR.cpl, &mattr,

&defer);
if (!defer)

val = mem_read(paddr, size, UM.be, mattr, UNORDERED, ldhint);
}
if (check_clear || advanced) // remove any old ALAT entry

alat_inval_single_entry(FLOAT, f1);
if (speculative && defer) {

FR[f1] = NATVAL;
FR[f2] = NATVAL;

} else if (advanced && !speculative && defer) {
FR[f1] = (integer_form ? FP_INT_ZERO : FP_ZERO);
FR[f2] = (integer_form ? FP_INT_ZERO : FP_ZERO);

} else { // execute load normally
if (UM.be) {

FR[f1] = fp_mem_to_fr_format(val u>> (size/2*8), size/2,
integer_form);

FR[f2] = fp_mem_to_fr_format(val, size/2, integer_form);
} else {

FR[f1] = fp_mem_to_fr_format(val, size/2, integer_form);
FR[f2] = fp_mem_to_fr_format(val u>> (size/2*8), size/2,

 integer_form);
}

if ((check_no_clear || advanced) && ma_is_speculative(mattr))
// add entry to ALAT

alat_write(FLOAT, f1, paddr, size);
}

}

if (base_update_form) { // update base register
GR[r3] = GR[r3] + size;
GR[r3].nat = GR[r3].nat;
if (!GR[r3].nat)

mem_implicit_prefetch(GR[r3], ldhint);
}

fp_update_psr(f1);
fp_update_psr(f2);

}



6-110 IA-64 Instruction Reference HP/Intel

lfetch IA-64 Application ISA Guide 1.0

Line Prefetch

Format: (qp) lfetch.lftype.lfhint [r3] no_base_update_form M13
(qp) lfetch.lftype.lfhint [r3], r2 reg_base_update_form M14
(qp) lfetch.lftype.lfhint [r3], imm9 imm_base_update_form M15
(qp) lfetch.lftype.excl.lfhint [r3] no_base_update_form, exclusive_form M13
(qp) lfetch.lftype.excl.lfhint [r3], r2 reg_base_update_form, exclusive_form M14
(qp) lfetch.lftype.excl.lfhint [r3], imm9 imm_base_update_form, exclusive_form M15

Description: The line containing the address specified by the value in GR r3 is moved to the highest level of the data
memory hierarchy. The value of the lfhint modifier specifies the locality of the memory access. The mne-
monic values of lfhint are given in Table 6-32. 

The behavior of the memory read is also determined by the memory attribute associated with the accessed
page. Line size is implementation dependent but must be a power of two greater than or equal to 32 bytes.
In the exclusive form, the cache line is allowed to be marked in an exclusive state. This qualifier is used
when the program expects soon to modify a location in that line. If the memory attribute for the page con-
taining the line is not cacheable, then no reference is made.

The completer, lftype, specifies whether or not the instruction raises faults normally associated with a reg-
ular load. Table 6-31 defines these two options.

In the base update forms, after being used to address memory, the value in GR r3 is incremented by either
the sign extended value in imm9 (in the imm_base_update_form) or the value in GR r2 (in the
reg_base_update_form). In the reg_base_update_form, if the NaT bit corresponding to GR r2 is set, then
the NaT bit corresponding to GR r3 is set – no fault is raised.

In the reg_base_update_form and the imm_base_update_form, if the NaT bit corresponding to GR r3 is
clear, then the address specified by the value in GR r3 after the post-increment acts as a hint to implicitly
prefetch the indicated cache line. This implicit prefetch uses the locality hints specified by lfhint. The
implicit prefetch does not affect program functionality, does not raise any faults, and may be ignored by
the implementation.

In the no_base_update_form, the value in GR r3 is not modified and no implicit prefetch hint is implied.

If the NaT bit corresponding to GR r3 is set then the state of memory is not affected. In the
reg_base_update_form and imm_base_update_form, the post increment of GR r3 is performed and
prefetch is hinted as described above.

Table 6-31. lftype Mnemonic Values

lftype Mnemonic Interpretation
none Ignore faults

fault Raise faults

Table 6-32. lfhint Mnemonic Values

lfhint Mnemonic Interpretation
none Temporal locality, level 1

nt1 No temporal locality, level 1

nt2 No temporal locality, level 2

nta No temporal locality, all levels



HP/Intel IA-64 Instruction Reference 6-111

IA-64 Application ISA Guide 1.0 lfetch

Operation: if (PR[qp]) {
itype = READ|NON_ACCESS;
itype |= (lftype == ‘fault’) ? LFETCH_FAULT : LFETCH;

if (reg_base_update_form || imm_base_update_form)
check_target_register( r3);

if ( lftype == ‘fault’) { // faulting form
if (GR[ r3].nat && !PSR.ed) // fault on NaT address

register_nat_consumption_fault(itype);
}

if (exclusive_form)
excl_hint = EXCLUSIVE;

else
excl_hint = 0; 

if (!GR[ r3].nat && !PSR.ed) {// faulting form already faulted if r3 is nat’ed
paddr = tlb_translate(GR[ r3], 1, itype, PSR.cpl, &mattr, &defer);
if (!defer)

mem_promote(paddr, mattr, lfhint | excl_hint);
}

if (imm_base_update_form) {
GR[r3] = GR[ r3] + sign_ext( imm9, 9);
GR[r3].nat = GR[ r3].nat;

} else if (reg_base_update_form) {
GR[r3] = GR[ r3] + GR[ r2];
GR[r3].nat = GR[ r2].nat || GR[ r3].nat;

}

if ((reg_base_update_form || imm_base_update_form) && !GR[ r3].nat)
mem_implicit_prefetch(GR[ r3], lfhint | excl_hint);

}



6-112 IA-64 Instruction Reference HP/Intel

mf IA-64 Application ISA Guide 1.0

Memory Fence

Format: (qp) mf ordering_form M24
(qp) mf.a acceptance_form M24

Description: This instruction forces ordering between prior and subsequent memory accesses. The ordering_form
ensures all prior data memory accesses are made visible prior to any subsequent data memory accesses
being made visible. It does not ensure prior data memory references have been accepted by the external
platform, nor that prior data memory references are visible.

The acceptance_form prevents any subsequent data memory accesses by the processor from initiating
transactions to the external platform until:

• all prior loads have returned data, and 

• all prior stores have been accepted by the external platform.

The definition of “acceptance” is platform dependent. The acceptance_form is typically used to ensure the
processor has “waited” until a memory-mapped IO transaction has been “accepted”, before initiating addi-
tional external transactions. The acceptance_form does not ensure ordering.

Operation: if (PR[qp]){
if (acceptance_form)

acceptance_fence();
else

ordering_fence();
}



HP/Intel IA-64 Instruction Reference 6-113

IA-64 Application ISA Guide 1.0 mix

Mix

Format: (qp) mix1.l r1 = r2, r3 one_byte_form, left_form I2
(qp) mix2.l r1 = r2, r3 two_byte_form, left_form I2
(qp) mix4.l r1 = r2, r3 four_byte_form, left_form I2
(qp) mix1.r r1 = r2, r3 one_byte_form, right_form I2
(qp) mix2.r r1 = r2, r3 two_byte_form, right_form I2
(qp) mix4.r r1 = r2, r3 four_byte_form, right_form I2

Description: The data elements of GR r2 and r3 are mixed as shown in Figure 6-23, and the result placed in GR r1. The
data elements in the source registers are grouped in pairs, and one element from each pair is selected for
the result. In the left_form, the result is formed from the leftmost elements from each of the pairs. In the
right_form, the result is formed from the rightmost elements. Elements are selected alternately from the
two source registers.



6-114 IA-64 Instruction Reference HP/Intel

mix IA-64 Application ISA Guide 1.0

Figure 6-23. Mix Example

GR r2:

GR r1:

GR r3:

mix1.l

GR r2:

GR r1:

GR r3:

GR r2:

GR r1:

GR r3:

GR r2:

GR r1:

GR r3:

mix1.r

GR r2:

GR r1:

GR r3:

mix2.l

mix2.r

GR r2:

GR r1:

GR r3:

mix4.l

mix4.r



HP/Intel IA-64 Instruction Reference 6-115

IA-64 Application ISA Guide 1.0 mix

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (left_form)
GR[r1] = concatenate8(x[7], y[7], x[5], y[5],

x[3], y[3], x[1], y[1]);
else

GR[r1] = concatenate8(x[6], y[6], x[4], y[4],
x[2], y[2], x[0], y[0]);

} else if (two_byte_form) { // two-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (left_form)
GR[r1] = concatenate4(x[3], y[3], x[1], y[1]);

else
GR[r1] = concatenate4(x[2], y[2], x[0], y[0]);

} else { // four-byte elements
x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

if (left_form)
GR[r1] = concatenate2(x[1], y[1]);

else
GR[r1] = concatenate2(x[0], y[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}



6-116 IA-64 Instruction Reference HP/Intel

mov ar IA-64 Application ISA Guide 1.0

Move Application Register

Format: (qp) mov r1 = ar3 pseudo-op
(qp) mov ar3 = r2 pseudo-op
(qp) mov ar3 = imm8 pseudo-op
(qp) mov.i r1 = ar3 i_form, from_form I28
(qp) mov.i ar3 = r2 i_form, register_form, to_form I26
(qp) mov.i ar3 = imm8 i_form, immediate_form, to_form I27
(qp) mov.m r1 = ar3 m_form, from_form M31
(qp) mov.m ar3 = r2 m_form, register_form, to_form M29
(qp) mov.m ar3 = imm8 m_form, immediate_form, to_form M30

Description: The source operand is copied to the destination register. 

In the from_form, the application register specified by ar3 is copied into GR r1 and the corresponding NaT
bit is cleared. 

In the to_form, the value in GR r2 (in the register_form), or the sign extended value in imm8 (in the
immediate_form), is placed in AR ar3. In the register_form if the NaT bit corresponding to GR r2 is set,
then a Register NaT Consumption fault is raised.

Only a subset of the application registers can be accessed by each execution unit (M or I). Table 3-3 on
page 3-5 in  indicates which application registers may be accessed from which execution unit type. An
access to an application register from the wrong unit type causes an Illegal Operation fault.

This instruction has multiple forms with the pseudo operation eliminating the need for specifying the exe-
cution unit. Accesses of the ARs are always implicitly serialized. While implicitly serialized, read-after-
write and write-after-write dependencies must be avoided (e.g., setting CCV, followed by cmpxchg in the
same instruction group, or simultaneous writes to the UNAT register by ld.fill and mov to UNAT).



HP/Intel IA-64 Instruction Reference 6-117

IA-64 Application ISA Guide 1.0 mov ar

Operation: if (PR[qp]) {
tmp_type = (i_form ? AR_I_TYPE : AR_M_TYPE);
if (is_reserved_reg(tmp_type, ar3))

illegal_operation_fault();

if (from_form) {
check_target_register(r1);
if (((ar3 == BSPSTORE) || (ar3 == RNAT)) && (AR[RSC].mode != 0))

illegal_operation_fault();

if (ar3 == ITC && PSR.si && PSR.cpl != 0)
privileged_register_fault();

GR[r1] = (is_ignored_reg(ar3)) ? 0 : AR[ar3];
GR[r1].nat = 0;

} else { // to_form
tmp_val = (register_form) ? GR[r2] : sign_ext(imm8, 8);

if (ar3 == BSP)
illegal_operation_fault();

if (((ar3 == BSPSTORE) || (ar3 == RNAT)) && (AR[RSC].mode != 0))
illegal_operation_fault();

if (register_form && GR[r2].nat)
register_nat_consumption_fault(0);

if (is_reserved_field(AR_TYPE, ar3, tmp_val))
reserved_register_field_fault();

if ((is_kernel_reg(ar3) || ar3 == ITC) && (PSR.cpl != 0))
privileged_register_fault();

if (!is_ignored_reg(ar3)) {
tmp_val = ignored_field_mask(AR_TYPE, ar3, tmp_val);
// check for illegal promotion
if (ar3 == RSC && tmp_val{3:2} u< PSR.cpl)

tmp_val{3:2} = PSR.cpl;
AR[ar3] = tmp_val;

if (ar3 == BSPSTORE) {
AR[BSP] = rse_update_internal_stack_pointers(tmp_val);
AR[RNAT] = undefined();

}
}

}
}



6-118 IA-64 Instruction Reference HP/Intel

mov br IA-64 Application ISA Guide 1.0

Move Branch Register

Format: (qp) mov r1 = b2 from_form I22
(qp) mov b1= r2  to_form I21
(qp) mov.ret b1 = r2 return_form, to_form I21

Description: The source operand is copied to the destination register. 

In the from_form, the branch register specified by b2 is copied into GR r1. The NaT bit corresponding to
GR r1 is cleared.

In the to_form, the value in GR r2 is copied into BR b1. If the NaT bit corresponding to GR r2 is 1, then a
Register NaT Consumption fault is taken.

Operation: if (PR[qp]) {
if (from_form) {

check_target_register(r1);
GR[r1] = BR[b2];
GR[r1].nat = 0;

} else { // to_form
if (GR[r2].nat)

register_nat_consumption_fault(0);
BR[b1] = GR[r2];

}
}



HP/Intel IA-64 Instruction Reference 6-119

IA-64 Application ISA Guide 1.0 mov fr

Move Floating-Point Register

Format: (qp) mov f1 = f3 pseudo-op of: (qp) fmerge.s f1 = f3, f3

Description: The value of FR f3 is copied to FR f1.

Operation: See “Floating-Point Merge” on page 6-49.



6-120 IA-64 Instruction Reference HP/Intel

mov gr IA-64 Application ISA Guide 1.0

Move General Register

Format: (qp) mov r1 = r3 pseudo-op of: (qp) adds r1 = 0, r3

Description: The value of GR r3 is copied to GR r1.

Operation: See “Add” on page 6-3.



HP/Intel IA-64 Instruction Reference 6-121

IA-64 Application ISA Guide 1.0 mov imm

Move Immediate

Format: (qp) mov r1 = imm22 pseudo-op of: (qp) addl r1 = imm22, r0

Description: The immediate value, imm22, is sign extended to 64 bits and placed in GR r1.

Operation: See “Add” on page 6-3.



6-122 IA-64 Instruction Reference HP/Intel

mov indirect IA-64 Application ISA Guide 1.0

Move Indirect Register

Format: (qp) mov r1 = ireg[r3] from_form M43

Description: The source operand is copied to the destination register. 

For move from indirect register, GR r3 is read and the value used as an index into the register file specified
by ireg (see Table 6-33 below). The indexed register is read and its value is copied into GR r1.

Bits {7:0} of GR r3 are used as the index. The remainder of the bits are ignored. 

Apart from the PMD register file, access of a non-existent register results in a Reserved Register/Field
fault. All accesses to the implementation-dependent portion of the PMD register file result in implementa-
tion dependent behavior but do not fault.

Operation: if (PR[qp]) {
tmp_index = GR[r3]{7:0};

if (from_form) {
check_target_register(r1);

if (GR[r3].nat)
register_nat_consumption_fault(0);

if (is_reserved_reg(ireg, tmp_index))
reserved_register_field_fault();

if (ireg == PMD_TYPE) {
GR[r1] = pmd_read(tmp_index);

} else
switch (ireg) {

case CPUID_TYPE: GR[r1] = CPUID[tmp_index]; break;
}

GR[r1].nat = 0;
}

}

Table 6-33. Indirect Register File Mnemonics

ireg Register File
cpuid Processor Identification Register

pmd Performance Monitor Data Register



HP/Intel IA-64 Instruction Reference 6-123

IA-64 Application ISA Guide 1.0 mov ip

Move Instruction Pointer

Format: (qp) mov r1 = ip I25

Description: The Instruction Pointer (IP) for the bundle containing this instruction is copied into GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = IP;
GR[r1].nat = 0;

}



6-124 IA-64 Instruction Reference HP/Intel

mov pr IA-64 Application ISA Guide 1.0

Move Predicates

Format: (qp) mov r1 = pr from_form I25
(qp) mov pr = r2, mask17 to_form I23
(qp) mov pr.rot = imm44 to_rotate_form I24

Description: The source operand is copied to the destination register.

For moving the predicates to a GR, PR i is copied to bit position i within GR r1.

For moving to the predicates, the source can either be a general register, or an immediate value. In the
to_form, the source operand is GR r2 and only those predicates specified by the immediate value mask17
are written. The value mask17 is encoded in the instruction in an imm16 field such that: imm16 = mask17 >>
1. Predicate register 0 is always one. The mask17 value is sign extended. The most significant bit of
mask17, therefore, is the mask bit for all of the rotating predicates. If there is a deferred exception for GR
r2 (the NaT bit is 1), a Register NaT Consumption fault is taken.

In the to_rotate_form, only the 48 rotating predicates can be written. The source operand is taken from the
imm44 operand (which is encoded in the instruction in an imm28 field, such that: imm28 = imm44 >> 16).
The low 16-bits correspond to the static predicates. The immediate is sign extended to set the top 21 pred-
icates. Bit position i in the source operand is copied to PR i.

This instruction operates as if the predicate rotation base in the Current Frame Marker (CFM.rrb.pr) were
zero.

Operation: if (PR[qp]) {
if (from_form) {

check_target_register(r1);
GR[r1] = 1; // PR[0] is always 1
for (i = 1; i <= 63; i++) {

GR[r1]{i} = PR[pr_phys_to_virt(i)];
}
GR[r1].nat = 0;

} else if (to_form) {
if (GR[r2].nat)

register_nat_consumption_fault(0);
tmp_src = sign_ext(mask17, 17);
for (i = 1; i <= 63; i++) {

if (tmp_src{i})
PR[pr_phys_to_virt(i)] = GR[r2]{i};

}
} else { // to_rotate_form

tmp_src = sign_ext(imm44, 44);
for (i = 16; i <= 63; i++) {

PR[pr_phys_to_virt(i)] = tmp_src{i};
}

}
}



HP/Intel IA-64 Instruction Reference 6-125

IA-64 Application ISA Guide 1.0 mov um

Move User Mask

Format: (qp) mov r1 = psr.um from_form M36
(qp) mov psr.um = r2 to_form M35

Description: The source operand is copied to the destination register. 

For move from user mask, PSR{5:0} is read, zero-extend, and copied into GR r1.

For move to user mask, PSR{5:0} is written by bits {5:0} of GR r2. 

Operation: if (PR[qp]) {
if (from_form) {

check_target_register(r1);

GR[r1] = zero_ext(PSR{5:0}, 6);
GR[r1].nat = 0;

} else { // to_form
if (GR[r2].nat)

register_nat_consumption_fault(0);

if (is_reserved_field(PSR_TYPE, PSR_UM, GR[r2]))
reserved_register_field_fault();

PSR{5:0} = GR[r2]{5:0};
}

}



6-126 IA-64 Instruction Reference HP/Intel

movl IA-64 Application ISA Guide 1.0

Move Long Immediate

Format: (qp) movl r1 = imm64 X2

Description: The immediate value imm64 is copied to GR r1. The L slot of the bundle contains 41 bits of imm64.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = imm64;
GR[r1].nat = 0;

}



HP/Intel IA-64 Instruction Reference 6-127

IA-64 Application ISA Guide 1.0 mux

Mux

Format: (qp) mux1 r1 = r2, mbtype4 one_byte_form I3
(qp) mux2 r1 = r2, mhtype8 two_byte_form I4

Description: A permutation is performed on the packed elements in a single source register, GR r2, and the result is
placed in GR r1. For 8-bit elements, only some of all possible permutations can be specified. The five pos-
sible permutations are given in Table 6-34 and shown in Figure 6-24.

For 16-bit elements, all possible permutations, with and without repetitions can be specified. They are
expressed with an 8-bit mhtype8 field, which encodes the indices of the four 16-bit data elements. The
indexed 16-bit elements of GR r2 are copied to corresponding 16-bit positions in the target register GR r1.
The indices are encoded in little-endian order. (The 8 bits of mhtype8[7:0] are grouped in pairs of bits and
named mhtype8[3], mhtype8[2], mhtype8[1], mhtype8[0] in the operation section).

Table 6-34. Mux Permutations for 8-bit Elements

mbtype4 Function
@rev Reverse the order of the bytes

@mix Perform a Mix operation on the two halves of GR r2

@shuf Perform a Shuffle operation on the two halves of GR r2

@alt Perform an Alternate operation on the two halves of GR r2

@brcst Perform a Broadcast operation on the least significand byte of GR r2

Figure 6-24. Mux1 Operation (8-bit elements)

GR r1:

GR r2:

mux1 r1 = r2, @rev

GR r1:

GR r2:

mux1 r1 = r2, @mix

GR r1:

GR r2:

mux1 r1 = r2, @shuf

GR r1:

GR r2:

mux1 r1 = r2, @alt

GR r1:

GR r2:

mux1 r1 = r2, @brcst



6-128 IA-64 Instruction Reference HP/Intel

mux IA-64 Application ISA Guide 1.0

Figure 6-25. Mux2 Examples (16-bit elements)

GR r1:

GR r2:

mux2 r1 = r2, 0x8b (shuffle 10 00 11 01)

GR r1:

GR r2:

mux2 r1 = r2, 0x1b (reverse 00 01 10 11)

GR r1:

GR r2:

mux2 r1 = r2, 0xaa (broadcast 10 10 10 10)

GR r1:

GR r2:

mux2 r1 = r2, 0xe4 (alternate 11 01 10 00)



HP/Intel IA-64 Instruction Reference 6-129

IA-64 Application ISA Guide 1.0 mux

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) {
x[0] = GR[r2]{7:0};
x[1] = GR[r2]{15:8};
x[2] = GR[r2]{23:16};
x[3] = GR[r2]{31:24};
x[4] = GR[r2]{39:32};
x[5] = GR[r2]{47:40};
x[6] = GR[r2]{55:48};
x[7] = GR[r2]{63:56};

switch (mbtype) {
case ‘@rev’:

GR[r1] = concatenate8(x[0], x[1], x[2], x[3],
x[4], x[5], x[6], x[7]);

break;

case ‘@mix’:
 GR[ r1] = concatenate8(x[7], x[3], x[5], x[1],

x[6], x[2], x[4], x[0]);
break;

case ‘@shuf’:
GR[r1] = concatenate8(x[7], x[3], x[6], x[2], 

x[5], x[1], x[4], x[0]);
break;

case ‘@alt’:
GR[r1] = concatenate8(x[7], x[5], x[3], x[1],

x[6], x[4], x[2], x[0]);
break;

case ‘@brcst’:
GR[r1] = concatenate8(x[0], x[0], x[0], x[0],

x[0], x[0], x[0], x[0]);
break;

}
} else { // two_byte_form

x[0] = GR[ r2]{15:0};
x[1] = GR[ r2]{31:16};
x[2] = GR[ r2]{47:32};
x[3] = GR[ r2]{63:48};

res[0] = x[mhtype8{1:0}];
res[1] = x[mhtype8{3:2}];
res[2] = x[mhtype8{5:4}];
res[3] = x[mhtype8{7:6}];

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
}
GR[r1].nat = GR[ r2].nat;

}



6-130 IA-64 Instruction Reference HP/Intel

nop IA-64 Application ISA Guide 1.0

No Operation

Format: (qp) nop imm21 pseudo-op
(qp) nop.i imm21 i_unit_form I19
(qp) nop.b imm21 b_unit_form B9
(qp) nop.m imm21 m_unit_form M37
(qp) nop.f imm21 f_unit_form F15
(qp) nop.x imm62 x_unit_form X1

Description: No operation is done.

The immediate, imm21 or imm62, can be used by software as a marker in program code. It is ignored by
hardware.

For the x_unit_form, the L slot of the bundle contains the upper 41 bits of imm62.

This instruction has five forms, each of which can be executed only on a particular execution unit type.
The pseudo-op can be used if the unit type to execute on is unimportant.

Operation: if (PR[qp]) {
; // no operation

}



HP/Intel IA-64 Instruction Reference 6-131

IA-64 Application ISA Guide 1.0 or

Logical Or

Format: (qp) or r1 = r2, r3 register_form A1
(qp) or r1 = imm8, r3 imm8_form A3

Description: The two source operands are logically ORed and the result placed in GR r1. In the register form the first
operand is GR r2; in the immediate form the first operand is taken from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src | GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}



6-132 IA-64 Instruction Reference HP/Intel

pack IA-64 Application ISA Guide 1.0

Pack

Format: (qp) pack2.sss r1 = r2, r3  two_byte_form, signed_saturation_form I2
(qp) pack2.uss r1 = r2, r3 two_byte_form, unsigned_saturation_form I2
(qp) pack4.sss r1 = r2, r3 four_byte_form, signed_saturation_form I2

Description: 32-bit or 16-bit elements from GR r2 and GR r3 are converted into 16-bit or 8-bit elements respectively,
and the results are placed GR r1. The source elements are treated as signed values. If a source element
cannot be represented in the result element, then saturation clipping is performed. The saturation can
either be signed or unsigned. If an element is larger than the upper limit value, the result is the upper limit
value. If it is smaller than the lower limit value, the result is the lower limit value. The saturation limits are
given in Table 6-35.

Table 6-35. Pack Saturation Limits

Size
Source Element 

Width
Result Element 

Width
Saturation

Upper 
Limit

Lower 
Limit

2 16 bit 8 bit signed 0x7f 0x80

2 16 bit 8 bit unsigned 0xff 0x00

4 32 bit 16 bit signed 0x7fff 0x8000

Figure 6-26. Pack Operation

GR r3:

GR r1:

GR r2:

pack4

GR r3:

GR r1:

GR r2:

pack2



HP/Intel IA-64 Instruction Reference 6-133

IA-64 Application ISA Guide 1.0 pack

Operation: if (PR[qp]) {
check_target_register(r1);

if (two_byte_form) { // two_byte_form
if (signed_saturation_form) { // signed_saturation_form

max = sign_ext(0x7f, 8);
min = sign_ext(0x80, 8);

} else { // unsigned_saturation_form
max = 0xff;
min = 0x00;

}
temp[0] = sign_ext(GR[r2]{15:0}, 16);
temp[1] = sign_ext(GR[r2]{31:16}, 16);
temp[2] = sign_ext(GR[r2]{47:32}, 16);
temp[3] = sign_ext(GR[r2]{63:48}, 16);
temp[4] = sign_ext(GR[r3]{15:0}, 16);
temp[5] = sign_ext(GR[r3]{31:16}, 16);
temp[6] = sign_ext(GR[r3]{47:32}, 16);
temp[7] = sign_ext(GR[r3]{63:48}, 16);

for (i = 0; i < 8; i++) {
if (temp[i] > max)

temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}

GR[r1] = concatenate8(temp[7], temp[6], temp[5], temp[4],
 temp[3], temp[2], temp[1], temp[0]);

} else { // four_byte_form
max = sign_ext(0x7fff, 16); // signed_saturation_form
min = sign_ext(0x8000, 16);
temp[0] = sign_ext(GR[r2]{31:0}, 32);
temp[1] = sign_ext(GR[r2]{63:32}, 32);
temp[2] = sign_ext(GR[r3]{31:0}, 32);
temp[3] = sign_ext(GR[r3]{63:32}, 32);

for (i = 0; i < 4; i++) {
if (temp[i] > max)

temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}

GR[r1] = concatenate4(temp[3], temp[2], temp[1], temp[0]);
}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}



6-134 IA-64 Instruction Reference HP/Intel

padd IA-64 Application ISA Guide 1.0

Parallel Add

Format: (qp) padd1 r1 = r2, r3 one_byte_form, modulo_form A9
(qp) padd1.sss r1 = r2, r3 one_byte_form, sss_saturation_form A9
(qp) padd1.uus r1 = r2, r3 one_byte_form, uus_saturation_form A9
(qp) padd1.uuu r1 = r2, r3 one_byte_form, uuu_saturation_form A9
(qp) padd2 r1 = r2, r3 two_byte_form, modulo_form A9
(qp) padd2.sss r1 = r2, r3 two_byte_form, sss_saturation_form A9
(qp) padd2.uus r1 = r2, r3 two_byte_form, uus_saturation_form A9
(qp) padd2.uuu r1 = r2, r3 two_byte_form, uuu_saturation_form A9
(qp) padd4 r1 = r2, r3 four_byte_form, modulo_form A9

Description: The sets of elements from the two source operands are added, and the results placed in GR r1.

If a sum of two elements cannot be represented in the result element and a saturation completer is speci-
fied, then saturation clipping is performed. The saturation can either be signed or unsigned, as given in
Table 6-36. If the sum of two elements is larger than the upper limit value, the result is the upper limit
value. If it is smaller than the lower limit value, the result is the lower limit value. The saturation limits are
given in Table 6-37.

Table 6-36. Parallel Add Saturation Completers

Completer Result r1 Treated as Source r2 Treated as Source r3 Treated as
sss signed signed signed

uus unsigned unsigned signed

uuu unsigned unsigned unsigned

Table 6-37. Parallel Add Saturation Limits

Size
Element 
Width

Result r1 Signed Result r1 Unsigned

Upper 
Limit

Lower Limit
Upper 
Limit

Lower Limit

1 8 bit 0x7f 0x80 0xff 0x00

2 16 bit 0x7fff 0x8000 0xffff 0x0000

Figure 6-27. Parallel Add Examples

GR r2:

GR r1:

GR r3:

++++

paddl padd2

GR r2:

GR r1:

GR r3:

++++ ++++



HP/Intel IA-64 Instruction Reference 6-135

IA-64 Application ISA Guide 1.0 padd

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (sss_saturation_form) { // sss_saturation_form
max = sign_ext(0x7f, 8);
min = sign_ext(0x80, 8);

for (i = 0; i < 8; i++) {
temp[i] = sign_ext(x[i], 8) + sign_ext(y[i], 8);

}
} else if (uus_saturation_form) { // uus_saturation_form

max = 0xff;
min = 0x00;

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + sign_ext(y[i], 8);

}
} else if (uuu_saturation_form) { // uuu_saturation_form

max = 0xff;
min = 0x00;

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);

}
} else { // modulo_form

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);

}
}

if (sss_saturation_form || uus_saturation_form || uuu_saturation_form) {
for (i = 0; i < 8; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}
GR[r1] = concatenate8(temp[7], temp[6], temp[5], temp[4],

temp[3], temp[2], temp[1], temp[0]);

} else if (two_byte_form) { // 2-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (sss_saturation_form) { // sss_saturation_form
max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);

for (i = 0; i < 4; i++) {
temp[i] = sign_ext(x[i], 16) + sign_ext(y[i], 16);

}
} else if (uus_saturation_form) { // uus_saturation_form

max = 0xffff;
min = 0x0000;



6-136 IA-64 Instruction Reference HP/Intel

padd IA-64 Application ISA Guide 1.0

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + sign_ext(y[i], 16);

}
} else if (uuu_saturation_form) { // uuu_saturation_form

max = 0xffff;
min = 0x0000;

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

}
} else { // modulo_form

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);

}
}

if (sss_saturation_form || uus_saturation_form || uuu_saturation_form) {
for (i = 0; i < 4; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}
GR[r1] = concatenate4(temp[3], temp[2], temp[1], temp[0]);

} else { // four-byte elements
x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

for (i = 0; i < 2; i++) { // modulo_form
temp[i] = zero_ext(x[i], 32) + zero_ext(y[i], 32);

}

GR[r1] = concatenate2(temp[1], temp[0]);
}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}



HP/Intel IA-64 Instruction Reference 6-137

IA-64 Application ISA Guide 1.0 pavg

Parallel Average

Format: (qp) pavg1 r1 = r2, r3 normal_form, one_byte_form A9
(qp) pavg1.raz r1 = r2, r3 raz_form, one_byte_form A9
(qp) pavg2 r1 = r2, r3 normal_form, two_byte_form A9
(qp) pavg2.raz r1 = r2, r3 raz_form, two_byte_form A9

Description: The unsigned data elements of GR r2 are added to the unsigned data elements of GR r3. The results of the
add are then each independently shifted to the right by one bit position. The high-order bits of each ele-
ment are filled with the carry bits of the sums. To prevent cumulative round-off errors, an averaging is per-
formed. The unsigned results are placed in GR r1.

The averaging operation works as follows. In the normal_form, the low-order bit of each result is set to 1
if at least one of the two least significant bits of the corresponding sum is 1. In the raz_form, the average
rounds away from zero by adding 1 to each of the sums. 

Figure 6-28. Parallel Average Example

GR r2:

GR r1:

GR r3:

++++

pavg2

16-bit sum

shift right
1 bit or

shift right 1 bit
with average in
low-order bit

plus
carry

sum bits
carry
bit



6-138 IA-64 Instruction Reference HP/Intel

pavg IA-64 Application ISA Guide 1.0

Figure 6-29. Parallel Average with Round Away from Zero Example

GR r2:

GR r1:

GR r3:

++++

pavg2.raz

16-bit sum

shift right
1 bit

shift right 1 bit

plus
carry

sum bits
carry
bit

1 1 1 1



HP/Intel IA-64 Instruction Reference 6-139

IA-64 Application ISA Guide 1.0 pavg

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one_byte_form
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (raz_form) {
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8) + 1;
res[i] = shift_right_unsigned(temp[i], 1);

}
} else { // normal form

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) + zero_ext(y[i], 8);
res[i] = shift_right_unsigned(temp[i], 1) | (temp[i]{0});

}
}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);

} else { // two_byte_form
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (raz_form) {
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16) + 1;
res[i] = shift_right_unsigned(temp[i], 1);

}
} else { // normal form

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) + zero_ext(y[i], 16);
res[i] = shift_right_unsigned(temp[i], 1) | (temp[i]{0});

}
}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}



6-140 IA-64 Instruction Reference HP/Intel

pavgsub IA-64 Application ISA Guide 1.0

Parallel Average Subtract

Format: (qp) pavgsub1 r1 = r2, r3 one_byte_form A9
(qp) pavgsub2 r1 = r2, r3 two_byte_form A9

Description: The unsigned data elements of GR r3 are subtracted from the unsigned data elements of GR r2. The results
of the subtraction are then each independently shifted to the right by one bit position. The high-order bits
of each element are filled with the borrow bits of the subtraction (the complements of the ALU carries).
To prevent cumulative round-off errors, an averaging is performed. The low-order bit of each result is set
to 1 if at least one of the two least significant bits of the corresponding difference is 1. The signed results
are placed in GR r1.

Figure 6-30. Parallel Average Subtract Example

GR r2:

GR r1:

GR r3:

----

pavgsub2

16-bit

shift right
1 bit or

shift right 1 bit
with average in
low-order bit

plus
borrow

sum bits
borrow
bit

 difference



HP/Intel IA-64 Instruction Reference 6-141

IA-64 Application ISA Guide 1.0 pavgsub

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one_byte_form
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

for (i = 0; i < 8; i++) {
temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
res[i] = (temp[i]{8:0} u>> 1) | (temp[i]{0});

}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);

} else { // two_byte_form
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

for (i = 0; i < 4; i++) {
temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
res[i] = (temp[i]{16:0} u>> 1) | (temp[i]{0});

}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}



6-142 IA-64 Instruction Reference HP/Intel

pcmp IA-64 Application ISA Guide 1.0

Parallel Compare

Format: (qp) pcmp1.prel r1 = r2, r3 one_byte_form A9
(qp) pcmp2.prel r1 = r2, r3 two_byte_form A9
(qp) pcmp4.prel r1 = r2, r3 four_byte_form A9

Description: The two source operands are compared for one of the two relations shown in Table 6-38. If the compari-
son condition is true for corresponding data elements of GR r2 and GR r3, then the corresponding data ele-
ment in GR r1 is set to all ones. If the comparison condition is false, the corresponding data element in GR
r1 is set to all zeros. For the ‘>’ relation, both operands are interpreted as signed.

Table 6-38. Pcmp Relations

prel Compare Relation (r2 prel r3)
eq r2 == r3

gt r2 > r3 (signed)

Figure 6-31. Parallel Compare Example

GR r2:

GR r1:

GR r3:

====

pcmp2.eq

true false true true

0xffff 0x0000 0xffff 0xffff

GR r2:

GR r1:

GR r3:

>

pcmp1.ge

t

ff 00

GR r2:

GR r1:

GR r3:

=

pcmp4.eq

true

0xffffffff 0x00000000

>

f

>

t

>

t

>

f

>

f

>

f

>

t

ff ff 00 00 00 ff

=

false



HP/Intel IA-64 Instruction Reference 6-143

IA-64 Application ISA Guide 1.0 pcmp

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};
for (i = 0; i < 8; i++) {

if (prel == ‘eq’)
tmp_rel = x[i] == y[i];

else
tmp_rel = greater_signed(sign_ext(x[i], 8), sign_ext(y[i], 8));

if (tmp_rel)
res[i] = 0xff;

else
res[i] = 0x00;

}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);
} else if (two_byte_form) { // two-byte elements

x[0] = GR[ r2]{15:0}; y[0] = GR[ r3]{15:0};
x[1] = GR[ r2]{31:16}; y[1] = GR[ r3]{31:16};
x[2] = GR[ r2]{47:32}; y[2] = GR[ r3]{47:32};
x[3] = GR[ r2]{63:48}; y[3] = GR[ r3]{63:48};
for (i = 0; i < 4; i++) {

if ( prel == ‘eq’)
tmp_rel = x[i] == y[i];

else
tmp_rel = greater_signed(sign_ext(x[i], 16), sign_ext(y[i], 16));

if (tmp_rel)
res[i] = 0xffff;

else
res[i] = 0x0000;

}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

} else { // four-byte elements
x[0] = GR[ r2]{31:0}; y[0] = GR[ r3]{31:0};
x[1] = GR[ r2]{63:32}; y[1] = GR[ r3]{63:32};
for (i = 0; i < 2; i++) {

if ( prel == ‘eq’)
tmp_rel = x[i] == y[i];

else
tmp_rel = greater_signed(sign_ext(x[i], 32), sign_ext(y[i], 32));

if (tmp_rel)
res[i] = 0xffffffff;

else
res[i] = 0x00000000;

}
GR[r1] = concatenate2(res[1], res[0]);

}
GR[r1].nat = GR[ r2].nat || GR[ r3].nat;

}



6-144 IA-64 Instruction Reference HP/Intel

pmax IA-64 Application ISA Guide 1.0

Parallel Maximum

Format: (qp) pmax1.u r1 = r2, r3 one_byte_form I2
(qp) pmax2 r1 = r2, r3 two_byte_form I2

Description: The maximum of the two source operands is placed in the result register. In the one_byte_form, each
unsigned 8-bit element of GR r2 is compared with the corresponding unsigned 8-bit element of GR r3 and
the greater of the two is placed in the corresponding 8-bit element of GR r1. In the two_byte_form, each
signed 16-bit element of GR r2 is compared with the corresponding signed 16-bit element of GR r3 and
the greater of the two is placed in the corresponding 16-bit element of GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};
for (i = 0; i < 8; i++) {

res[i] = (zero_ext(x[i],8) < zero_ext(y[i],8)) ? y[i] : x[i];
}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);
} else { // two-byte elements

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};
for (i = 0; i < 4; i++) {

res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? y[i] : x[i];
}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Figure 6-32. Parallel Maximum Example

GR r2:

GR r1:

GR r3:

<<<<

pmax2

true false true true

GR r2:

GR r1:

GR r3:

<

pmax1.u

t

<

f

<

t

<

t

<

f

<

f

<

f

<

t



HP/Intel IA-64 Instruction Reference 6-145

IA-64 Application ISA Guide 1.0 pmin

Parallel Minimum

Format: (qp) pmin1.u r1 = r2, r3 one_byte_form I2
(qp) pmin2 r1 = r2, r3 two_byte_form I2

Description: The minimum of the two source operands is placed in the result register. In the one_byte_form, each
unsigned 8-bit element of GR r2 is compared with the corresponding unsigned 8-bit element of GR r3 and
the smaller of the two is placed in the corresponding 8-bit element of GR r1. In the two_byte_form, each
signed 16-bit element of GR r2 is compared with the corresponding signed 16-bit element of GR r3 and
the smaller of the two is placed in the corresponding 16-bit element of GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};
for (i = 0; i < 8; i++) {

res[i] = (zero_ext(x[i],8) < zero_ext(y[i],8)) ? x[i] : y[i];
}
GR[r1] = concatenate8(res[7], res[6], res[5], res[4],

res[3], res[2], res[1], res[0]);
} else { // two-byte elements

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};
for (i = 0; i < 4; i++) {

res[i] = (sign_ext(x[i],16) < sign_ext(y[i],16)) ? x[i] : y[i];
}
GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Figure 6-33. Parallel Minimum Example

GR r2:

GR r1:

GR r3:

<<<<

pmin2

true false true true

GR r2:

GR r1:

GR r3:

<

pmin1.u

t

<

f

<

t

<

t

<

f

<

f

<

f

<

t



6-146 IA-64 Instruction Reference HP/Intel

pmpy IA-64 Application ISA Guide 1.0

Parallel Multiply

Format: (qp) pmpy2.r r1 = r2, r3 right_form I2
(qp) pmpy2.l r1 = r2, r3 left_form I2

Description: Two signed 16-bit data elements of GR r2 are multiplied by the corresponding two signed 16-bit data ele-
ments of GR r3 as shown in Figure 6-34. The two 32-bit results are placed in GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

if (right_form) {
GR[r1]{31:0} = sign_ext(GR[r2]{15:0}, 16) * sign_ext(GR[r3]{15:0}, 16);
GR[r1]{63:32} = sign_ext(GR[r2]{47:32}, 16) * sign_ext(GR[r3]{47:32}, 16);

} else { // left_form
GR[r1]{31:0} = sign_ext(GR[r2]{31:16}, 16) * sign_ext(GR[r3]{31:16}, 16);
GR[r1]{63:32} = sign_ext(GR[r2]{63:48}, 16) * sign_ext(GR[r3]{63:48}, 16);

}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Figure 6-34. Parallel Multiply Operation

GR r2:

GR r1:

GR r3:

**

pmpy2.r

GR r2:

GR r1:

GR r3:

**

pmpy2.l



HP/Intel IA-64 Instruction Reference 6-147

IA-64 Application ISA Guide 1.0 pmpyshr

Parallel Multiply and Shift Right

Format: (qp) pmpyshr2 r1 = r2, r3, count2 signed_form I1
(qp) pmpyshr2.u r1 = r2, r3, count2 unsigned_form I1

Description: The four 16-bit data elements of GR r2 are multiplied by the corresponding four 16-bit data elements of
GR r3 as shown in Figure 6-35. This multiplication can either be signed (pmpyshr2), or unsigned
(pmpyshr2.u). Each product is then shifted to the right count2 bits, and the least-significant 16-bits of each
shifted product form 4 16-bit results, which are placed in GR r1. A count2 of 0 gives the 16 low bits of the
results, a count2 of 16 gives the 16 high bits of the results. The allowed values for count2 are given in
Table 6-39.

Operation: if (PR[qp]) {
check_target_register(r1);
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};
for (i = 0; i < 4; i++) {

if (unsigned_form) // unsigned multiplication
temp[i] = zero_ext(x[i], 16) * zero_ext(y[i], 16);

else // signed multiplication
temp[i] = sign_ext(x[i], 16) * sign_ext(y[i], 16);

res[i] = temp[i]{(count2 + 15):count2};
}

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Table 6-39. PMPYSHR Shift Options

count2 Selected Bit Field from each 32-bit Product
0 15:0

7 22:7

15 30:15

16 31:16

Figure 6-35. Parallel Multiply and Shift Right Operation

GR r2:

GR r1:

GR r3:

****

pmpyshr2

32-bit

shift right
count2 bits

products

16-bit
source
elements

16-bit
result
elements



6-148 IA-64 Instruction Reference HP/Intel

popcnt IA-64 Application ISA Guide 1.0

Population Count

Format: (qp) popcnt r1 = r3 I9

Description: The number of bits in GR r3 having the value 1 is counted, and the resulting sum is placed in GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

res = 0;
// Count up all the one bits
for (i = 0; i < 64; i++) {

res += GR[r3]{i};
}

GR[r1] = res;
GR[r1].nat = GR[r3].nat;

}



HP/Intel IA-64 Instruction Reference 6-149

IA-64 Application ISA Guide 1.0 psad

Parallel Sum of Absolute Difference

Format: (qp) psad1 r1 = r2, r3 I2

Description: The unsigned 8-bit elements of GR r2 are subtracted from the unsigned 8-bit elements of GR r3. The abso-
lute value of each difference is accumulated across the elements and placed in GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

GR[r1] = 0;
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
if (temp[i] < 0)

temp[i] = -temp[i];
GR[r1] += temp[i];

}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}

Figure 6-36. Parallel Sum of Absolute Difference Example

psad1

GR r2:

GR r1:

GR r3:

---- ----

abs abs abs abs abs abs abs abs

+ + + +

+

+

+



6-150 IA-64 Instruction Reference HP/Intel

pshl IA-64 Application ISA Guide 1.0

Parallel Shift Left

Format: (qp) pshl2 r1 = r2, r3 two_byte_form, variable_form I7
(qp) pshl2 r1 = r2, count5 two_byte_form, fixed_form I8
(qp) pshl4 r1 = r2, r3 four_byte_form, variable_form I7
(qp) pshl4 r1 = r2, count5 four_byte_form, fixed_form I8

Description: The data elements of GR r2 are each independently shifted to the left by the scalar shift count in GR r3, or
in the immediate field count5. The low-order bits of each element are filled with zeros. The shift count is
interpreted as unsigned. Shift counts greater than 15 (for 16-bit quantities) or 31 (for 32-bit quantities)
yield all zero results. The results are placed in GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

shift_count = (variable_form ? GR[r3] : count5);
tmp_nat = (variable_form ? GR[r3].nat : 0);

if (two_byte_form) { // two_byte_form
if (shift_count u> 16)

shift_count = 16;
GR[r1]{15:0} = GR[r2]{15:0} << shift_count;
GR[r1]{31:16} = GR[r2]{31:16} << shift_count;
GR[r1]{47:32} = GR[r2]{47:32} << shift_count;
GR[r1]{63:48} = GR[r2]{63:48} << shift_count;

} else { // four_byte_form
if (shift_count u> 32)

shift_count = 32;
GR[r1]{31:0} = GR[r2]{31:0} << shift_count;
GR[r1]{63:32} = GR[r2]{63:32} << shift_count;

}

GR[r1].nat = GR[r2].nat || tmp_nat;
}

Figure 6-37. Parallel Shift Left Example

GR r2:

GR r1:

shift left

pshl2

0

0

0

0

0 0 0 0

GR r2:

GR r1:

pshl4

0

0

0 0



HP/Intel IA-64 Instruction Reference 6-151

IA-64 Application ISA Guide 1.0 pshladd

Parallel Shift Left and Add

Format: (qp) pshladd2 r1 = r2, count2, r3 A10

Description: The four signed 16-bit data elements of GR r2 are each independently shifted to the left by count2 bits
(shifting zeros into the low-order bits), and added to the four signed 16-bit data elements of GR r3. Both
the left shift and the add operations are saturating: if the result of either the shift or the add is not repre-
sentable as a signed 16-bit value, the final result is saturated. The four signed 16-bit results are placed in
GR r1. The first operand can be shifted by 1, 2 or 3 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);

for (i = 0; i < 4; i++) {
temp[i] = sign_ext(x[i], 16) << count2;

if (temp[i] > max)
res[i] = max;

else if (temp[i] < min)
res[i] = min;

else {
res[i] = temp[i] + sign_ext(y[i], 16);
if (res[i] > max)

res[i] = max;
if (res[i] < min)

res[i] = min;
}

}

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}



6-152 IA-64 Instruction Reference HP/Intel

pshr IA-64 Application ISA Guide 1.0

Parallel Shift Right

Format: (qp) pshr2 r1 = r3, r2 signed_form, two_byte_form, variable_form I5
(qp) pshr2 r1 = r3, count5 signed_form, two_byte_form, fixed_form I6
(qp) pshr2.u r1 = r3, r2 unsigned_form, two_byte_form, variable_form I5
(qp) pshr2.u r1 = r3, count5 unsigned_form, two_byte_form, fixed_form I6
(qp) pshr4 r1 = r3, r2 signed_form, four_byte_form, variable_form I5
(qp) pshr4 r1 = r3, count5 signed_form, four_byte_form, fixed_form I6
(qp) pshr4.u r1 = r3, r2 unsigned_form, four_byte_form, variable_form I5
(qp) pshr4.u r1 = r3, count5 unsigned_form, four_byte_form, fixed_form I6

Description: The data elements of GR r3 are each independently shifted to the right by the scalar shift count in GR r2,
or in the immediate field count5. The high-order bits of each element are filled with either the initial value
of the sign bits of the data elements in GR r3 (arithmetic shift) or zeros (logical shift). The shift count is
interpreted as unsigned. Shift counts greater than 15 (for 16-bit quantities) or 31 (for 32-bit quantities)
yield all zero or all one results depending on the initial values of the sign bits of the data elements in GR r3
and whether a signed or unsigned shift is done. The results are placed in GR r1.

Operation: if (PR[qp]) {
check_target_register(r1);

shift_count = (variable_form ? GR[r2] : count5);
tmp_nat = (variable_form ? GR[r2].nat : 0);

if (two_byte_form) { // two_byte_form
if (shift_count u> 16)

shift_count = 16;
if (unsigned_form) { // unsigned shift

GR[r1]{15:0} = shift_right_unsigned(zero_ext(GR[r3]{15:0}, 16),
shift_count);

GR[r1]{31:16} = shift_right_unsigned(zero_ext(GR[r3]{31:16}, 16),
shift_count);

GR[r1]{47:32} = shift_right_unsigned(zero_ext(GR[r3]{47:32}, 16),
shift_count);

GR[r1]{63:48} = shift_right_unsigned(zero_ext(GR[r3]{63:48}, 16),
shift_count);

} else { // signed shift
GR[r1]{15:0} = shift_right_signed(sign_ext(GR[r3]{15:0}, 16),

shift_count);
GR[r1]{31:16} = shift_right_signed(sign_ext(GR[r3]{31:16}, 16),

shift_count);
GR[r1]{47:32} = shift_right_signed(sign_ext(GR[r3]{47:32}, 16),

shift_count);
GR[r1]{63:48} = shift_right_signed(sign_ext(GR[r3]{63:48}, 16),

shift_count);
}

} else { // four_byte_form
if (shift_count > 32)

shift_count = 32;
if (unsigned_form) { // unsigned shift

GR[r1]{31:0} = shift_right_unsigned(zero_ext(GR[r3]{31:0}, 32),
shift_count);

GR[r1]{63:32} = shift_right_unsigned(zero_ext(GR[r3]{63:32}, 32),
shift_count);

} else { // signed shift
GR[r1]{31:0} = shift_right_signed(sign_ext(GR[r3]{31:0}, 32),

shift_count);
GR[r1]{63:32} = shift_right_signed(sign_ext(GR[r3]{63:32}, 32),

shift_count);
}

}

GR[r1].nat = GR[r3].nat || tmp_nat;
}



HP/Intel IA-64 Instruction Reference 6-153

IA-64 Application ISA Guide 1.0 pshradd

Parallel Shift Right and Add

Format: (qp) pshradd2 r1 = r2, count2, r3 A10

Description: The four signed 16-bit data elements of GR r2 are each independently shifted to the right by count2 bits,
and added to the four signed 16-bit data elements of GR r3. The right shift operation fills the high-order
bits of each element with the initial value of the sign bits of the data elements in GR r2. The add operation
is performed with signed saturation. The four signed 16-bit results of the add are placed in GR r1. The first
operand can be shifted by 1, 2 or 3 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);

for (i = 0; i < 4; i++) {
temp[i] = shift_right_signed(sign_ext(x[i], 16), count2);

res[i] = temp[i] + sign_ext(y[i], 16);
if (res[i] > max)

res[i] = max;
if (res[i] < min)

res[i] = min;
}

GR[r1] = concatenate4(res[3], res[2], res[1], res[0]);
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}



6-154 IA-64 Instruction Reference HP/Intel

psub IA-64 Application ISA Guide 1.0

Parallel Subtract

Format: (qp) psub1 r1 = r2, r3 one_byte_form, modulo_form A9
(qp) psub1.sss r1 = r2, r3 one_byte_form, sss_saturation_form A9
(qp) psub1.uus r1 = r2, r3 one_byte_form, uus_saturation_form A9
(qp) psub1.uuu r1 = r2, r3 one_byte_form, uuu_saturation_form A9
(qp) psub2 r1 = r2, r3 two_byte_form, modulo_form A9
(qp) psub2.sss r1 = r2, r3 two_byte_form, sss_saturation_form A9
(qp) psub2.uus r1 = r2, r3 two_byte_form, uus_saturation_form A9
(qp) psub2.uuu r1 = r2, r3 two_byte_form, uuu_saturation_form A9
(qp) psub4 r1 = r2, r3 four_byte_form, modulo_form A9

Description: The sets of elements from the two source operands are subtracted, and the results placed in GR r1.

If the difference between two elements cannot be represented in the result element and a saturation compl-
eter is specified, then saturation clipping is performed. The saturation can either be signed or unsigned, as
given in Table 6-40. If the difference of two elements is larger than the upper limit value, the result is the
upper limit value. If it is smaller than the lower limit value, the result is the lower limit value. The satura-
tion limits are given in Table 6-41.

Table 6-40. Parallel Subtract Saturation Completers

Completer
Result r1 Treated 

as
Source r2 Treated 

as
Source r3 Treated 

as
sss signed signed signed

uus unsigned unsigned signed

uuu unsigned unsigned unsigned

Table 6-41. Parallel Subtract Saturation Limits

Size
Element 
Width

Result r1 Signed Result r1 Unsigned

Upper 
Limit

Lower 
Limit

Upper 
Limit

Lower 
Limit

1 8 bit 0x7f 0x80 0xff 0x00

2 16 bit 0x7fff 0x8000 0xffff 0x0000

Figure 6-38. Parallel Subtract Example

GR r2:

GR r1:

GR r3:

----

psubl psub2

GR r2:

GR r1:

GR r3:

---- ----



HP/Intel IA-64 Instruction Reference 6-155

IA-64 Application ISA Guide 1.0 psub

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (sss_saturation_form) { // sss_saturation_form
max = sign_ext(0x7f, 8);
min = sign_ext(0x80, 8);
for (i = 0; i < 8; i++) {

temp[i] = sign_ext(x[i], 8) - sign_ext(y[i], 8);
}

} else if (uus_saturation_form) { // uus_saturation_form
max = 0xff;
min = 0x00;
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - sign_ext(y[i], 8);
}

} else if (uuu_saturation_form) { // uuu_saturation_form
max = 0xff;
min = 0x00;
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
}

} else { // modulo_form
for (i = 0; i < 8; i++) {

temp[i] = zero_ext(x[i], 8) - zero_ext(y[i], 8);
}

}

if (sss_saturation_form || uus_saturation_form || uuu_saturation_form) {
for (i = 0; i < 8; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}

GR[r1] = concatenate8(temp[7], temp[6], temp[5], temp[4],
temp[3], temp[2], temp[1], temp[0]);

} else if (two_byte_form) { // two-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (sss_saturation_form) { // sss_saturation_form
max = sign_ext(0x7fff, 16);
min = sign_ext(0x8000, 16);
for (i = 0; i < 4; i++) {

temp[i] = sign_ext(x[i], 16) - sign_ext(y[i], 16);
}

} else if (uus_saturation_form) { // uus_saturation_form
max = 0xffff;
min = 0x0000;
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) - sign_ext(y[i], 16);
}

} else if (uuu_saturation_form) { // uuu_saturation_form
max = 0xffff;



6-156 IA-64 Instruction Reference HP/Intel

psub IA-64 Application ISA Guide 1.0

min = 0x0000;
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
}

} else { // modulo_form
for (i = 0; i < 4; i++) {

temp[i] = zero_ext(x[i], 16) - zero_ext(y[i], 16);
}

}

if (sss_saturation_form || uus_saturation_form || uuu_saturation_form) {
for (i = 0; i < 4; i++) {

if (temp[i] > max)
temp[i] = max;

if (temp[i] < min)
temp[i] = min;

}
}

GR[r1] = concatenate4(temp[3], temp[2], temp[1], temp[0]);
} else { // four-byte elements

x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

for (i = 0; i < 2; i++) { // modulo_form
temp[i] = zero_ext(x[i], 32) - zero_ext(y[i], 32);

}

GR[r1] = concatenate2(temp[1], temp[0]);
}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}



HP/Intel IA-64 Instruction Reference 6-157

IA-64 Application ISA Guide 1.0 rum

Reset User Mask

Format: (qp) rum imm24 M44

Description: The complement of the imm24 operand is ANDed with the user mask (PSR{5:0}) and the result is placed
in the user mask.

PSR.up is only cleared if the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is not
modified.

Operation: if (PR[qp]) {
if (is_reserved_field(PSR_TYPE, PSR_UM, imm24))

reserved_register_field_fault();

if (imm24{1}) PSR{1} = 0;
if (imm24{2} && PSR.sp == 0) //non-secure perf monitor

PSR{2} = 0;
if (imm24{3}) PSR{3} = 0;
if (imm24{4}) PSR{4} = 0;
if (imm24{5}) PSR{5} = 0;

}



6-158 IA-64 Instruction Reference HP/Intel

setf IA-64 Application ISA Guide 1.0

Set Floating-Point Value, Exponent, or Significand

Format: (qp) setf.s f1 = r2 single_form M18
(qp) setf.d f1 = r2 double_form M18
(qp) setf.exp f1 = r2 exponent_form M18
(qp) setf.sig f1 = r2 significand_form M18

Description: In the single and double forms, GR r2 is treated as a single precision (in the single_form) or double preci-
sion (in the double_form) memory representation, converted into floating-point register format, and
placed in FR f1.

In the exponent_form, bits 16:0 of GR r2 are copied to the exponent field of FR f1 and bit 17 of GR r2 is
copied to the sign bit of FR f1. The significand field of FR f1 is set to one (0x800...000). 

In the significand_form, the value in GR r2 is copied to the significand field of FR f1. 

The exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field of FR f1 is
set to positive (0). 

For all forms, if the NaT bit corresponding to r2 is equal to 1, FR f1 is set to NaTVal instead of the com-
puted result.

Figure 6-39. Function of setf.exp

Figure 6-40. Function of setf.sig

1000exponentsFR f1

GR r1

018 17

000. . .

63

significand0x1003E0FR f1

GR r1

063



HP/Intel IA-64 Instruction Reference 6-159

IA-64 Application ISA Guide 1.0 setf

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, 0);

if (!GR[r2].nat) {
if (single_form)

FR[f1] = fp_mem_to_fr_format(GR[r2], 4, 0);
else if (double_form)

FR[f1] = fp_mem_to_fr_format(GR[r2], 8, 0);
else if (significand_form) {

FR[f1].significand = GR[r2];
FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = 0;

} else { // exponent_form
FR[f1].significand = 0x8000000000000000;
FR[f1].exp = GR[r2]{16:0};
FR[f1].sign = GR[r2]{17};

}
} else

FR[f1] = NATVAL;

fp_update_psr(f1);
}



6-160 IA-64 Instruction Reference HP/Intel

shl IA-64 Application ISA Guide 1.0

Shift Left

Format: (qp) shl r1= r2, r3 I7
(qp) shl r1 = r2, count6 pseudo-op of: (qp) dep.z r1 = r2, count6, 64–count6

Description: The value in GR r2 is shifted to the left, with the vacated bit positions filled with zeroes, and placed in GR
r1. The number of bit positions to shift is specified by the value in GR r3 or by an immediate value count6.
The shift count is interpreted as an unsigned number. If the value in GR r3 is greater than 63, then the
result is all zeroes.

For the immediate form, See “Deposit” on page 6-27.

Operation: if (PR[qp]) {
check_target_register(r1);

count = GR[r3];
GR[r1] = (count > 63) ? 0: GR[r2] << count;

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}



HP/Intel IA-64 Instruction Reference 6-161

IA-64 Application ISA Guide 1.0 shladd

Shift Left and Add

Format: (qp) shladd r1 = r2, count2, r3 A2

Description: The first source operand is shifted to the left by count2 bits and then added to the second source operand
and the result placed in GR r1. The first operand can be shifted by 1, 2, 3, or 4 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = (GR[r2] << count2) + GR[r3];
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}



6-162 IA-64 Instruction Reference HP/Intel

shladdp4 IA-64 Application ISA Guide 1.0

Shift Left and Add Pointer

Format: (qp) shladdp4 r1 = r2, count2, r3 A2

Description: The first source operand is shifted to the left by count2 bits and then is added to the second source oper-
and. The upper 32 bits of the result are forced to zero, and then bits {31:30} of GR r3 are copied to bits
{62:61} of the result. This result is placed in GR r1. The first operand can be shifted by 1, 2, 3, or 4 bits.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_res = (GR[r2] << count2) + GR[r3];
tmp_res = zero_ext(tmp_res{31:0}, 32);
tmp_res{62:61} = GR[r3]{31:30};
GR[r1] = tmp_res;
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Figure 6-41. Shift Left and Add Pointer

GR r3:

GR r1:

GR r2:

+

00



HP/Intel IA-64 Instruction Reference 6-163

IA-64 Application ISA Guide 1.0 shr

Shift Right

Format: (qp) shr r1 = r3, r2 signed_form I5
(qp) shr.u r1 = r3, r2 unsigned_form I5
(qp) shr r1 = r3, count6 pseudo-op of: (qp) extr r1 = r3, count6, 64–count6
(qp) shr.u r1 = r3, count6 pseudo-op of: (qp) extr.u r1 = r3, count6, 64–count6

Description: The value in GR r3 is shifted to the right and placed in GR r1. In the signed_form the vacated bit positions
are filled with bit 63 of GR r3; in the unsigned_form the vacated bit positions are filled with zeroes. The
number of bit positions to shift is specified by the value in GR r2 or by an immediate value count6. The
shift count is interpreted as an unsigned number. If the value in GR r2 is greater than 63, then the result is
all zeroes (for the unsigned_form, or if bit 63 of GR r3 was 0) or all ones (for the signed_form if bit 63 of
GR r3 was 1).

If the .u completer is specified, the shift is unsigned (logical), otherwise it is signed (arithmetic).

For the immediate forms, See “Extract” on page 6-28.

Operation: if (PR[qp]) {
check_target_register(r1);

if (signed_form) {
count = (GR[r2] > 63) ? 63 : GR[r2];
GR[r1] = shift_right_signed(GR[r3], count);

} else {
count = GR[r2];
GR[r1] = (count > 63) ? 0 : shift_right_unsigned(GR[r3], count);

}

GR[r1].nat = GR[r2].nat || GR[r3].nat;
}



6-164 IA-64 Instruction Reference HP/Intel

shrp IA-64 Application ISA Guide 1.0

Shift Right Pair

Format: (qp) shrp r1 = r2, r3, count6 I10

Description: The two source operands, GR r2 and GR r3, are concatenated to form a 128-bit value and shifted to the
right count6 bits. The least-significant 64 bits of the result are placed in GR r1.

The immediate value count6 can be any number in the range 0 to 63.

Operation: if (PR[qp]) {
check_target_register(r1);

temp1 = shift_right_unsigned(GR[r3], count6);
temp2 = GR[r2] << (64 - count6);
GR[r1] = zero_ext(temp1, 64 - count6) | temp2;
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}

Figure 6-42. Shift Right Pair

GR r3:

GR r1:

GR r2:



HP/Intel IA-64 Instruction Reference 6-165

IA-64 Application ISA Guide 1.0 srlz

Serialize

Format: (qp) srlz.i M24

Description: Instruction serialization (srlz.i) ensures:

• prior modifications to processor register resources that affect fetching of subsequent instruction
groups are observed,

• prior modifications to processor register resources that affect subsequent execution or data memory
accesses are observed,

• prior memory synchronization (sync.i) operations have taken effect on the local processor instruc-
tion cache,

• subsequent instruction group fetches are re-initiated after srlz.i completes.

The srlz.i instruction must be in an instruction group after the instruction group containing the opera-
tion that is to be serialized. Operations dependent on the serialization must be in an instruction group after
the instruction group containing the srlz.i.

Operation: if (PR[qp]) {
instruction_serialize();

}



6-166 IA-64 Instruction Reference HP/Intel

st IA-64 Application ISA Guide 1.0

Store

Format: (qp) stsz.sttype.sthint [r3] = r2 normal_form, no_base_update_form M4
(qp) stsz.sttype.sthint [r3] = r2, imm9 normal_form, imm_base_update_form M5
(qp) st8.spill.sthint [r3] = r2 spill_form, no_base_update_form M4
(qp) st8.spill.sthint [r3] = r2, imm9 spill_form, imm_base_update_form M5

Description: A value consisting of the least significant sz bytes of the value in GR r2 is written to memory starting at
the address specified by the value in GR r3. The values of the sz completer are given in Table 6-26 on
page 6-101. The sttype completer specifies special store operations, which are described in Table 6-42. If
the NaT bit corresponding to GR r3 is 1 (or in the normal_form, if the NaT bit corresponding to GR r2 is
1), a Register NaT Consumption fault is taken.

In the spill_form, an 8-byte value is stored, and the NaT bit corresponding to GR r2 is copied to a bit in the
UNAT application register. This instruction is used for spilling a register/NaT pair. See “Control Specula-
tion” on page 4-10 for details.

In the imm_base_update form, the value in GR r3 is added to a signed immediate value (imm9) and the
result is placed back in GR r3. This base register update is done after the store, and does not affect the
store address, nor the value stored (for the case where r2 and r3 specify the same register).

For more details on ordered stores see “Memory Access Ordering” on page 4-18 .

The ALAT is queried using the physical memory address and the access size, and all overlapping entries
are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values of the sthint
completer are given in Table 6-43. See “Memory Hierarchy Control and Consistency” on page 4-16.

Table 6-42. Store Types

sttype
Completer

Interpretation Special Store Operation

none Normal store

rel Ordered store
An ordered store is performed with 
release semantics.

Table 6-43. Store Hints

sthint Completer Interpretation
none Temporal locality, level 1

nta Non-temporal locality, all levels



HP/Intel IA-64 Instruction Reference 6-167

IA-64 Application ISA Guide 1.0 st

Operation: if (PR[qp]) {
size = spill_form ? 8 : sz;
otype = (sttype == ‘rel’) ? RELEASE : UNORDERED;

if (imm_base_update_form)
check_target_register( r3);

if (GR[ r3].nat || (normal_form && GR[ r2].nat))
register_nat_consumption_fault(WRITE);

paddr = tlb_translate(GR[ r3], size, WRITE, PSR.cpl, &mattr,
&tmp_unused);

if (spill_form && GR[ r2].nat)
natd_gr_write(GR[ r2], paddr, size, UM.be, mattr, otype, sthint);

else
mem_write(GR[ r2], paddr, size, UM.be, mattr, otype, sthint);

if (spill_form) {
bit_pos = GR[ r3]{8:3};
AR[UNAT]{bit_pos} = GR[ r2].nat;

}

alat_inval_multiple_entries(paddr, size);

if (imm_base_update_form) {
GR[r3] = GR[ r3] + sign_ext( imm9, 9);
GR[r3].nat = 0;

}
}



6-168 IA-64 Instruction Reference HP/Intel

stf IA-64 Application ISA Guide 1.0

Floating-Point Store

Format: (qp) stffsz.sthint [r3] = f2 normal_form, no_base_update_form M9
(qp) stffsz.sthint [r3] = f2, imm9 normal_form, imm_base_update_form M10
(qp) stf8.sthint [r3] = f2 integer_form, no_base_update_form M9
(qp) stf8.sthint [r3] = f2, imm9 integer_form, imm_base_update_form M10
(qp) stf.spill.sthint [r3] = f2 spill_form, no_base_update_form M9
(qp) stf.spill.sthint [r3] = f2, imm9 spill_form, imm_base_update_form M10

Description: A value, consisting of fsz bytes, is generated from the value in FR f2 and written to memory starting at the
address specified by the value in GR r3. In the normal_form, the value in FR f2 is converted to the memory
format and then stored. In the integer_form, the significand of FR f2 is stored. The values of the fsz compl-
eter are given in Table 6-29 on page 6-105. In the normal_form or the integer_form, if the NaT bit corre-
sponding to GR r3 is 1 or if FR f2 contains NaTVal, a Register NaT Consumption fault is taken. See “Data
Types and Formats” on page 5-1 for details on conversion from floating-point register format.

In the spill_form, a 16-byte value from FR f2 is stored without conversion. This instruction is used for
spilling a register. See “Control Speculation” on page 4-10 for details.

In the imm_base_update form, the value in GR r3 is added to a signed immediate value (imm9) and the
result is placed back in GR r3. This base register update is done after the store, and does not affect the
store address.

The ALAT is queried using the physical memory address and the access size, and all overlapping entries
are invalidated.

The value of the sthint completer specifies the locality of the memory access. The values of the sthint
completer are given in Table 6-43 on page 6-166. See “Memory Hierarchy Control and Consistency” on
page 4-16.

Operation: if (PR[qp]) {
if (imm_base_update_form)

check_target_register(r3);
if (tmp_isrcode = fp_reg_disabled(f2, 0, 0, 0))

disabled_fp_register_fault(tmp_isrcode, WRITE);

if (GR[r3].nat || (!spill_form && (FR[f2] == NATVAL)))
register_nat_consumption_fault(WRITE);

size = spill_form ? 16 : (integer_form ? 8 : fsz);

paddr = tlb_translate(GR[r3], size, WRITE, PSR.cpl, &mattr, &tmp_unused);
val = fp_fr_to_mem_format(FR[f2], size, integer_form);
mem_write(val, paddr, size, UM.be, mattr, UNORDERED, sthint);

alat_inval_multiple_entries(paddr, size);

if (imm_base_update_form) {
GR[r3] = GR[r3] + sign_ext(imm9, 9);
GR[r3].nat = 0;

}
}



HP/Intel IA-64 Instruction Reference 6-169

IA-64 Application ISA Guide 1.0 sub

Subtract

Format: (qp) sub r1 = r2, r3 register_form A1
(qp) sub r1 = r2, r3, 1 minus1_form, register_form A1
(qp) sub r1 = imm8, r3 imm8_form A3

Description: The second source operand (and an optional constant 1) are subtracted from the first operand and the
result placed in GR r1. In the register form the first operand is GR r2; in the immediate form the first oper-
and is taken from the sign extended imm8 encoding field.

The minus1_form is available only in the register_form (although the equivalent effect can be achieved by
adjusting the immediate).

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

if (minus1_form)
GR[r1] = tmp_src - GR[r3] - 1;

else
GR[r1] = tmp_src - GR[r3];

GR[r1].nat = tmp_nat || GR[r3].nat;
}



6-170 IA-64 Instruction Reference HP/Intel

sum IA-64 Application ISA Guide 1.0

Set User Mask

Format: (qp) sum imm24 M44

Description: The imm24 operand is ORed with the user mask (PSR{5:0}) and the result is placed in the user mask.

PSR.up can only be set if the secure performance monitor bit (PSR.sp) is zero. Otherwise PSR.up is not
modified.

Operation: if (PR[qp]) {
if (is_reserved_field(PSR_TYPE, PSR_UM, imm24))

reserved_register_field_fault();

if (imm24{1}) PSR{1} = 1;
if (imm24{2} && PSR.sp == 0) //non-secure perf monitor

PSR{2} = 1;
if (imm24{3}) PSR{3} = 1;
if (imm24{4}) PSR{4} = 1;
if (imm24{5}) PSR{5} = 1;

}



HP/Intel IA-64 Instruction Reference 6-171

IA-64 Application ISA Guide 1.0 sxt

Sign Extend

Format: (qp) sxtxsz r1 = r3 I29

Description: The value in GR r3 is sign extended from the bit position specified by xsz and the result is placed in GR r1.
The mnemonic values for xsz are given in Table 6-44.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = sign_ext(GR[r3],xsz * 8);
GR[r1].nat = GR[r3].nat;

}

Table 6-44. xsz Mnemonic Values

xsz Mnemonic Bit Position
1 7

2 15

4 31



6-172 IA-64 Instruction Reference HP/Intel

sync IA-64 Application ISA Guide 1.0

Memory Synchronization

Format: (qp) sync.i M24

Description: sync.i ensures that when previously initiated Flush Cache (fc) operations issued by the local processor
become visible to local data memory references, prior Flush Cache operations are also observed by the
local processor instruction fetch stream. sync.i also ensures that at the time previously initiated Flush
Cache (fc) operations are observed on a remote processor by data memory references they are also
observed by instruction memory references on the remote processor. sync.i is ordered with respect to all
cache flush operations as observed by another processor. A sync.i and a previous fc must be in separate
instruction groups. If semantically required, the programmer must explicitly insert ordered data references
(acquire, release or fence type) to appropriately constrain sync.i (and hence fc) visibility to the data
stream on other processors.

sync.i is used to maintain an ordering relationship between instruction and data caches on local and
remote processors. An instruction serialize operation be used to ensure synchronization initiated by
sync.i on the local processor has been observed by a given point in program execution.

An example of self-modifying code (local processor):

st [L1] = data //store into local instruction stream
fc L1 //flush stale datum from instruction/data cache
;; //require instruction boundary between fc and sync.i
sync.i //ensure local and remote data/inst caches are synchronized
;;
srlz.i //ensure sync has been observed by the local processor,
;; //ensure subsequent instructions observe modified memory

L1: target //instruction modified

Operation: if (PR[qp]) {
instruction_synchronize();

}



HP/Intel IA-64 Instruction Reference 6-173

IA-64 Application ISA Guide 1.0 tbit

Test Bit

Format: (qp) tbit.trel.ctype p1, p2 = r3, pos6 I16

Description: The bit specified by the pos6 immediate is selected from GR r3. The selected bit forms a single bit result
either complemented or not depending on the trel completer. This result is written to the two predicate reg-
ister destinations p1 and p2. The way the result is written to the destinations is determined by the compare
type specified by ctype. See the Compare instruction and Table 6-10 on page 6-19.

The trel completer values .nz and .z indicate non-zero and zero sense of the test. For normal and unc types,
only the .z value is directly implemented in hardware; the .nz value is actually a pseudo-op. For it, the
assembler simply switches the predicate target specifiers and uses the implemented relation. For the paral-
lel types, both relations are implemented in hardware.

If the two predicate register destinations are the same (p1 and p2 specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare type is
unc.

Table 6-45. Test Bit Relations for Normal and unc tbits

trel Test Relation Pseudo-op of
nz selected bit == 1 z p1 ↔ p2

z selected bit == 0

Table 6-46. Test Bit Relations for Parallel tbits

trel Test Relation
nz selected bit == 1

z selected bit == 0



6-174 IA-64 Instruction Reference HP/Intel

tbit IA-64 Application ISA Guide 1.0

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (trel == ‘nz’) // ‘nz’ - test for 1
tmp_rel = GR[ r3]{ pos6};

else // ‘z’ - test for 0
tmp_rel = !GR[ r3]{ pos6};

switch ( ctype) {
case ‘and’: // and-type compare

if (GR[ r3].nat || !tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (!GR[ r3].nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (!GR[ r3].nat && tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

if (GR[ r3].nat) {
PR[p1] = 0;
PR[p2] = 0;

} else {
PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;

}
break;

}
} else {

if ( ctype == ‘unc’) {
if ( p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}



HP/Intel IA-64 Instruction Reference 6-175

IA-64 Application ISA Guide 1.0 tnat

Test NaT

Format: (qp) tnat.trel.ctype p1, p2 = r3 I17

Description: The NaT bit from GR r3 forms a single bit result, either complemented or not depending on the trel com-
pleter. This result is written to the two predicate register destinations, p1 and p2. The way the result is writ-
ten to the destinations is determined by the compare type specified by ctype. See the Compare instruction
and Table 6-10 on page 6-19.

The trel completer values .nz and .z indicate non-zero and zero sense of the test. For normal and unc types,
only the .z value is directly implemented in hardware; the .nz value is actually a pseudo-op. For it, the
assembler simply switches the predicate target specifiers and uses the implemented relation. For the paral-
lel types, both relations are implemented in hardware.

If the two predicate register destinations are the same (p1 and p2 specify the same predicate register), the
instruction will take an Illegal Operation fault, if the qualifying predicate is set, or if the compare type is
unc.

Table 6-47. Test NaT Relations for Normal and unc tnats

trel Test Relation Pseudo-op of
nz selected bit == 1 z p1 ↔ p2

z selected bit == 0

Table 6-48. Test NaT Relations for Parallel tnats

trel Test Relation
nz selected bit == 1

z selected bit == 0



6-176 IA-64 Instruction Reference HP/Intel

tnat IA-64 Application ISA Guide 1.0

Operation: if (PR[qp]) {
if (p1 == p2)

illegal_operation_fault();

if (trel == ‘nz’) // ‘nz’ - test for 1
tmp_rel = GR[ r3].nat;

else // ‘z’ - test for 0
tmp_rel = !GR[ r3].nat;

switch ( ctype) {
case ‘and’: // and-type compare

if (!tmp_rel) {
PR[p1] = 0;
PR[p2] = 0;

}
break;

case ‘or’: // or-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 1;

}
break;

case ‘or.andcm’: // or.andcm-type compare
if (tmp_rel) {

PR[p1] = 1;
PR[p2] = 0;

}
break;

case ‘unc’: // unc-type compare
default: // normal compare

PR[p1] = tmp_rel;
PR[p2] = !tmp_rel;
break;

}
} else {

if ( ctype == ‘unc’) {
if ( p1 == p2)

illegal_operation_fault();
PR[p1] = 0;
PR[p2] = 0;

}
}



HP/Intel IA-64 Instruction Reference 6-177

IA-64 Application ISA Guide 1.0 unpack

Unpack

Format: (qp) unpack1.h r1 = r2, r3 one_byte_form, high_form I2
(qp) unpack2.h r1 = r2, r3 two_byte_form, high_form I2
(qp) unpack4.h r1 = r2, r3 four_byte_form, high_form I2
(qp) unpack1.l r1 = r2, r3 one_byte_form, low_form I2
(qp) unpack2.l r1 = r2, r3 two_byte_form, low_form I2
(qp) unpack4.l r1 = r2, r3 four_byte_form, low_form I2

Description: The data elements of GR r2 and r3 are unpacked, and the result placed in GR r1. In the high_form, the
most significant elements of each source register are selected, while in the low_form the least significant
elements of each source register are selected. Elements are selected alternately from the source registers.



6-178 IA-64 Instruction Reference HP/Intel

unpack IA-64 Application ISA Guide 1.0

Figure 6-43. Unpack Operation

GR r2:

GR r1:

GR r3:

unpack1.h

GR r2:

GR r1:

GR r3:

GR r2:

GR r1:

GR r3:

GR r2:

GR r1:

GR r3:

unpack1.l

GR r2:

GR r1:

GR r3:

unpack2.h

unpack2.l

GR r2:

GR r1:

GR r3:

unpack4.h

unpack4.l



HP/Intel IA-64 Instruction Reference 6-179

IA-64 Application ISA Guide 1.0 unpack

Operation: if (PR[qp]) {
check_target_register(r1);

if (one_byte_form) { // one-byte elements
x[0] = GR[r2]{7:0}; y[0] = GR[r3]{7:0};
x[1] = GR[r2]{15:8}; y[1] = GR[r3]{15:8};
x[2] = GR[r2]{23:16}; y[2] = GR[r3]{23:16};
x[3] = GR[r2]{31:24}; y[3] = GR[r3]{31:24};
x[4] = GR[r2]{39:32}; y[4] = GR[r3]{39:32};
x[5] = GR[r2]{47:40}; y[5] = GR[r3]{47:40};
x[6] = GR[r2]{55:48}; y[6] = GR[r3]{55:48};
x[7] = GR[r2]{63:56}; y[7] = GR[r3]{63:56};

if (high_form)
GR[r1] = concatenate8( x[7], y[7], x[6], y[6],

x[5], y[5], x[4], y[4]);
else

GR[r1] = concatenate8( x[3], y[3], x[2], y[2],
x[1], y[1], x[0], y[0]);

} else if (two_byte_form) { // two-byte elements
x[0] = GR[r2]{15:0}; y[0] = GR[r3]{15:0};
x[1] = GR[r2]{31:16}; y[1] = GR[r3]{31:16};
x[2] = GR[r2]{47:32}; y[2] = GR[r3]{47:32};
x[3] = GR[r2]{63:48}; y[3] = GR[r3]{63:48};

if (high_form)
GR[r1] = concatenate4(x[3], y[3], x[2], y[2]);

else
GR[r1] = concatenate4(x[1], y[1], x[0], y[0]);

} else { // four-byte elements
x[0] = GR[r2]{31:0}; y[0] = GR[r3]{31:0};
x[1] = GR[r2]{63:32}; y[1] = GR[r3]{63:32};

if (high_form)
GR[r1] = concatenate2(x[1], y[1]);

else
GR[r1] = concatenate2(x[0], y[0]);

}
GR[r1].nat = GR[r2].nat || GR[r3].nat;

}



6-180 IA-64 Instruction Reference HP/Intel

xchg IA-64 Application ISA Guide 1.0

Exchange

Format: (qp) xchgsz.ldhint r1 = [r3], r2 M16

Description: A value consisting of sz bytes is read from memory starting at the address specified by the value in GR r3.
The least significant sz bytes of the value in GR r2 are written to memory starting at the address specified
by the value in GR r3. The value read from memory is then zero extended and placed in GR r1 and the
NaT bit corresponding to GR r1 is cleared. The values of the sz completer are given in Table 6-49.

If the address specified by the value in GR r3 is not naturally aligned to the size of the value being
accessed in memory, an Unaligned Data Reference fault is taken independent of the state of the User Mask
alignment checking bit, UM.ac (PSR.ac in the Processor Status Register).

Both read and write access privileges for the referenced page are required. 

The exchange is performed with acquire semantics, i.e., the memory read/write is made visible prior to all
subsequent data memory accesses. 

The memory read and write are guaranteed to be atomic.

The value of the ldhint completer specifies the locality of the memory access. The values of the ldhint
completer are given in Table 6-28 on page 6-102. Locality hints do not affect program functionality and
may be ignored by the implementation. See “Memory Hierarchy Control and Consistency” on page 4-16
for details.

Operation: if (PR[qp]) {
check_target_register(r1, SEMAPHORE);

if (GR[r3].nat || GR[r2].nat)
register_nat_consumption_fault(SEMAPHORE);

paddr = tlb_translate(GR[r3], sz, SEMAPHORE, PSR.cpl, &mattr, &tmp_unused);

if (!ma_supports_semaphores(mattr))
unsupported_data_reference_fault(SEMAPHORE, GR[r3]);

val = mem_xchg(GR[r2], paddr, sz, UM.be, mattr, ACQUIRE, ldhint);

alat_inval_multiple_entries(paddr, sz);

GR[r1] = zero_ext(val, sz * 8);
GR[r1].nat = 0;

}

Table 6-49. Memory Exchange Size

sz Completer Bytes Accessed
1 1 byte

2 2 bytes

4 4 bytes

8 8 bytes



HP/Intel IA-64 Instruction Reference 6-181

IA-64 Application ISA Guide 1.0 xma

Fixed-Point Multiply Add

Format: (qp) xma.l f1 = f3, f4, f2 low_form F2
(qp) xma.lu f1 = f3, f4, f2 pseudo-op of: (qp) xma.l f1 = f3, f4, f2
(qp) xma.h f1 = f3, f4, f2 high_form F2
(qp) xma.hu f1 = f3, f4, f2 high_unsigned_form F2

Description: Two source operands (FR f3 and FR f4) are treated as either signed or unsigned integers and multiplied.
The third source operand (FR f2) is zero extended and added to the product. The upper or lower 64 bits of
the resultant sum are selected and placed in FR f1.

In the high_unsigned_form, the significand fields of FR f3 and FR f4 are treated as unsigned integers and
multiplied to produce a full 128-bit unsigned result. The significand field of FR f2 is zero extended and
added to the product. The most significant 64-bits of the resultant sum are placed in the significand field
of FR f1.

In the high_form, the significand fields of FR f3 and FR f4 are treated as signed integers and multiplied to
produce a full 128-bit signed result. The significand field of FR f2 is zero extended and added to the prod-
uct. The most significant 64-bits of the resultant sum are placed in the significand field of FR f1.

In the other forms, the significand fields of FR f3 and FR f4 are treated as signed integers and multiplied to
produce a full 128-bit signed result. The significand field of FR f2 is zero extended and added to the prod-
uct. The least significant 64-bits of the resultant sum are placed in the significand field of FR f1.

In all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field
of FR f1 is set to positive (0). Note: f1 as an operand is not an integer 1; it is just the register file format’s
1.0 value.

In all forms, if any of FR f3 , FR f4 , or FR f2 is a NaTVal, FR f1 is set to NaTVal instead of the computed
result.

Operation: if (PR[qp]) {
fp_check_target_register(f1);
if (tmp_isrcode = fp_reg_disabled(f1, f2, f3, f4))

disabled_fp_register_fault(tmp_isrcode, 0);

if (fp_is_natval(FR[f2]) || fp_is_natval(FR[f3]) || fp_is_natval(FR[f4])) {
FR[f1] = NATVAL;

} else {
if (low_form || high_form)

tmp_res_128 =
fp_I64_x_I64_to_I128(FR[f3].significand, FR[f4].significand);

else // high_unsigned_form
tmp_res_128 =

fp_U64_x_U64_to_U128(FR[f3].significand, FR[f4].significand);

tmp_res_128 =
fp_U128_add(tmp_res_128, fp_U64_to_U128(FR[f2].significand));

if (high_form || high_unsigned_form)
FR[f1].significand = tmp_res_128.hi;

else // low_form
FR[f1].significand = tmp_res_128.lo;

FR[f1].exponent = FP_INTEGER_EXP;
FR[f1].sign = FP_SIGN_POSITIVE;

}

fp_update_psr(f1);
}



6-182 IA-64 Instruction Reference HP/Intel

xmpy IA-64 Application ISA Guide 1.0

Fixed-Point Multiply

Format: (qp) xmpy.l f1 = f3, f4 pseudo-op of: (qp) xma.l f1 = f3, f4, f0
(qp) xmpy.lu f1 = f3, f4 pseudo-op of: (qp) xma.l f1 = f3, f4, f0
(qp) xmpy.h f1 = f3, f4 pseudo-op of: (qp) xma.h f1 = f3, f4, f0
(qp) xmpy.hu f1 = f3, f4 pseudo-op of: (qp) xma.hu f1 = f3, f4, f0

Description: Two source operands (FR f3 and FR f4) are treated as either signed or unsigned integers and multiplied.
The upper or lower 64 bits of the resultant product are selected and placed in FR f1.

In the high_unsigned_form, the significand fields of FR f3 and FR f4 are treated as unsigned integers and
multiplied to produce a full 128-bit unsigned result. The most significant 64-bits of the resultant product
are placed in the significand field of FR f1.

In the high_form, the significand fields of FR f3 and FR f4 are treated as signed integers and multiplied to
produce a full 128-bit signed result. The most significant 64-bits of the resultant product are placed in the
significand field of FR f1.

In the other forms, the significand fields of FR f3 and FR f4 are treated as signed integers and multiplied to
produce a full 128-bit signed result. The least significant 64-bits of the resultant product are placed in the
significand field of FR f1.

In all forms, the exponent field of FR f1 is set to the biased exponent for 2.063 (0x1003E) and the sign field
of FR f1 is set to positive (0). Note: f1 as an operand is not an integer 1; it is just the register file format’s
1.0 value.

Operation: See “Fixed-Point Multiply Add” on page 6-181.



HP/Intel IA-64 Instruction Reference 6-183

IA-64 Application ISA Guide 1.0 xor

Exclusive Or

Format: (qp) xor r1 = r2, r3 register_form A1
(qp) xor r1 = imm8, r3 imm8_form A3

Description: The two source operands are logically XORed and the result placed in GR r1. In the register_form the first
operand is GR r2; in the imm8_form the first operand is taken from the imm8 encoding field.

Operation: if (PR[qp]) {
check_target_register(r1);

tmp_src = (register_form ? GR[r2] : sign_ext(imm8, 8));
tmp_nat = (register_form ? GR[r2].nat : 0);

GR[r1] = tmp_src ^ GR[r3];
GR[r1].nat = tmp_nat || GR[r3].nat;

}



6-184 IA-64 Instruction Reference HP/Intel

zxt IA-64 Application ISA Guide 1.0

Zero Extend

Format: (qp) zxtxsz r1 = r3 I29

Description: The value in GR r3 is zero extended above the bit position specified by xsz and the result is placed in GR
r1. The mnemonic values for xsz are given in Table 6-44 on page 6-171.

Operation: if (PR[qp]) {
check_target_register(r1);

GR[r1] = zero_ext(GR[r3],xsz * 8);
GR[r1].nat = GR[r3].nat;

}



HP/Intel Instruction Sequencing Considerations A-1

IA-64 Application ISA Guide 1.0

A Instruction Sequencing Considerations

Instruction execution consists of four phases:

1. Read the instruction from memory (fetch)

2. Read architectural state, if necessary (read)

3. Perform the specified operation (execute)

4. Update architectural state, if necessary (update).

An instruction group is a sequence of instructions starting at a given bundle address and slot number and including all
instructions at sequentially increasing slot numbers and bundle addresses up to the first stop or taken branch. For the
instructions in an instruction group to have well-defined behavior, they must meet the ordering and dependency require-
ments described below. 

If the instructions in instruction groups meet the resource-dependency requirements, then the behavior of a program will
be as though each individual instruction is sequenced through these phases in the order listed above. The order of a phase
of a given instruction relative to any phase of a previous instruction is prescribed by the instruction sequencing rules
below. 

• There is no a priori relationship between the fetch of an instruction and the read, execute, or update of any dynami-
cally previous instruction. The sync.i and srlz.i instructions can be used to enforce a sequential relationship
between the fetch of all succeeding instructions and the update of all previous instructions.

• Between instruction groups, every instruction in a given instruction group will behave as though its read occurred
after the update of all the instructions from the previous instruction group. All instructions are assumed to have unit
latency. Instructions on opposing sides of a stop are architecturally considered to be separated by at least one unit of
latency.

Some system state updates require more stringent requirements than those described here. 

• Within an instruction group, every instruction will behave as though its read of the memory and ALAT state occurred
after the update of the memory and ALAT state of all prior instructions in that instruction group.

• Within an instruction group, every instruction will behave as though its read of the register state occurred before the
update of the register state by any instruction (prior or later) in that instruction group, except as noted in the depen-
dency restrictions section below. 

The ordering rules above form the context for register dependency restrictions, memory dependency restrictions and the
order of exception reporting. These dependency restrictions apply only between instructions whose resource reads and
writes are not dynamically disabled by predication.

• Register dependencies: Within an instruction group, read-after-write (RAW) and write-after-write (WAW) register
dependencies are not allowed (except as noted in “RAW Ordering Exceptions” on page A-2 and “WAW Ordering
Exceptions” on page A-3). Write-after-read (WAR) register dependencies are allowed (except as noted in “WAR
Ordering Exceptions” on page A-3). 

These dependency restrictions apply to both explicit register accesses (from the instruction’s operands) and implicit
register accesses (such as application and control registers implicitly accessed by certain instructions). Predicate
register PR0 is excluded from these register dependency restrictions, since writes to PR0 are ignored and reads
always return 1 (one). 

• Memory dependencies: Within an instruction group, RAW, WAW, and WAR memory dependencies and ALAT
dependencies are allowed. A load will observe the results of the most recent store to the same memory address. In the
event that multiple stores to the same address are present in the same instruction group, memory will contain the
result of the latest store after execution of the instruction group. A store following a load to the same address will not



A-2 Instruction Sequencing Considerations HP/Intel

IA-64 Application ISA Guide 1.0

affect the data loaded by the load. Advanced loads, check loads, advanced load checks, stores, and memory sema-
phore instructions implicitly access the ALAT. RAW, WAW, and WAR ALAT dependencies are allowed within an
instruction group and behave as described for memory dependencies. 

The net effect of the dependency restrictions stated above is that a processor may execute all (or any subset) of the instruc-
tions within a legal instruction group concurrently or serially with the end result being identical. If these dependency
restrictions are not met, the behavior of the program is undefined.

The instruction sequencing resulting from the rules stated above is termed sequential execution.

The ordering rules and the dependency restrictions allow the processor to dynamically re-order instructions, execute
instructions with non-unit latency, or even concurrently execute instructions on opposing sides of a stop or taken branch,
provided that correct sequencing is enforced and the appearance of sequential execution is presented to the programmer. 

IP is a special resource in that reads and writes of IP behave as though the instruction stream was being executed serially,
rather than in parallel. RAW dependencies on IP are allowed, and the reader gets the IP of the bundle in which it is con-
tained. So, each bundle being executed in parallel logically reads IP, increments it and writes it back. WAW is also
allowed.

Ignored ARs are not exceptional for dependency checking purposes. RAW and WAW dependencies to ignored ARs are
not allowed. 

A.1 RAW Ordering Exceptions
There are four exceptions to the rule prohibiting RAW register dependencies within an instruction group. These excep-
tions are the alloc instruction, check load instructions, instructions that affect branching, and the ld8.fill and
st8.spill instructions.

• The alloc instruction implicitly writes the Current Frame Marker (CFM) which is implicitly read by all instructions
accessing the stacked subset of the general register file. Instructions that access the stacked subset of the general reg-
ister file may appear in the same instruction group as alloc and will see the stack frame specified by the alloc. Note
that some instructions have RAW or WAW dependences on resources other than CFM affected by alloc and are thus
not allowed in the same instruction group after an alloc: flushrs, move from AR[BSPSTORE], move from
AR[RNAT], br.cexit, br.ctop, br.wexit, br.wtop, br.call, br.ia, br.ret, clrrrb. Note that alloc is
required to be the first instruction in an instruction group.

• A check load instruction may or may not perform a load since it is dependent upon its corresponding advanced load.
If the check load misses the ALAT it will execute a load from memory. A check load and a subsequent instruction that
reads the target of the check load may exist in the same instruction group. The dependent instruction will get the new
value loaded by the check load.

• A branch may read branch registers and may implicitly read predicate registers, the LC, EC, and PFS application reg-
isters, as well as CFM. Except for LC, EC and predicate registers, writes to any of these registers by a non-branch
instruction will be visible to a subsequent branch in the same instruction group. Writes to predicate registers by any
non-floating-point instruction will be visible to a subsequent branch in the same instruction group. RAW register
dependencies within the same instruction group are not allowed for LC and EC. Dynamic RAW dependencies where
the predicate writer is a floating-point instruction and the reader is a branch are also not allowed within the same
instruction group. Branches br.cond, br.call, br.ret and br.ia work like other instructions for the purposes of
register dependency; i.e., if their qualifying predicate is 0, they are not considered readers or writers of other
resources. Branches br.cloop, br.cexit, br.ctop, br.wexit, and br.wtop are exceptional in that they are
always readers or writers of their resources, regardless of the value of their qualifying predicate.

• The ld8.fill and st8.spill instructions implicitly access the User NaT Collection application register (UNAT).
For these instructions the restriction on dynamic RAW register dependencies with respect to UNAT applies at the bit
level. These instructions may appear in the same instruction group provided they do not access the same bit of UNAT.
RAW UNAT dependencies between ld8.fill or st8.spill instructions and mov ar= or mov =ar instructions
accessing UNAT must not occur within the same instruction group.

For the purposes of resource dependencies, CFM is treated as a single resource. 



HP/Intel Instruction Sequencing Considerations A-3

IA-64 Application ISA Guide 1.0

A.2 WAW Ordering Exceptions
There are three exceptions to the rule prohibiting WAW register dependencies within an instruction group. The exceptions
are compare-type instructions, floating-point instructions, and the st8.spill instruction.

• The set of compare-type instructions includes: cmp, cmp4, tbit, tnat, fcmp, frsqrta, frcpa, and fclass. Com-
pare-type instructions in the same instruction group may target the same predicate register provided:

• The compare-type instructions are either all AND-type compares or all OR-type compares (AND-type compares
correspond to “.and” and “.andcm” completers; OR-type compares correspond to “.or” and “.orcm” completers),
or

• The compare-type instructions all target PR0. All WAW dependencies for PR0 are allowed; the compares can be
of any types and can be of differing types.

All other WAW dependencies within an instruction group are disallowed, including dynamic WAW register dependencies
with move to PR instructions that access the same predicate registers as another writer. Note that the move to PR instruc-
tion only writes those PRs indicated by its mask, but the move from PR instruction always reads all the predicate registers. 

• Floating-point instructions implicitly write the Floating-Point Status Register (FPSR) and the Processor Status Regis-
ter (PSR). Multiple floating-point instructions may appear in the same instruction group since the restriction on WAW
register dependencies with respect to the FPSR and PSR do not apply. The state of FPSR and PSR after executing the
instruction group will be the logical OR of all writes.

• The st8.spill instruction implicitly writes the UNAT register. For this instruction the restriction on WAW register
dependencies with respect to UNAT applies at the bit level. Multiple st8.spill instructions may appear in the same
instruction group provided they do not write the same bit of UNAT. WAW register dependencies between st8.spill

instructions and mov ar= instructions targeting UNAT must not occur within the same instruction group.

WAW dependencies to ignored ARs are not allowed.

A.3 WAR Ordering Exceptions
WAR dependence between the reading of PR63 by a branch instruction and the subsequent writing of PR63 by a loop
closing branch (br.ctop, br.cexit, br.wtop, or br.wexit) in the same instruction group is not allowed. Otherwise,
WAR dependencies are allowed.



A-4 Instruction Sequencing Considerations HP/Intel

IA-64 Application ISA Guide 1.0



HP/Intel IA-64 Pseudo-Code Functions B-1

IA-64 Application ISA Guide 1.0

B IA-64 Pseudo-Code Functions

This appendix contains a table of pseudo-code functions used in Chapter 6, "IA-64 Instruction Reference".

Table B-1. Pseudo-Code Functions

Function Operation
xxx_fault(parameters ...) There are several fault functions. Each fault function accepts parameters spe-

cific to the fault, e.g., exception code values, virtual addresses, etc. If the fault 
is deferred for speculative load exceptions the fault function will return with a 
deferral indication. Otherwise, fault routines do not return and terminate the 
instruction sequence.

xxx_trap(parameters ...) There are several trap functions. Each trap function accepts parameters spe-
cific to the trap, e.g., trap code values, virtual addresses, etc. Trap routines do 
not return.

acceptance_fence() Ensures prior data memory references to uncached ordered-sequential mem-
ory pages are “accepted”, before subsequent data memory references are per-
formed by the processor.

alat_cmp(rtype, raddr) Returns a one if the implementation finds an ALAT entry which matches the 
register type specified by rtype and the register address specified by raddr, 
else returns zero. This function is implementation specific. Note that an imple-
mentation may optionally choose to return zero (indicating no match) even if a 
matching entry exists in the ALAT. This provides implementation flexibility in 
designing fast ALAT lookup circuits.

alat_frame_update( delta_bof, 
delta_sof)

Notifies the ALAT of a change in the bottom of frame and/or size of frame.  
This allows management of the ALAT’s tag bits or other management func-
tions it might need.

alat_inval() Invalidate all entries in the ALAT.

alat_inval_multiple_entries(paddr, 
size)

The ALAT is queried using the physical memory address specified by paddr 
and the access size specified by size. All matching ALAT entries are invali-
dated. No value is returned.

alat_inval_single_entry(rtype, rega) The ALAT is queried using the register type specified by rtype and the regis-
ter address specified by rega. At most one matching ALAT entry is invali-
dated. No value is returned.

alat_write(rtype, raddr, paddr, size) Allocates a new ALAT entry using the register type specified by rtype, the 
register address specified by raddr, the physical memory address specified by 
paddr, and the access size specified by size. No value is returned. This func-
tion guarantees that only one ALAT entry exists for a given raddr. If a 
ld.c.nc, ldf.c.nc, or ldfp.c.nc instruction’s raddr matches an existing 
ALAT entry’s register tag, but the instruction’s size and/or paddr are differ-
ent than that of the existing entry’s; then this function may either preserve the 
existing entry, or invalidate it and write a new entry with the instruction’s 
specified size and paddr.

check_target_register(r1) If r1 targets an out-of-frame stacked register (as defined by CFM), an illegal 
operation fault is delivered, and this function does not return.

check_target_register_sof(r1, new-
sof)

If r1 targets an out-of-frame stacked register (as defined by the newsof param-
eter), an illegal operation fault is delivered, and this function does not return.



B-2 IA-64 Pseudo-Code Functions HP/Intel

IA-64 Application ISA Guide 1.0

concatenate2(x1, x2) Concatenates the lower 32 bits of the 2 arguments, and returns the 64-bit 
result. 

concatenate4(x1, x2, x3, x4) Concatenates the lower 16 bits of the 4 arguments, and returns the 64-bit 
result.

concatenate8(x1, x2, x3, x4, x5, x6, 
x7, x8)

Concatenates the lower 8 bits of the 8 arguments, and returns the 64-bit result.

fadd(fp_dp, fr2) Adds a floating-point register value to the infinitely precise product and return 
the infinitely precise sum, ready for rounding.

fcmp_exception_fault_check(fr2, fr3, 
frel, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcmp instruction.

fcvt_fx_exception_fault_check(fr2, 
trunc, sf *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcvt.fx and 
fcvt.fx.trunc instructions. It propagates NaNs, and NaTVals.

fcvt_fxu_exception_fault_check(fr2, 
trunc, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fcvt.fxu and 
fcvt.fxu.trunc instructions. It propagates NaNs, and NaTVals.

fma_exception_fault_check(fr2, fr3, 
fr4, pc, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fma instruction. It 
propagates NaNs, NaTVals, and special IEEE results.

fminmax_exception_fault_check(fr2, 
fr3, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the famax, famin, fmax, 
and fmin instructions.

fms_fnma_exception_fault_check(fr
2, fr3, fr4, pc, sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the fms and fnma instruc-
tions. It propagates NaNs, NaTVals, and special IEEE results.

fmul(fr3, fr4) Performs an infinitely precise multiply of two floating-point register values.

followed_by_stop() Returns TRUE if the current instruction is followed by a stop; otherwise, 
returns FALSE.

fp_check_target_register(f1) If the specified floating-point register identifier is 0 or 1, this function causes 
an illegal operation fault.

fp_decode_fault(tmp_fp_env) Returns floating-point exception fault code values for ISR.code.

fp_decode_traps(tmp_fp_env) Returns floating-point trap code values for ISR.code.

fp_is_nan_or_inf(freg) Returns true if the floating-point exception_fault_check functions returned a 
IEEE fault disabled default result or a propagated NaN.

fp_equal(fr1, fr2) IEEE standard equality relationship test.

fp_ieee_recip(num, den) Returns the true quotient for special sets of operands, or an approximation to 
the reciprocal of the divisor to be used in the software divide algorithm.

fp_ieee_recip_sqrt(root) Returns the true square root result for special operands, or an approximation 
to the reciprocal square root to be used in the software square root algorithm. 

fp_is_nan(freg) Returns true when floating register contains a NaN.

fp_is_natval(freg) Returns true when floating register contains a NaTVal

fp_is_normal(freg) Returns true when floating register contains a normal number.

fp_is_pos_inf(freg) Returns true when floating register contains a positive infinity.

fp_is_qnan(freg) Returns true when floating register contains a quiet NaN.

fp_is_snan(freg) Returns true when floating register contains a signalling NaN.

fp_is_unorm(freg) Returns true when floating register contains an unnormalized
number.

fp_is_unsupported(freg) Returns true when floating register contains an unsupported format.

fp_less_than(fr1, fr2) IEEE standard less-than relationship test.

fp_lesser_or_equal(fr1, fr2) IEEE standard less-than or equal-to relationship test

fp_normalize(fr1) Normalizes an unnormalized fp value. This function flushes to zero any 
unnormal values which can not be represented in the register file

fp_raise_fault(tmp_fp_env) Checks the local instruction state for any faulting conditions which require an 
interruption to be raised.

Table B-1. Pseudo-Code Functions (Continued)

Function Operation



HP/Intel IA-64 Pseudo-Code Functions B-3

IA-64 Application ISA Guide 1.0

fp_raise_traps(tmp_fp_env) Checks the local instruction state for any trapping conditions which require an 
interruption to be raised.

fp_reg_bank_conflict(f1, f2) Returns true if the two specified FRs are in the same bank.

fp_reg_disabled(f1, f2, f3, f4) Check for possible disabled floating-point register faults.

fp_reg_read(freg) Reads the FR and gives canonical double-extended denormals (and pseudo-
denormals) their true mathematical exponent. Other classes of operands are 
unaltered.

fp_unordered(fr1, fr2) IEEE standard unordered relationship

fp_fr_to_mem_format(freg, size) Converts a floating-point value in register format to floating-point memory 
format. It assumes that the floating-point value in the register has been previ-
ously rounded to the correct precision which corresponds with the size 
parameter.

frcpa_exception_fault_check(fr2, fr3, 
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the frcpa instruction. It 
propagates NaNs, NaTVals, and special IEEE results.

frsqrta_exception_fault_check(fr3, 
sf, *tmp_fp_env)

Checks for all floating-point faulting conditions for the frsqrta instruction. 
It propagates NaNs, NaTVals, and special IEEE results

ignored_field_mask(regclass, reg, 
value)

Boolean function that returns value with bits cleared to 0 corresponding to 
ignored bits for the specified register and register type.

instruction_serialize() Ensures all prior register updates with side-effects are observed before subse-
quent instruction and data memory references are performed. Also ensures 
prior SYNC.i operations have been observed by the instruction cache.

instruction_synchronize Synchronizes the instruction and data stream for Flush Cache operations. This 
function ensures that when prior FC operations are observed by the local data 
cache they are observed by the local instruction cache, and when prior FC 
operations are observed by another processor’s data cache they are observed 
within the same processor’s instruction cache.

is_finite(freg) Returns true when floating register contains a finite number.

is_ignored_reg(regnum) Boolean function that returns true if regnum is an ignored application register, 
otherwise false.

is_inf(freg) Returns true when floating register contains an infinite number.

is_kernel_reg(ar_addr) Returns a one if ar_addr is the address of a kernel register application regis-
ter

is_reserved_field(regclass, arg2, 
arg3)

Returns true if the specified data would write a one in a reserved field.

is_reserved_reg(regclass, regnum) Returns true if register regnum is reserved in the regclass register file.

mem_flush(paddr) The line addressed by the physical address paddr is invalidated in all levels of 
the memory hierarchy above memory and written back to memory if it is 
inconsistent with memory.

mem_implicit_prefetch(vaddr, hint) Moves the line addressed by vaddr to the location of the memory hierarchy 
specified by hint. This function is implementation dependent and can be 
ignored.

mem_promote(paddr, mtype, hint) Moves the line addressed by paddr to the highest level of the memory hierar-
chy conditioned by the access hints specified by hint. Implementation depen-
dent and can be ignored.

mem_read(paddr, size, border, mattr, 
otype, hint)

Returns the size bytes starting at the physical memory location specified by 
paddr with byte order specified by border, memory attributes specified by 
mattr, and access hint specified by hint. otype specifies the memory order-
ing attribute of this access, and must be UNORDERED or ACQUIRE.

fp_mem_to_fr_format(mem, size) Converts a floating-point value in memory format to floating-point register 
format.

Table B-1. Pseudo-Code Functions (Continued)

Function Operation



B-4 IA-64 Pseudo-Code Functions HP/Intel

IA-64 Application ISA Guide 1.0

mem_write(value, paddr, size, bor-
der, mattr, otype, hint)

Writes the least significant size bytes of value into memory starting at the 
physical memory address specified by paddr with byte order specified by 
border, memory attributes specified by mattr, and access hint specified by 
hint. otype specifies the memory ordering attribute of this access, and must 
be UNORDERED or RELEASE. No value is returned.

mem_xchg(data, paddr, size, 
byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hint. After
the read, the least significant size bytes of data are written to size bytes in
memory starting at the physical address specified by paddr. The read and
write are performed atomically. Both the read and the write are conditioned by
the memory attribute specified by mattr and the byte ordering in memory is
specified by byte_order. otype specifies the memory ordering attribute of
this access, and must be ACQUIRE.

mem_xchg_add(add_val, paddr, size, 
byte_order, mattr, otype, hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hint. The
least significant size bytes of the sum of the value read from memory and
add_val is then written to size bytes in memory starting at the physical
address specified by paddr. The read and write are performed atomically.
Both the read and the write are conditioned by the memory attribute specified
by mattr and the byte ordering in memory is specified by byte_order.
otype specifies the memory ordering attribute of this access, and has the
value ACQUIRE or RELEASE.

mem_xchg_cond(cmp_val, data, 
paddr, size, byte_order, mattr, otype, 
hint)

Returns size bytes from memory starting at the physical address specified by
paddr. The read is conditioned by the locality hint specified by hint. If the
value read from memory is equal to cmp_val, then the least significant size
bytes of data are written to size bytes in memory starting at the physical
address specified by paddr. If the write is performed, the read and write are
performed atomically. Both the read and the write are conditioned by the
memory attribute specified by mattr and the byte ordering in memory is spec-
ified by byte_order. otype specifies the memory ordering attribute of this
access, and has the value ACQUIRE or RELEASE.

ordering_fence() Ensures prior data memory references are made visible before future data 
memory references are made visible by the processor.

pr_phys_to_virt(phys_id) Returns the virtual register id of the predicate from the physical register id, 
phys_id of the predicate.

rotate_regs() Decrements the Register Rename Base registers, effectively rotating the regis-
ter files. CFM.rrb.gr is decremented only if CFM.sor is non-zero.

rse_enable_current_frame_load() If the RSE load pointer (RSE.BSPLoad) is greater than AR[BSP], the 
RSE.CFLE bit is set to indicate that mandatory RSE loads are allowed to 
restore registers in the current frame (in no other case does the RSE spill or fill 
registers in the current frame). This function does not perform mandatory RSE 
loads. This procedure does not cause any interruptions.

rse_invalidate_non_current_regs() All registers outside the current frame are invalidated.

rse_new_frame(current_frame_size, 
new_frame_size)

A new frame is defined without changing any register renaming. The new 
frame size is completely defined by the new_frame_size parameter (succes-
sive calls are not cumulative). If new_frame_size is larger than 
current_frame_size and the number of registers in the invalid and clean 
partitions is less than the size of frame growth then mandatory RSE stores are 
issued until enough registers are available. The resulting sequence of RSE 
stores may be interrupted. Mandatory RSE stores may cause interruptions; see 
rse_store for a list.

Table B-1. Pseudo-Code Functions (Continued)

Function Operation



HP/Intel IA-64 Pseudo-Code Functions B-5

IA-64 Application ISA Guide 1.0

rse_preserve_frame(preserved_frame
_size)

The number of registers specified by preserved_frame_size are marked to 
be preserved by the RSE. Register renaming causes the 
preserved_frame_size registers after GR[32] to be renamed to GR[32]. 
AR[BSP] is updated to contain the backing store address where the new 
GR[32] will be stored.

rse_store(type) Saves a register or NaT collection to the backing store (store_address = 
AR[BSPSTORE]). If store_address{8:3} is equal to 0x3f then the NaT collec-
tion AR[RNAT] is stored. If store_address{8:3} is not equal to 0x3f then the 
register RSE.StoreReg is stored and the NaT bit from that register is deposited 
in AR[RNAT]{store_address{8:3}}. If the store is successful AR[BSP-
STORE] is incremented by 8. If the store is successful and a register was 
stored RSE.StoreReg is incremented by 1 (possibly wrapping in the stacked 
registers). This store moves a register from the dirty partition to the clean par-
tition. The privilege level of the store is obtained from AR[RSC].pl. The byte 
order of the store is obtained from AR[RSC].be. For mandatory RSE stores, 
type is MANDATORY.  RSE stores do not invalidate ALAT entries.

rse_update_internal_stack_pointers(n
ew_store_pointer)

Given a new value for AR[BSPSTORE] (new_store_pointer) this function 
computes the new value for AR[BSP]. This value is equal to 
new_store_pointer plus the number of dirty registers plus the number of 
intervening NaT collections. This means that the size of the dirty partition is 
the same before and after a write to AR[BSPSTORE]. All clean registers are 
moved to the invalid partition.

sign_ext(value, pos) Returns a 64 bit number with bits pos-1 through 0 taken from value and bit 
pos-1 of value replicated in bit positions pos through 63. If pos is greater 
than or equal to 64, value is returned.

tlb_translate(vaddr, size, type, cpl, 
*attr, *defer)

Returns the translated data physical address for the specified virtual memory 
address (vaddr) when translation enabled; otherwise, returns vaddr. size 
specifies the size of the access, type specifies the type of access (e.g., read, 
write, advance, spec). cpl specifies the privilege level for access checking 
purposes. *attr returns the mapped physical memory attribute. If any fault 
conditions are detected and deferred, tlb_translate returns with *defer set. If 
a fault is generated but the fault is not deferred, tlb_translate does not return. 

tlb_translate_nonaccess(vaddr, type) Returns the translated data physical address for the specified virtual memory 
address (vaddr). type specifies the type of access (e.g., FC). If a fault is gen-
erated, tlb_translate_nonaccess does not return.

unimplemented_physical_address(pa
ddr)

Return TRUE if the presented physical address is unimplemented on this pro-
cessor model; FALSE otherwise. This function is model-specific.

impl_undefined_natd_gr_read(paddr, 
size, be, mattr, otype, ldhint)

defines register return data for a speculative load to a NaTed address. This 
function may return data from another address space.

unimplemented_virtual_address(vad
dr)

Return TRUE if the presented virtual address is unimplemented on this pro-
cessor model; FALSE otherwise. This function is model-specific.

fp_update_fpsr(sf, tmp_fp_env) Copies a floating-point instruction’s local state into the global FPSR.

zero_ext(value, pos) Returns a 64 bit unsigned number with bits pos-1 through 0 taken from value 
and zeroes in bit positions pos through 63. If pos is greater than or equal to 
64, value is returned.

Table B-1. Pseudo-Code Functions (Continued)

Function Operation



B-6 IA-64 Pseudo-Code Functions HP/Intel

IA-64 Application ISA Guide 1.0



HP/Intel IA-64 Instruction Formats C-1

IA-64 Application ISA Guide 1.0

C IA-64 Instruction Formats

Each IA-64 instruction is categorized into one of six types; each instruction type may be executed on one or more execu-
tion unit types. Table C-1 lists the instruction types and the execution unit type on which they are executed:

Three instructions are grouped together into 128-bit sized and aligned containers called bundles. Each bundle contains
three 41-bit instruction slots and a 5-bit template field. The format of a bundle is depicted in Figure C-1.

The template field specifies two properties: stops within the current bundle, and the mapping of instruction slots to execu-
tion unit types. Not all combinations of these two properties are allowed - Table C-2 indicates the defined combinations.
The three rightmost columns correspond to the three instruction slots in a bundle; listed within each column is the execu-
tion unit type controlled by that instruction slot for each encoding of the template field. A double line to the right of an
instruction slot indicates that a stop occurs at that point within the current bundle. See “Instruction Encoding Overview”
on page 3-11 for the definition of a stop. Within a bundle, execution order proceeds from slot 0 to slot 2. Unused template
values (appearing as empty rows in Table C-2) are reserved and cause an Illegal Operation fault.

Extended instructions, used for long immediate integer instructions, occupy two instruction slots. 

Table C-1. Relationship Between Instruction Type and Execution Unit Type

Instruction
Type

Description
Execution Unit 

Type
A Integer ALU I-unit or M-unit

I Non-ALU integer I-unit

M Memory M-unit

F Floating-point F-unit

B Branch B-unit

L+X Extended I-unit

127 87 86 46 45 5 4 0

instruction slot 2 instruction slot 1 instruction slot 0 template
41 41 41 5

Figure C-1. Bundle Format



C-2 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.1 Format Summary
All instructions in the instruction set are 41 bits in length. The leftmost 4 bits (40:37) of each instruction are the major
opcode. Table C-3 shows the major opcode assignments for each of the 5 instruction types — ALU (A), Integer (I), Mem-
ory (M), Floating-point (F), and Branch (B). Bundle template bits are used to distinguish among the 4 columns, so the
same major op values can be reused in each column.

Unused major ops (appearing as blank entries in Table C-3) behave in one of three ways:

• Ignored major ops (white entries in Table C-3) execute as nop instructions.

• Reserved major ops (light gray in the grayscale version of Table C-3, brown in the color version) cause an Illegal
Operation fault.

• Reserved if PR[qp] is 1 major ops (dark gray in the grayscale version of Table C-3, purple in the color version) cause
an Illegal Operation fault if the predicate register specified by the qp field of the instruction (bits 5:0) is 1 and execute
as a nop instruction if 0.

Table C-2. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2
00 M-unit I-unit I-unit

01 M-unit I-unit I-unit

02 M-unit I-unit I-unit

03 M-unit I-unit I-unit

04 M-unit L-unit X-unit

05 M-unit L-unit X-unit

06

07

08 M-unit M-unit I-unit

09 M-unit M-unit I-unit

0A M-unit M-unit I-unit

0B M-unit M-unit I-unit

0C M-unit F-unit I-unit

0D M-unit F-unit I-unit

0E M-unit M-unit F-unit

0F M-unit M-unit F-unit

10 M-unit I-unit B-unit

11 M-unit I-unit B-unit

12 M-unit B-unit B-unit

13 M-unit B-unit B-unit

14

15

16 B-unit B-unit B-unit

17 B-unit B-unit B-unit

18 M-unit M-unit B-unit

19 M-unit M-unit B-unit

1A

1B

1C M-unit F-unit B-unit

1D M-unit F-unit B-unit

1E

1F



HP/Intel IA-64 Instruction Formats C-3

IA-64 Application ISA Guide 1.0

Table C-4 on page C-4 summarizes all the instruction formats. The instruction fields are color-coded for ease of identifi-
cation, as described in Table C-5 on page C-6. 

The instruction field names, used throughout this chapter, are described in Table C-6 on page C-7. The set of special nota-
tions (such as whether an instruction must be first in an instruction group) are listed in Table C-7 on page C-7. These nota-
tions appear in the “Instruction” column of the opcode tables.

Most instruction containing immediates encode those immediates in more than one instruction field. For example, the 14-
bit immediate in the Add Imm14 instruction (format A4) is formed from the imm7b, imm6d, and s fields. Table C-65 on
page C-57 shows how the immediates are formed from the instruction fields for each instruction which has an immediate.

Table C-3. Major Opcode Assignments

Major 
Op

(bits 
40:37)

Instruction Type

I/A M/A F B L+X

0 Misc 0 Mem Mgmt 0 FP Misc 0 Misc/Indirect Branch0 Misc 0

1 1 Mem Mgmt 1 FP Misc 1 Indirect Call 1 1

2 2 2 2 Nop 2 2

3 3 3 3 3 3

4 Deposit 4 Int Ld +Reg/getf 4 FP Compare 4 IP-relative Branch4 4

5 Shift/Test Bit 5 Int Ld/St +Imm 5 FP Class 5 IP-rel Call 5 5

6 6 FP Ld/St +Reg/setf6 6 6 movl 6

7 MM Mpy/Shift 7 FP Ld/St +Imm 7 7 7 7

8 ALU/MM ALU 8 ALU/MM ALU 8 fma 8 8 8

9 Add Imm22
9 Add Imm22

9 fma 9 9 9

A A A fms A A A

B B B fms B B B

C Compare C Compare C fnma C C C

D Compare D Compare D fnma D D D

E Compare E Compare E fselect/xma E E E

F F F F F F



C-4 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

Table C-4. Instruction Format Summary
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ALU A1 8 x2a ve x4 x2b r3 r2 r1 qp
Shift L and Add A2 8 x2a ve x4 ct2d r3 r2 r1 qp

ALU Imm8 A3 8 s x2a ve x4 x2b r3 imm7b r1 qp
Add Imm14 A4 8 s x2a ve imm6d r3 imm7b r1 qp
Add Imm22 A5 9 s imm9d imm5c r3 imm7b r1 qp

Compare A6 C - E tb x2 ta p2 r3 r2 c p1 qp
Compare to Zero A7 C - E tb x2 ta p2 r3 0 c p1 qp
Compare Imm8 A8 C - E s x2 ta p2 r3 imm7b c p1 qp

MM ALU A9 8 za x2a zb x4 x2b r3 r2 r1 qp
MM Shift and Add A10 8 za x2a zb x4 ct2d r3 r2 r1 qp
MM Multiply Shift I1 7 za x2a zbve ct2d x2b r3 r2 r1 qp
MM Mpy/Mix/Pack I2 7 za x2a zbve x2c x2b r3 r2 r1 qp

MM Mux1 I3 7 za x2a zbve x2c x2b mbt4c r2 r1 qp
MM Mux2 I4 7 za x2a zbve x2c x2b mht8c r2 r1 qp

Shift R Variable I5 7 za x2a zbve x2c x2b r3 r2 r1 qp
MM Shift R Fixed I6 7 za x2a zbve x2c x2b r3 count5b r1 qp

Shift L Variable I7 7 za x2a zbve x2c x2b r3 r2 r1 qp
MM Shift L Fixed I8 7 za x2a zbve x2c x2b ccount5c r2 r1 qp

Popcount I9 7 za x2a zbve x2c x2b r3 0 r1 qp
Shift Right Pair I10 5 x2 x count6d r3 r2 r1 qp

Extract I11 5 x2 x len6d r3 pos6b y r1 qp
Dep.Z I12 5 x2 x len6d y cpos6c r2 r1 qp

Dep.Z Imm8 I13 5 s x2 x len6d y cpos6c imm7b r1 qp
Deposit Imm1 I14 5 s x2 x len6d r3 cpos6b r1 qp

Deposit I15 4 cpos6d len4d r3 r2 r1 qp
Test Bit I16 5 tb x2 ta p2 r3 pos6b y c p1 qp

Test NaT I17 5 tb x2 ta p2 r3 y c p1 qp
Break/Nop I19 0 i x3 x6 imm20a qp

Int Spec Check I20 0 s x3 imm13c r2 imm7a qp
Move to BR I21 0 x3 x r2 b1 qp

Move from BR I22 0 x3 x6 b2 r1 qp
Move to Pred I23 0 s x3 mask8c r2 mask7a qp

Move to Pred Imm44 I24 0 s x3 imm27a qp
Move from Pred/IP I25 0 x3 x6 r1 qp

Move to AR I26 0 x3 x6 ar3 r2 qp
Move to AR Imm8 I27 0 s x3 x6 ar3 imm7b qp

Move from AR I28 0 x3 x6 ar3 r1 qp
Sxt/Zxt/Czx I29 0 x3 x6 r3 r1 qp

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



HP/Intel IA-64 Instruction Formats C-5

IA-64 Application ISA Guide 1.0

Int Load M1 4 m x6 hint x r3 r1 qp
Int Load +Reg M2 4 m x6 hint x r3 r2 r1 qp
Int Load +Imm M3 5 s x6 hint i r3 imm7b r1 qp

Int Store M4 4 m x6 hint x r3 r2 qp
Int Store +Imm M5 5 s x6 hint i r3 r2 imm7a qp

FP Load M6 6 m x6 hint x r3 f1 qp
FP Load +Reg M7 6 m x6 hint x r3 r2 f1 qp
FP Load +Imm M8 7 s x6 hint i r3 imm7b f1 qp

FP Store M9 6 m x6 hint x r3 f2 qp
FP Store +Imm M10 7 s x6 hint i r3 f2 imm7a qp
FP Load Pair M11 6 m x6 hint x r3 f2 f1 qp

FP Load Pair +ImmM12 6 m x6 hint x r3 f2 f1 qp
Line Prefetch M13 6 m x6 hint x r3 qp

Line Prefetch +Reg M14 6 m x6 hint x r3 r2 qp
Line Prefetch +ImmM15 7 s x6 hint i r3 imm7b qp

(Cmp &) Exchg M16 4 m x6 hint x r3 r2 r1 qp
Fetch & Add M17 4 m x6 hint x r3 s i2b r1 qp

Set FR M18 6 m x6 x r2 f1 qp
Get FR M19 4 m x6 x f2 r1 qp

Int Spec Check M20 1 s x3 imm13c r2 imm7a qp
FP Spec Check M21 1 s x3 imm13c f2 imm7a qp

Int ALAT Check M22 0 s x3 imm20b r1 qp
FP ALAT Check M23 0 s x3 imm20b f1 qp
Sync/Srlz/ALAT M24 0 x3 x2 x4 qp

RSE Control M25 0 x3 x2 x4 0
Int ALAT Inval M26 0 x3 x2 x4 r1 qp
FP ALAT Inval M27 0 x3 x2 x4 f1 qp

Flush Cache M28 1 x3 x6 r3 qp
Move to AR M29 1 x3 x6 ar3 r2 qp

Move to AR Imm8 M30 0 s x3 x2 x4 ar3 imm7b qp
Move from AR M31 1 x3 x6 ar3 r1 qp

Alloc M34 1 x3 sor sol sof r1 0
Move to PSR M35 1 x3 x6 r2 qp

Move from PSR M36 1 x3 x6 r1 qp
Break/Nop M37 0 i x3 x2 x4 imm20a qp

Mv from Ind M43 1 x3 x6 r3 r1 qp
Set/Reset Mask M44 0 i x3 i2d x4 imm21a qp

Table C-4. Instruction Format Summary (Continued)
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



C-6 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

IP-Relative Branch B1 4 s d wh imm20b p btype qp
Counted Branch B2 4 s d wh imm20b p btype 0
IP-Relative Call B3 5 s d wh imm20b p b1 qp
Indirect Branch B4 0 d wh x6 b2 p btype qp

Indirect Call B5 1 d wh b2 p b1 qp
Misc B8 0 x6 0

Break/Nop B9 0/2 i x6 imm20a qp
FP Arithmetic F1 8 - D x sf f4 f3 f2 f1 qp

Fixed Multiply Add F2 E x x2 f4 f3 f2 f1 qp
FP Select F3 E x f4 f3 f2 f1 qp

FP Compare F4 4 rb sf ra p2 f3 f2 ta p1 qp
FP Class F5 5 fc2 p2 fclass7c f2 ta p1 qp

FP Recip Approx F6 0 - 1 q sf x p2 f3 f2 f1 qp
FP Recip Sqrt App F7 0 - 1 q sf x p2 f3 f1 qp
FP Min/Max/Pcmp F8 0 - 1 sf x x6 f3 f2 f1 qp
FP Merge/Logical F9 0 - 1 x x6 f3 f2 f1 qp

Convert FP to Fixed F10 0 - 1 sf x x6 f2 f1 qp
Convert Fixed to FP F11 0 x x6 f2 f1 qp

FP Set Controls F12 0 sf x x6 omask7c amask7b qp
FP Clear Flags F13 0 sf x x6 qp
FP Check Flags F14 0 s sf x x6 imm20a qp

Break/Nop F15 0 i x x6 imm20a qp
Break/Nop X1 0 i x3 x6 imm20a qp imm41

Move Imm64 X2 6 i imm9d imm5c ic vc imm7b r1 qp imm41

Table C-5. Instruction Field Color Key

Field & Color
ALU Instruction Opcode Extension
Integer Instruction Opcode Hint Extension
Memory Instruction Immediate
Branch Instruction Indirect Source
Floating-point Instruction Predicate Destination
Integer Source Integer Destination
Memory Source Memory Source & Destination
Shift Source Shift Immediate
Special Register Source Special Register Destination
Floating-point Source Floating-point Destination
Branch Source Branch Destination
Address Source Reserved Instruction
Qualifying Predicate Reserved Inst if PR[qp] is 1
Ignored Field/Instruction

Table C-4. Instruction Format Summary (Continued)
40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0



HP/Intel IA-64 Instruction Formats C-7

IA-64 Application ISA Guide 1.0

The remaining sections of this chapter present the detailed encodings of all instructions. The “A-Unit Instruction encod-
ings” are presented first, followed by the “I-Unit Instruction Encodings” on page C-16, “M-Unit Instruction Encodings”
on page C-26, “B-Unit Instruction Encodings” on page C-45, “F-Unit Instruction Encodings” on page C-49, and “X-Unit
Instruction Encodings” on page C-56.

Within each section, the instructions are grouped by function, and appear with their instruction format in the same order as
in Table C-4, “Instruction Format Summary,” on page C-4. The opcode extension fields are briefly described and tables
present the opcode extension assignments. Unused instruction encodings (appearing as blank entries in the opcode exten-
sions tables) behave in one of three ways:

Table C-6. Instruction Field Names

Field Name Description
ar3 application register source/target

b1, b2 branch register source/target

btype branch type opcode extension

c complement compare relation opcode extension

ccount5c multimedia shift left complemented shift count immediate

count5b, count6d multimedia shift right/shift right pair shift count immediate

cposx deposit complemented bit position immediate

ct2d multimedia multiply shift/shift and add shift count immediate

d branch cache deallocation hint opcode extension

fn floating-point register source/target

fc2, fclass7c floating-point class immediate

hint memory reference hint opcode extension

i, i2b, i2d, immx immediate of length 1, 2, or x

len4d, len6d extract/deposit length immediate

m memory reference post-modify opcode extension

maskx predicate immediate mask

mbt4c, mht8c multimedia mux1/mux2 immediate

p sequential prefetch hint opcode extension

p1, p2 predicate register target

pos6b test bit/extract bit position immediate

q floating-point reciprocal/reciprocal square-root opcode extension

qp qualifying predicate register source

rn general register source/target

s immediate sign bit

sf floating-point status field opcode extension

sof, sol, sor alloc size of frame, size of locals, size of rotating immediates

ta, tb compare type opcode extension

vx reserved opcode extension field

wh branch whether hint opcode extension

x, xn opcode extension of length 1 or n

y extract/deposit/test bit/test NaT opcode extension

za, zb multimedia operand size opcode extension

Table C-7. Special Instruction Notations

Notation Description
f instruction must be the first in an instruction group

l instruction must be the last in an instruction group

t instruction is only allowed in instruction slot 2



C-8 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

• Ignored instructions (white entries in the tables) execute as nop instructions.

• Reserved instructions (light gray in the grayscale version of the tables, brown in the color version) cause an Illegal
Operation fault.

• Reserved if PR[qp] is 1 instructions (dark gray in the grayscale version of the tables, purple in the color version)
cause an Illegal Operation fault if the predicate register specified by the qp field of the instruction (bits 5:0) is 1 and
execute as a nop instruction if 0.

Constant 0 fields in instructions must be 0 or undefined operation results. The undefined operation may include checking
that the constant field is 0 and causing an Illegal Operation fault if it is not. If an instruction having a constant 0 field also
has a qualifying predicate (qp field), the fault or other undefined operation must not occur if PR[qp] is 0. For constant 0
fields in instruction bits 5:0 (normally used for qp), the fault or other undefined operation may or may not depend on the
PR addressed by those bits.

Ignored (white space) fields in instructions should be coded as 0. Although ignored in this revision of the architecture,
future architecture revisions may define these fields as hint extensions.  These hint extensions will be defined such that the
0 value in each field corresponds to the default hint.  It is expected that assemblers will automatically set these fields to
zero by default.

C.2 A-Unit Instruction Encodings

C.2.1 Integer ALU

All integer ALU instructions are encoded within major opcode 8 using a 2-bit opcode extension field in bits 35:34 (x2a)
and most have a second 2-bit opcode extension field in bits 28:27 (x2b), a 4-bit opcode extension field in bits 32:29 (x4),
and a 1-bit reserved opcode extension field in bit 33 (ve). Table C-8 shows the 2-bit x2a and 1-bit ve assignments,
Table C-9 shows the integer ALU 4-bit+2-bit assignments, and Table C-12 on page C-13 shows the multimedia ALU 1-
bit+2-bit assignments (which also share major opcode 8).

Table C-8. Integer ALU 2-bit+1-bit Opcode Extensions

Opcode
Bits 

40:37

x2a
Bits 

35:34

ve
Bit 33

0 1

8

0 Integer ALU 4-bit+2-bit Ext (Table C-9)
1 Multimedia ALU 1-bit+2-bit Ext (Table C-12)
2 adds – imm14 A4
3 addp4 – imm14 A4

Table C-9. Integer ALU 4-bit+2-bit Opcode Extensions

Opcode
Bits 

40:37

x2a
Bits 

35:34

ve
Bit 
33

x4
Bits 

32:29

x2b
Bits 28:27

0 1 2 3

8 0 0

0 add A1 add +1 A1
1 sub –1 A1 sub A1
2 addp4 A1
3 and A1 andcm A1 or A1 xor A1
4 shladd A2
5
6 shladdp4 A2
7
8
9 sub – imm8 A3
A
B and – imm8 A3 andcm – imm8 A3 or – imm8 A3 xor – imm8 A3
C
D
E
F



HP/Intel IA-64 Instruction Formats C-9

IA-64 Application ISA Guide 1.0

C.2.1.1 Integer ALU – Register-Register

A1

C.2.1.2 Shift Left and Add

A2

C.2.1.3 Integer ALU – Immediate 8-Register

A3

C.2.1.4 Add Immediate 14

A4

C.2.1.5 Add Immediate 22

A5

40 37 36 35 34 33 32 29 28 27 26 20 19 13 12 6 5 0

8 x2a ve x4 x2b r3 r2 r1 qp
4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4 x2b

add r1 = r2, r3

8 0 0

0 0
r1 = r2, r3, 1 1

sub r1 = r2, r3 1 1
r1 = r2, r3, 1 0

addp4

r1 = r2, r3

2 0
and

3

0
andcm 1
or 2
xor 3

40 37 36 35 34 33 32 29 28 27 26 20 19 13 12 6 5 0

8 x2a ve x4 ct2d r3 r2 r1 qp
4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4
shladd

r1 = r2, count2, r3 8 0 0 4
shladdp4 6

40 37 36 35 34 33 32 29 28 27 26 20 19 13 12 6 5 0

8 s x2a ve x4 x2b r3 imm7b r1 qp
4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a ve x4 x2b
sub

r1 = imm8, r3 8 0 0

9 1
and

B

0
andcm 1
or 2
xor 3

40 37 36 35 34 33 32 27 26 20 19 13 12 6 5 0

8 s x2a ve imm6d r3 imm7b r1 qp
4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension
x2a ve

adds
r1 = imm14, r3 8 2 0addp4 3

40 37 36 35 27 26 22 21 20 19 13 12 6 5 0

9 s imm9d imm5c r3 imm7b r1 qp
4 1 9 5 2 7 7 6

Instruction Operands Opcode
addl r1 = imm22, r3 9



C-10 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.2.2 Integer Compare

The integer compare instructions are encoded within major opcodes C – E using a 2-bit opcode extension field (x2) in bits
35:34 and three 1-bit opcode extension fields in bits 33 (ta), 36 (tb), and 12 (c), as shown in Table C-10. The integer com-
pare immediate instructions are encoded within major opcodes C – E using a 2-bit opcode extension field (x2) in bits
35:34 and two 1-bit opcode extension fields in bits 33 (ta) and 12 (c), as shown in Table C-11.

Table C-10. Integer Compare Opcode Extensions

x2
Bits 

35:34

tb
Bit 
36

ta
Bit 
33

c
Bit 
12

Opcode
Bits 40:37

C D E

0

0
0 0 cmp.lt A6 cmp.ltu A6 cmp.eq A6

1 cmp.lt.unc A6 cmp.ltu.unc A6 cmp.eq.unc A6

1 0 cmp.eq.and A6 cmp.eq.or A6 cmp.eq.or.andcm A6
1 cmp.ne.and A6 cmp.ne.or A6 cmp.ne.or.andcm A6

1
0 0 cmp.gt.and A7 cmp.gt.or A7 cmp.gt.or.andcm A7

1 cmp.le.and A7 cmp.le.or A7 cmp.le.or.andcm A7

1 0 cmp.ge.and A7 cmp.ge.or A7 cmp.ge.or.andcm A7
1 cmp.lt.and A7 cmp.lt.or A7 cmp.lt.or.andcm A7

1

0
0 0 cmp4.lt A6 cmp4.ltu A6 cmp4.eq A6

1 cmp4.lt.unc A6 cmp4.ltu.unc A6 cmp4.eq.unc A6

1 0 cmp4.eq.and A6 cmp4.eq.or A6 cmp4.eq.or.andcm A6
1 cmp4.ne.and A6 cmp4.ne.or A6 cmp4.ne.or.andcm A6

1
0 0 cmp4.gt.and A7 cmp4.gt.or A7 cmp4.gt.or.andcm A7

1 cmp4.le.and A7 cmp4.le.or A7 cmp4.le.or.andcm A7

1 0 cmp4.ge.and A7 cmp4.ge.or A7 cmp4.ge.or.andcm A7
1 cmp4.lt.and A7 cmp4.lt.or A7 cmp4.lt.or.andcm A7

Table C-11. Integer Compare Immediate Opcode Extensions

x2
Bits 

35:34

ta
Bit 
33

c
Bit 
12

Opcode
Bits 40:37

C D E

2
0 0 cmp.lt – imm8 A8 cmp.ltu – imm8 A8 cmp.eq – imm8 A8

1 cmp.lt.unc – imm8 A8 cmp.ltu.unc – imm8 A8 cmp.eq.unc – imm8 A8

1 0 cmp.eq.and – imm8 A8 cmp.eq.or – imm8 A8 cmp.eq.or.andcm – imm8 A8
1 cmp.ne.and – imm8 A8 cmp.ne.or – imm8 A8 cmp.ne.or.andcm – imm8 A8

3
0 0 cmp4.lt – imm8 A8 cmp4.ltu – imm8 A8 cmp4.eq – imm8 A8

1 cmp4.lt.unc – imm8 A8 cmp4.ltu.unc – imm8 A8 cmp4.eq.unc – imm8 A8

1 0 cmp4.eq.and – imm8 A8 cmp4.eq.or – imm8 A8 cmp4.eq.or.andcm – imm8 A8
1 cmp4.ne.and – imm8 A8 cmp4.ne.or – imm8 A8 cmp4.ne.or.andcm – imm8 A8



HP/Intel IA-64 Instruction Formats C-11

IA-64 Application ISA Guide 1.0

C.2.2.1 Integer Compare – Register-Register

A6

40 37 36 35 34 33 32 27 26 20 19 13 12 11 6 5 0

C - E tb x2 ta p2 r3 r2 c p1 qp
4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 tb ta c
cmp.lt

p1, p2 = r2, r3

C

0 0

0

0cmp.ltu D
cmp.eq E
cmp.lt.unc C

1cmp.ltu.unc D
cmp.eq.unc E
cmp.eq.and C

1

0cmp.eq.or D
cmp.eq.or.andcm E
cmp.ne.and C

1cmp.ne.or D
cmp.ne.or.andcm E
cmp4.lt C

1 0

0

0cmp4.ltu D
cmp4.eq E
cmp4.lt.unc C

1cmp4.ltu.unc D
cmp4.eq.unc E
cmp4.eq.and C

1

0cmp4.eq.or D
cmp4.eq.or.andcm E
cmp4.ne.and C

1cmp4.ne.or D
cmp4.ne.or.andcm E



C-12 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.2.2.2 Integer Compare to Zero – Register

A7

40 37 36 35 34 33 32 27 26 20 19 13 12 11 6 5 0

C - E tb x2 ta p2 r3 0 c p1 qp
4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 tb ta c
cmp.gt.and

p1, p2 = r0, r3

C

0

1

0

0cmp.gt.or D
cmp.gt.or.andcm E
cmp.le.and C

1cmp.le.or D
cmp.le.or.andcm E
cmp.ge.and C

1

0cmp.ge.or D
cmp.ge.or.andcm E
cmp.lt.and C

1cmp.lt.or D
cmp.lt.or.andcm E
cmp4.gt.and C

1

0

0cmp4.gt.or D
cmp4.gt.or.andcm E
cmp4.le.and C

1cmp4.le.or D
cmp4.le.or.andcm E
cmp4.ge.and C

1

0cmp4.ge.or D
cmp4.ge.or.andcm E
cmp4.lt.and C

1cmp4.lt.or D
cmp4.lt.or.andcm E



HP/Intel IA-64 Instruction Formats C-13

IA-64 Application ISA Guide 1.0

C.2.2.3 Integer Compare – Immediate-Register

A8

C.2.3 Multimedia

All multimedia ALU instructions are encoded within major opcode 8 using two 1-bit opcode extension fields in bits 36
(za) and 33 (zb) and a 2-bit opcode extension field in bits 35:34 (x2a) as shown in Table C-12. The multimedia ALU
instructions also have a 4-bit opcode extension field in bits 32:29 (x4), and a 2-bit opcode extension field in bits 28:27
(x2b) as shown in Table C-13 on page C-14.

40 37 36 35 34 33 32 27 26 20 19 13 12 11 6 5 0

C - E s x2 ta p2 r3 imm7b c p1 qp
4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

x2 ta c
cmp.lt

p1, p2 = imm8, r3

C

2

0

0cmp.ltu D
cmp.eq E
cmp.lt.unc C

1cmp.ltu.unc D
cmp.eq.unc E
cmp.eq.and C

1

0cmp.eq.or D
cmp.eq.or.andcm E
cmp.ne.and C

1cmp.ne.or D
cmp.ne.or.andcm E
cmp4.lt C

3

0

0cmp4.ltu D
cmp4.eq E
cmp4.lt.unc C

1cmp4.ltu.unc D
cmp4.eq.unc E
cmp4.eq.and C

1

0cmp4.eq.or D
cmp4.eq.or.andcm E
cmp4.ne.and C

1cmp4.ne.or D
cmp4.ne.or.andcm E

Table C-12. Multimedia ALU 2-bit+1-bit Opcode Extensions

Opcode
Bits 40:37

x2a
Bits 

35:34

za
Bit 
36

zb
Bit 
33

8 1
0 0 Multimedia ALU Size 1 (Table C-13)

1 Multimedia ALU Size 2 (Table C-14)

1 0 Multimedia ALU Size 4 (Table C-15)
1



C-14 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

Table C-13. Multimedia ALU Size 1 4-bit+2-bit Opcode Extensions

Opcode
Bits 

40:37

x2a
Bits 

35:34

za
Bit 
36

zb
Bit 
33

x4
Bits 

32:29

x2b
Bits 28:27

0 1 2 3

8 1 0 0

0 padd1 A9 padd1.sss A9 padd1.uuu A9 padd1.uus A9
1 psub1 A9 psub1.sss A9 psub1.uuu A9 psub1.uus A9
2 pavg1 A9 pavg1.raz A9
3 pavgsub1 A9
4
5
6
7
8
9 pcmp1.eq A9 pcmp1.gt A9
A
B
C
D
E
F

Table C-14. Multimedia ALU Size 2 4-bit+2-bit Opcode Extensions

Opcode
Bits 

40:37

x2a
Bits 

35:34

za
Bit 
36

zb
Bit 
33

x4
Bits 

32:29

x2b
Bits 28:27

0 1 2 3

8 1 0 1

0 padd2 A9 padd2.sss A9 padd2.uuu A9 padd2.uus A9
1 psub2 A9 psub2.sss A9 psub2.uuu A9 psub2.uus A9
2 pavg2 A9 pavg2.raz A9
3 pavgsub2 A9
4 pshladd2 A10
5
6 pshradd2 A10
7
8
9 pcmp2.eq A9 pcmp2.gt A9
A
B
C
D
E
F



HP/Intel IA-64 Instruction Formats C-15

IA-64 Application ISA Guide 1.0

C.2.3.1 Multimedia ALU

A9

Table C-15. Multimedia ALU Size 4 4-bit+2-bit Opcode Extensions

Opcode
Bits 

40:37

x2a
Bits 

35:34

za
Bit 
36

zb
Bit 
33

x4
Bits 

32:29

x2b
Bits 28:27

0 1 2 3

8 1 1 0

0 padd4 A9
1 psub4 A9
2
3
4
5
6
7
8
9 pcmp4.eq A9 pcmp4.gt A9
A
B
C
D
E
F

40 37 36 35 34 33 32 29 28 27 26 20 19 13 12 6 5 0

8 za x2a zb x4 x2b r3 r2 r1 qp
4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a za zb x4 x2b
padd1

r1 = r2, r3 8 1

0 0

0

0padd2 1
padd4 1 0
padd1.sss 0 0 1padd2.sss 1
padd1.uuu 0 0 2padd2.uuu 1
padd1.uus 0 0 3padd2.uus 1
psub1 0 0

1

0psub2 1
psub4 1 0
psub1.sss 0 0 1psub2.sss 1
psub1.uuu 0 0 2psub2.uuu 1
psub1.uus 0 0 3psub2.uus 1
pavg1 0 0

2
2pavg2 1

pavg1.raz 0 0 3pavg2.raz 1
pavgsub1 0 0 3 2pavgsub2 1
pcmp1.eq 0 0

9

0pcmp2.eq 1
pcmp4.eq 1 0
pcmp1.gt 0 0

1pcmp2.gt 1
pcmp4.gt 1 0



C-16 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.2.3.2 Multimedia Shift and Add

A10

C.3 I-Unit Instruction Encodings

C.3.1 Multimedia and Variable Shifts

All multimedia multiply/shift/max/min/mix/mux/pack/unpack and variable shift instructions are encoded within major
opcode 7 using two 1-bit opcode extension fields in bits 36 (za) and 33 (zb) and a 1-bit reserved opcode extension in bit 32
(ve) as shown in Table C-16. They also have a 2-bit opcode extension field in bits 35:34 (x2a) and a 2-bit field in bits 29:28
(x2b) and most have a 2-bit field in bits 31:30 (x2c) as shown in Table C-17.

40 37 36 35 34 33 32 29 28 27 26 20 19 13 12 6 5 0

8 za x2a zb x4 ct2d r3 r2 r1 qp
4 1 2 1 4 2 7 7 7 6

Instruction Operands Opcode
Extension

x2a za zb x4
pshladd2

r1 = r2, count2, r3 8 1 0 1 4
pshradd2 6

Table C-16. Multimedia and Variable Shift 1-bit Opcode Extensions

Opcode
Bits 

40:37

za
Bit 
36

zb
Bit 
33

ve
Bit 32

0 1

7
0 0 Multimedia Size 1 (Table C-17)

1 Multimedia Size 2 (Table C-18)

1 0 Multimedia Size 4 (Table C-19)
1 Variable Shift (Table C-20)

Table C-17. Multimedia Max/Min/Mix/Pack/Unpack Size 1 2-bit Opcode Extensions

Opcode
Bits 

40:37

za
Bit 
36

zb
Bit 
33

ve
Bit 
32

x2a
Bits 

35:34

x2b
Bits 

29:28

x2c
Bits 31:30

0 1 2 3

7 0 0 0

0

0
1
2
3

1

0
1
2
3

2

0 unpack1.h I2 mix1.r I2
1 pmin1.u I2 pmax1.u I2
2 unpack1.l I2 mix1.l I2
3 psad1 I2

3

0
1
2 mux1 I3
3



HP/Intel IA-64 Instruction Formats C-17

IA-64 Application ISA Guide 1.0

Table C-18. Multimedia Multiply/Shift/Max/Min/Mix/Pack/Unpack Size 2 2-bit Opcode Extensions

Opcode
Bits 

40:37

za
Bit 
36

zb
Bit 
33

ve
Bit 
32

x2a
Bits 

35:34

x2b
Bits 

29:28

x2c
Bits 31:30

0 1 2 3

7 0 1 0

0

0 pshr2.u – var I5 pshl2 – var I7
1 pmpyshr2.u I1
2 pshr2 – var I5
3 pmpyshr2 I1

1

0
1 pshr2.u – fixed I6 popcnt I9
2
3 pshr2 – fixed I6

2

0 pack2.uss I2 unpack2.h I2 mix2.r I2
1 pmpy2.r I2
2 pack2.sss I2 unpack2.l I2 mix2.l I2
3 pmin2 I2 pmax2 I2 pmpy2.l I2

3

0
1 pshl2 – fixed I8
2 mux2 I4
3

Table C-19. Multimedia Shift/Mix/Pack/Unpack Size 4 2-bit Opcode Extensions

Opcode
Bits 

40:37

za
Bit 
36

zb
Bit 
33

ve
Bit 
32

x2a
Bits 

35:34

x2b
Bits 

29:28

x2c
Bits 31:30

0 1 2 3

7 1 0 0

0

0 pshr4.u – var I5 pshl4 – var I7
1
2 pshr4 – var I5
3

1

0
1 pshr4.u – fixed I6
2
3 pshr4 – fixed I6

2

0 unpack4.h I2 mix4.r I2
1
2 pack4.sss I2 unpack4.l I2 mix4.l I2
3

3

0
1 pshl4 – fixed I8
2
3



C-18 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.3.1.1 Multimedia Multiply and Shift

I1

C.3.1.2 Multimedia Multiply/Mix/Pack/Unpack

I2

Table C-20. Variable Shift 2-bit Opcode Extensions

Opcode
Bits 

40:37

za
Bit 
36

zb
Bit 
33

ve
Bit 
32

x2a
Bits 

35:34

x2b
Bits 

29:28

x2c
Bits 31:30

0 1 2 3

7 1 1 0

0

0 shr.u – var I5 shl – var I7
1
2 shr – var I5
3

1

0
1
2
3

2

0
1
2
3

3

0
1
2
3

40 37 36 35 34 33 32 31 30 29 28 27 26 20 19 13 12 6 5 0

7 za x2a zbvect2d x2b r3 r2 r1 qp
4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b
pmpyshr2

r1 = r2, r3, count2 7 0 1 0 0 3
pmpyshr2.u 1

40 37 36 35 34 33 32 31 30 29 28 27 26 20 19 13 12 6 5 0

7 za x2a zbve x2c x2b r3 r2 r1 qp
4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c
pmpy2.r

r1 = r2, r3 7

0 1

0 2

1 3pmpy2.l 3
mix1.r 0 0

0

2

mix2.r 0 1
mix4.r 1 0
mix1.l 0 0

2mix2.l 0 1
mix4.l 1 0
pack2.uss 0 1 0

0pack2.sss 0 1 2pack4.sss 1 0
unpack1.h 0 0

0

1

unpack2.h 0 1
unpack4.h 1 0
unpack1.l 0 0

2unpack2.l 0 1
unpack4.l 1 0
pmin1.u 0 0 1 0
pmax1.u 1
pmin2 0 1 3 0
pmax2 1
psad1 0 0 3 2



HP/Intel IA-64 Instruction Formats C-19

IA-64 Application ISA Guide 1.0

C.3.1.3 Multimedia Mux1

I3

C.3.1.4 Multimedia Mux2

I4

C.3.1.5 Shift Right – Variable

I5

C.3.1.6 Multimedia Shift Right – Fixed

I6

C.3.1.7 Shift Left – Variable

I7

40 37 36 35 34 33 32 31 30 29 28 27 24 23 20 19 13 12 6 5 0

7 za x2a zbve x2c x2b mbt4c r2 r1 qp
4 1 2 1 1 2 2 4 4 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c
mux1 r1 = r2, mbtype4 7 0 0 0 3 2 2

40 37 36 35 34 33 32 31 30 29 28 27 20 19 13 12 6 5 0

7 za x2a zbve x2c x2b mht8c r2 r1 qp
4 1 2 1 1 2 2 8 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c
mux2 r1 = r2, mhtype8 7 0 1 0 3 2 2

40 37 36 35 34 33 32 31 30 29 28 27 26 20 19 13 12 6 5 0

7 za x2a zbve x2c x2b r3 r2 r1 qp
4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c
pshr2

r1 = r3, r2 7

0 1

0 0

2

0

pshr4 1 0
shr 1 1
pshr2.u 0 1

0pshr4.u 1 0
shr.u 1 1

40 37 36 35 34 33 32 31 30 29 28 27 26 20 19 18 14 13 12 6 5 0

7 za x2a zbve x2c x2b r3 count5b r1 qp
4 1 2 1 1 2 2 1 7 1 5 1 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c
pshr2

r1 = r3, count5 7

0 1

0 1
3

0pshr4 1 0
pshr2.u 0 1 1pshr4.u 1 0

40 37 36 35 34 33 32 31 30 29 28 27 26 20 19 13 12 6 5 0

7 za x2a zbve x2c x2b r3 r2 r1 qp
4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c
pshl2

r1 = r2, r3 7
0 1

0 0 0 1pshl4 1 0
shl 1 1



C-20 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.3.1.8 Multimedia Shift Left – Fixed

I8

C.3.1.9 Population Count

I9

C.3.2 Integer Shifts

The integer shift, test bit, and test NaT instructions are encoded within major opcode 5 using a 2-bit opcode extension
field in bits 35:34 (x2) and a 1-bit opcode extension field in bit 33 (x). The extract and test bit instructions also have a 1-bit
opcode extension field in bit 13 (y). Table C-21 shows the test bit, extract, and shift right pair assignments.

Most deposit instructions also have a 1-bit opcode extension field in bit 26 (y). Table C-22 shows these assignments.

C.3.2.1 Shift Right Pair

I10

40 37 36 35 34 33 32 31 30 29 28 27 25 24 20 19 13 12 6 5 0

7 za x2a zbve x2c x2b ccount5c r2 r1 qp
4 1 2 1 1 2 2 3 5 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c
pshl2

r1 = r2, count5 7 0 1 0 3 1 1pshl4 1 0

40 37 36 35 34 33 32 31 30 29 28 27 26 20 19 13 12 6 5 0

7 za x2a zbve x2c x2b r3 0 r1 qp
4 1 2 1 1 2 2 1 7 7 7 6

Instruction Operands Opcode
Extension

za zb ve x2a x2b x2c
popcnt r1 = r3 7 0 1 0 1 1 2

Table C-21. Integer Shift/Test Bit/Test NaT 2-bit Opcode Extensions

Opcode
bits 

40:37

x2
bits 

35:34

x
bit 
33

y
bit 13

0 1

5

0

0

Test Bit (Table C-23) Test NaT (Table C-23)
1 extr.u I11 extr I11
2
3 shrp I10

Table C-22. Deposit Opcode Extensions

Opcode
bits 

40:37

x2
bits 

35:34

x
bit 
33

y
bit 26

0 1

5

0

1

Test Bit/Test NaT (Table C-23)
1 dep.z I12 dep.z – imm8 I13
2
3 dep – imm1 I14

40 37 36 35 34 33 32 27 26 20 19 13 12 6 5 0

5 x2 x count6d r3 r2 r1 qp
4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension
x2 x

shrp r1 = r2, r3, count6 5 3 0



HP/Intel IA-64 Instruction Formats C-21

IA-64 Application ISA Guide 1.0

C.3.2.2 Extract

I11

C.3.2.3 Zero and Deposit

I12

C.3.2.4 Zero and Deposit Immediate8

I13

C.3.2.5 Deposit Immediate1

I14

C.3.2.6 Deposit

I15

40 37 36 35 34 33 32 27 26 20 19 14 13 12 6 5 0

5 x2 x len6d r3 pos6b y r1 qp
4 1 2 1 6 7 6 1 7 6

Instruction Operands Opcode
Extension

x2 x y
extr.u

r1 = r3, pos6, len6 5 1 0 0
extr 1

40 37 36 35 34 33 32 27 26 25 20 19 13 12 6 5 0

5 x2 x len6d y cpos6c r2 r1 qp
4 1 2 1 6 1 6 7 7 6

Instruction Operands Opcode
Extension

x2 x y
dep.z r1 = r2, pos6, len6 5 1 1 0

40 37 36 35 34 33 32 27 26 25 20 19 13 12 6 5 0

5 s x2 x len6d y cpos6c imm7b r1 qp
4 1 2 1 6 1 6 7 7 6

Instruction Operands Opcode
Extension

x2 x y
dep.z r1 = imm8, pos6, len6 5 1 1 1

40 37 36 35 34 33 32 27 26 20 19 14 13 12 6 5 0

5 s x2 x len6d r3 cpos6b r1 qp
4 1 2 1 6 7 6 1 7 6

Instruction Operands Opcode
Extension
x2 x

dep r1 = imm1, r3, pos6, len6 5 3 1

40 37 36 31 30 27 26 20 19 13 12 6 5 0

4 cpos6d len4d r3 r2 r1 qp
4 6 4 7 7 7 6

Instruction Operands Opcode
dep r1 = r2, r3, pos6, len4 4



C-22 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.3.3 Test Bit

All test bit instructions are encoded within major opcode 5 using a 2-bit opcode extension field in bits 35:34 (x2) plus four
1-bit opcode extension fields in bits 33 (ta), 36 (tb), 12 (c), and 19 (y). Table C-23 summarizes these assignments.

C.3.3.1 Test Bit

I16

C.3.3.2 Test NaT

I17

Table C-23. Test Bit Opcode Extensions

Opcode
bits 

40:37

x2
bits 

35:34

ta
bit 
33

tb
bit 
36

c
bit 
12

y
bit 13

0 1

5 0

0
0 0 tbit.z I16 tnat.z I17

1 tbit.z.unc I16 tnat.z.unc I17

1 0 tbit.z.and I16 tnat.z.and I17
1 tbit.nz.and I16 tnat.nz.and I17

1
0 0 tbit.z.or I16 tnat.z.or I17

1 tbit.nz.or I16 tnat.nz.or I17

1 0 tbit.z.or.andcm I16 tnat.z.or.andcm I17
1 tbit.nz.or.andcm I16 tnat.nz.or.andcm I17

40 37 36 35 34 33 32 27 26 20 19 14 13 12 11 6 5 0

5 tb x2 ta p2 r3 pos6b y c p1 qp
4 1 2 1 6 7 6 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y c
tbit.z

p1, p2 = r3, pos6 5 0

0
0

0

0
tbit.z.unc 1
tbit.z.and 1 0
tbit.nz.and 1
tbit.z.or

1
0 0

tbit.nz.or 1
tbit.z.or.andcm 1 0
tbit.nz.or.andcm 1

40 37 36 35 34 33 32 27 26 20 19 14 13 12 11 6 5 0

5 tb x2 ta p2 r3 y c p1 qp
4 1 2 1 6 7 6 1 1 6 6

Instruction Operands Opcode
Extension

x2 ta tb y c
tnat.z

p1, p2 = r3 5 0

0
0

1

0
tnat.z.unc 1
tnat.z.and 1 0
tnat.nz.and 1
tnat.z.or

1
0 0

tnat.nz.or 1
tnat.z.or.andcm 1 0
tnat.nz.or.andcm 1



HP/Intel IA-64 Instruction Formats C-23

IA-64 Application ISA Guide 1.0

C.3.4 Miscellaneous I-Unit Instructions

The miscellaneous I-unit instructions are encoded in major opcode 0 using a 3-bit opcode extension field (x3) in bits
35:33. Some also have a 6-bit opcode extension field (x6) in bits 32:27. Table C-24 shows the 3-bit assignments and
Table C-25 summarizes the 6-bit assignments.

C.3.4.1 Break/Nop (I-Unit)

I19

C.3.4.2 Integer Speculation Check (I-Unit)

I20

Table C-24. Misc I-Unit 3-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

0

0 6-bit Ext (Table C-25)
1 chk.s.i – int I20
2 mov to pr.rot – imm44 I24
3 mov to pr I23
4
5
6
7 mov to b I22

Table C-25. Misc I-Unit 6-bit Opcode Extensions

Opcode
Bits 

40:37

x3
Bits 

35:33

x6
Bits 

30:27
Bits 32:31

0 1 2 3

0 0

0 break.i I19 zxt1 I29 mov from ip I25
1 nop.i I19 zxt2 I29 mov from b I22
2 zxt4 I29 mov.i from ar I28
3 mov from pr I25
4 sxt1 I29
5 sxt2 I29
6 sxt4 I29
7
8 czx1.l I29
9 czx2.l I29
A mov.i to ar – imm8 I27 mov.i to ar I26
B
C czx1.r I29
D czx2.r I29
E
F

40 37 36 35 33 32 27 26 25 6 5 0

0 i x3 x6 imm20a qp
4 1 3 6 1 20 6

Instruction Operands Opcode
Extension
x3 x6

break.i
imm21 0 0 00

nop.i 01

40 37 36 35 33 32 20 19 13 12 6 5 0

0 s x3 imm13c r2 imm7a qp
4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3
chk.s.i r2, target25 0 1



C-24 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.3.5 GR/BR Moves

The GR/BR move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit Instructions” on page C-23 for
a summary of the opcode extensions. The mov to BR instruction uses a 1-bit opcode extension field (x) in bit 22 to distin-
guish the return form from the normal form.

C.3.5.1 Move to BR

I21

C.3.5.2 Move from BR

I22

C.3.6 GR/Predicate/IP Moves

The GR/Predicate/IP move instructions are encoded in major opcode 0. See “Miscellaneous I-Unit Instructions” on
page C-23 for a summary of the opcode extensions.

C.3.6.1 Move to Predicates – Register

I23

C.3.6.2 Move to Predicates – Immediate 44

I24

C.3.6.3 Move from Predicates/IP

I25

40 37 36 35 33 32 24 23 22 21 20 19 13 12 9 8 6 5 0

0 x3 x r2 b1 qp
4 1 3 10 1 2 7 4 3 6

Instruction Operands Opcode
Extension
x3 x

mov b1 = r2 0 7 0

mov.ret 1

40 37 36 35 33 32 27 26 16 15 13 12 6 5 0

0 x3 x6 b2 r1 qp
4 1 3 6 11 3 7 6

Instruction Operands Opcode
Extension
x3 x6

mov r1 = b2 0 0 31

40 37 36 35 33 32 31 24 23 20 19 13 12 6 5 0

0 s x3 mask8c r2 mask7a qp
4 1 3 1 8 4 7 7 6

Instruction Operands Opcode
Extension

x3
mov pr = r2, mask17 0 3

40 37 36 35 33 32 6 5 0

0 s x3 imm27a qp
4 1 3 27 6

Instruction Operands Opcode
Extension

x3
mov pr.rot = imm44 0 2

40 37 36 35 33 32 27 26 13 12 6 5 0

0 x3 x6 r1 qp
4 1 3 6 14 7 6

Instruction Operands Opcode
Extension
x3 x6

mov r1 = ip 0 0 30
r1 = pr 33



HP/Intel IA-64 Instruction Formats C-25

IA-64 Application ISA Guide 1.0

C.3.7 GR/AR Moves (I-Unit)

The I-Unit GR/AR move instructions are encoded in major opcode 0. (some ARs are accessed using system/memory man-
agement instructions on the M-unit. See “GR/AR Moves (M-Unit)” on page C-42.) See “Miscellaneous I-Unit Instruc-
tions” on page C-23 for a summary of the I-Unit GR/AR opcode extensions.

C.3.7.1 Move to AR – Register (I-Unit)

I26

C.3.7.2 Move to AR – Immediate 8 (I-Unit)

I27

C.3.7.3 Move from AR (I-Unit)

I28

C.3.8 Sign/Zero Extend/Compute Zero Index

I29

40 37 36 35 33 32 27 26 20 19 13 12 6 5 0

0 x3 x6 ar3 r2 qp
4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension
x3 x6

mov.i ar3 = r2 0 0 2A

40 37 36 35 33 32 27 26 20 19 13 12 6 5 0

0 s x3 x6 ar3 imm7b qp
4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension
x3 x6

mov.i ar3 = imm8 0 0 0A

40 37 36 35 33 32 27 26 20 19 13 12 6 5 0

0 x3 x6 ar3 r1 qp
4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension
x3 x6

mov.i r1 = ar3 0 0 32

40 37 36 35 33 32 27 26 20 19 13 12 6 5 0

0 x3 x6 r3 r1 qp
4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension
x3 x6

zxt1

r1 = r3 0 0

10
zxt2 11
zxt4 12
sxt1 14
sxt2 15
sxt4 16
czx1.l 18
czx2.l 19
czx1.r 1C
czx2.r 1D



C-26 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.4 M-Unit Instruction Encodings

C.4.1 Loads and Stores

All load and store instructions are encoded within major opcodes 4, 5, 6, and 7 using a 6-bit opcode extension field in bits
35:30 (x6). Instructions in major opcode 4 (integer load/store, semaphores, and get FR) use two 1-bit opcode extension
fields in bit 36 (m) and bit 27 (x) as shown in Table C-26. Instructions in major opcode 6 (floating-point load/store, load
pair, and set FR) use two 1-bit opcode extension fields in bit 36 (m) and bit 27 (x) as shown in Table C-27.

The integer load/store opcode extensions are summarized in Table C-28 on page C-26, Table C-29 on page C-27, and
Table C-30 on page C-27, and the semaphore and get FR opcode extensions in Table C-31 on page C-28. The floating-
point load/store opcode extensions are summarized in Table C-32 on page C-28, Table C-33 on page C-29, and
Table C-34 on page C-29, the floating-point load pair and set FR opcode extensions in Table C-35 on page C-30 and
Table C-36 on page C-30.

Table C-26. Integer Load/Store/Semaphore/Get FR 1-bit Opcode Extensions

Opcode
Bits 40:37

m
Bit 36

x
Bit 27

4

0 0 Load/Store (Table C-28)
0 1 Semaphore/get FR (Table C-31)
1 0 Load +Reg (Table C-29)
1 1

Table C-27. Floating-point Load/Store/Load Pair/Set FR 1-bit Opcode Extensions

Opcode
Bits 40:37

m
Bit 36

x
Bit 27

6

0 0 FP Load/Store (Table C-32)
0 1 FP Load Pair/set FR (Table C-35)
1 0 FP Load +Reg (Table C-33)
1 1 FP Load Pair +Imm (Table C-36)

Table C-28. Integer Load/Store Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6
Bits 

35:32
Bits 31:30

0 1 2 3

4 0 0

0 ld1 M1 ld2 M1 ld4 M1 ld8 M1
1 ld1.s M1 ld2.s M1 ld4.s M1 ld8.s M1
2 ld1.a M1 ld2.a M1 ld4.a M1 ld8.a M1
3 ld1.sa M1 ld2.sa M1 ld4.sa M1 ld8.sa M1
4 ld1.bias M1 ld2.bias M1 ld4.bias M1 ld8.bias M1
5 ld1.acq M1 ld2.acq M1 ld4.acq M1 ld8.acq M1
6 ld8.fill M1
7
8 ld1.c.clr M1 ld2.c.clr M1 ld4.c.clr M1 ld8.c.clr M1
9 ld1.c.nc M1 ld2.c.nc M1 ld4.c.nc M1 ld8.c.nc M1
A ld1.c.clr.acq M1 ld2.c.clr.acq M1 ld4.c.clr.acq M1 ld8.c.clr.acq M1
B
C st1 M4 st2 M4 st4 M4 st8 M4
D st1.rel M4 st2.rel M4 st4.rel M4 st8.rel M4
E st8.spill M4
F



HP/Intel IA-64 Instruction Formats C-27

IA-64 Application ISA Guide 1.0

Table C-29. Integer Load +Reg Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6
Bits 

35:32
Bits 31:30

0 1 2 3

4 1 0

0 ld1 M2 ld2 M2 ld4 M2 ld8 M2
1 ld1.s M2 ld2.s M2 ld4.s M2 ld8.s M2
2 ld1.a M2 ld2.a M2 ld4.a M2 ld8.a M2
3 ld1.sa M2 ld2.sa M2 ld4.sa M2 ld8.sa M2
4 ld1.bias M2 ld2.bias M2 ld4.bias M2 ld8.bias M2
5 ld1.acq M2 ld2.acq M2 ld4.acq M2 ld8.acq M2
6 ld8.fill M2
7
8 ld1.c.clr M2 ld2.c.clr M2 ld4.c.clr M2 ld8.c.clr M2
9 ld1.c.nc M2 ld2.c.nc M2 ld4.c.nc M2 ld8.c.nc M2
A ld1.c.clr.acq M2 ld2.c.clr.acq M2 ld4.c.clr.acq M2 ld8.c.clr.acq M2
B
C
D
E
F

Table C-30. Integer Load/Store +Imm Opcode Extensions

Opcode
Bits 

40:37

x6
Bits 

35:32
Bits 31:30

0 1 2 3

5

0 ld1 M3 ld2 M3 ld4 M3 ld8 M3
1 ld1.s M3 ld2.s M3 ld4.s M3 ld8.s M3
2 ld1.a M3 ld2.a M3 ld4.a M3 ld8.a M3
3 ld1.sa M3 ld2.sa M3 ld4.sa M3 ld8.sa M3
4 ld1.bias M3 ld2.bias M3 ld4.bias M3 ld8.bias M3
5 ld1.acq M3 ld2.acq M3 ld4.acq M3 ld8.acq M3
6 ld8.fill M3
7
8 ld1.c.clr M3 ld2.c.clr M3 ld4.c.clr M3 ld8.c.clr M3
9 ld1.c.nc M3 ld2.c.nc M3 ld4.c.nc M3 ld8.c.nc M3
A ld1.c.clr.acq M3 ld2.c.clr.acq M3 ld4.c.clr.acq M3 ld8.c.clr.acq M3
B
C st1 M5 st2 M5 st4 M5 st8 M5
D st1.rel M5 st2.rel M5 st4.rel M5 st8.rel M5
E st8.spill M5
F



C-28 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

Table C-31. Semaphore/Get FR Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6
Bits 

35:32
Bits 31:30

0 1 2 3

4 0 1

0 cmpxchg1.acq M16 cmpxchg2.acq M16 cmpxchg4.acq M16 cmpxchg8.acq M16
1 cmpxchg1.rel M16 cmpxchg2.rel M16 cmpxchg4.rel M16 cmpxchg8.rel M16
2 xchg1 M16 xchg2 M16 xchg4 M16 xchg8 M16
3
4 fetchadd4.acq M17 fetchadd8.acq M17
5 fetchadd4.rel M17 fetchadd8.rel M17
6
7 getf.sig M19 getf.exp M19 getf.s M19 getf.d M19
8
9
A
B
C
D
E
F

Table C-32. Floating-point Load/Store/Lfetch Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6
Bits 

35:32
Bits 31:30

0 1 2 3

6 0 0

0 ldfe M6 ldf8 M6 ldfs M6 ldfd M6
1 ldfe.s M6 ldf8.s M6 ldfs.s M6 ldfd.s M6
2 ldfe.a M6 ldf8.a M6 ldfs.a M6 ldfd.a M6
3 ldfe.sa M6 ldf8.sa M6 ldfs.sa M6 ldfd.sa M6
4
5
6 ldf.fill M6
7
8 ldfe.c.clr M6 ldf8.c.clr M6 ldfs.c.clr M6 ldfd.c.clr M6
9 ldfe.c.nc M6 ldf8.c.nc M6 ldfs.c.nc M6 ldfd.c.nc M6
A
B lfetch M13 lfetch.excl M13 lfetch.fault M13 lfetch.fault.excl M13
C stfe M9 stf8 M9 stfs M9 stfd M9
D
E stf.spill M9
F



HP/Intel IA-64 Instruction Formats C-29

IA-64 Application ISA Guide 1.0

Table C-33. Floating-point Load/Lfetch +Reg Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6
Bits 

35:32
Bits 31:30

0 1 2 3

6 1 0

0 ldfe M7 ldf8 M7 ldfs M7 ldfd M7
1 ldfe.s M7 ldf8.s M7 ldfs.s M7 ldfd.s M7
2 ldfe.a M7 ldf8.a M7 ldfs.a M7 ldfd.a M7
3 ldfe.sa M7 ldf8.sa M7 ldfs.sa M7 ldfd.sa M7
4
5
6 ldf.fill M7
7
8 ldfe.c.clr M7 ldf8.c.clr M7 ldfs.c.clr M7 ldfd.c.clr M7
9 ldfe.c.nc M7 ldf8.c.nc M7 ldfs.c.nc M7 ldfd.c.nc M7
A
B lfetch M14 lfetch.excl M14 lfetch.fault M14 lfetch.fault.excl M14
C
D
E
F

Table C-34. Floating-point Load/Store/Lfetch +Imm Opcode Extensions

Opcode
Bits 

40:37

x6
Bits 

35:32
Bits 31:30

0 1 2 3

7

0 ldfe M8 ldf8 M8 ldfs M8 ldfd M8
1 ldfe.s M8 ldf8.s M8 ldfs.s M8 ldfd.s M8
2 ldfe.a M8 ldf8.a M8 ldfs.a M8 ldfd.a M8
3 ldfe.sa M8 ldf8.sa M8 ldfs.sa M8 ldfd.sa M8
4
5
6 ldf.fill M8
7
8 ldfe.c.clr M8 ldf8.c.clr M8 ldfs.c.clr M8 ldfd.c.clr M8
9 ldfe.c.nc M8 ldf8.c.nc M8 ldfs.c.nc M8 ldfd.c.nc M8
A
B lfetch M15 lfetch.excl M15 lfetch.fault M15 lfetch.fault.excl M15
C stfe M10 stf8 M10 stfs M10 stfd M10
D
E stf.spill M10
F



C-30 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

The load and store instructions all have a 2-bit opcode extension field in bits 29:28 (hint) which encodes locality hint
information. Table C-37and Table C-38 summarize these assignments.

Table C-35. Floating-point Load Pair/Set FR Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6
Bits 

35:32
Bits 31:30

0 1 2 3

6 0 1

0 ldfp8 M11 ldfps M11 ldfpd M11
1 ldfp8.s M11 ldfps.s M11 ldfpd.s M11
2 ldfp8.a M11 ldfps.a M11 ldfpd.a M11
3 ldfp8.sa M11 ldfps.sa M11 ldfpd.sa M11
4
5
6
7 setf.sig M18 setf.exp M18 setf.s M18 setf.d M18
8 ldfp8.c.clr M11 ldfps.c.clr M11 ldfpd.c.clr M11
9 ldfp8.c.nc M11 ldfps.c.nc M11 ldfpd.c.nc M11
A
B
C
D
E
F

Table C-36. Floating-point Load Pair +Imm Opcode Extensions

Opcode
Bits 

40:37

m
Bit 
36

x
Bit 
27

x6
Bits 

35:32
Bits 31:30

0 1 2 3

6 1 1

0 ldfp8 M12 ldfps M12 ldfpd M12
1 ldfp8.s M12 ldfps.s M12 ldfpd.s M12
2 ldfp8.a M12 ldfps.a M12 ldfpd.a M12
3 ldfp8.sa M12 ldfps.sa M12 ldfpd.sa M12
4
5
6
7
8 ldfp8.c.clr M12 ldfps.c.clr M12 ldfpd.c.clr M12
9 ldfp8.c.nc M12 ldfps.c.nc M12 ldfpd.c.nc M12
A
B
C
D
E
F

Table C-37. Load Hint Completer

Hint
Bits 29:28

ldhint

0 none 
1 .nt1
2
3 .nta

Table C-38. Store Hint Completer

Hint
Bits 29:28

sthint

0 none 
1
2
3 .nta



HP/Intel IA-64 Instruction Formats C-31

IA-64 Application ISA Guide 1.0

C.4.1.1 Integer Load

M1

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

4 m x6 hint x r3 r1 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint
ld1.ldhint

r1 = [r3] 4 0 0

00

See 
Table C-37 

on 
page C-30

ld2.ldhint 01
ld4.ldhint 02
ld8.ldhint 03
ld1.s.ldhint 04
ld2.s.ldhint 05
ld4.s.ldhint 06
ld8.s.ldhint 07
ld1.a.ldhint 08
ld2.a.ldhint 09
ld4.a.ldhint 0A
ld8.a.ldhint 0B
ld1.sa.ldhint 0C
ld2.sa.ldhint 0D
ld4.sa.ldhint 0E
ld8.sa.ldhint 0F
ld1.bias.ldhint 10
ld2.bias.ldhint 11
ld4.bias.ldhint 12
ld8.bias.ldhint 13
ld1.acq.ldhint 14
ld2.acq.ldhint 15
ld4.acq.ldhint 16
ld8.acq.ldhint 17
ld8.fill.ldhint 1B
ld1.c.clr.ldhint 20
ld2.c.clr.ldhint 21
ld4.c.clr.ldhint 22
ld8.c.clr.ldhint 23
ld1.c.nc.ldhint 24
ld2.c.nc.ldhint 25
ld4.c.nc.ldhint 26
ld8.c.nc.ldhint 27
ld1.c.clr.acq.ldhint 28
ld2.c.clr.acq.ldhint 29
ld4.c.clr.acq.ldhint 2A
ld8.c.clr.acq.ldhint 2B



C-32 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.4.1.2 Integer Load – Increment by Register

M2

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

4 m x6 hint x r3 r2 r1 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint
ld1.ldhint

r1 = [r3], r2 4 1 0

00

See 
Table C-37 

on 
page C-30

ld2.ldhint 01
ld4.ldhint 02
ld8.ldhint 03
ld1.s.ldhint 04
ld2.s.ldhint 05
ld4.s.ldhint 06
ld8.s.ldhint 07
ld1.a.ldhint 08
ld2.a.ldhint 09
ld4.a.ldhint 0A
ld8.a.ldhint 0B
ld1.sa.ldhint 0C
ld2.sa.ldhint 0D
ld4.sa.ldhint 0E
ld8.sa.ldhint 0F
ld1.bias.ldhint 10
ld2.bias.ldhint 11
ld4.bias.ldhint 12
ld8.bias.ldhint 13
ld1.acq.ldhint 14
ld2.acq.ldhint 15
ld4.acq.ldhint 16
ld8.acq.ldhint 17
ld8.fill.ldhint 1B
ld1.c.clr.ldhint 20
ld2.c.clr.ldhint 21
ld4.c.clr.ldhint 22
ld8.c.clr.ldhint 23
ld1.c.nc.ldhint 24
ld2.c.nc.ldhint 25
ld4.c.nc.ldhint 26
ld8.c.nc.ldhint 27
ld1.c.clr.acq.ldhint 28
ld2.c.clr.acq.ldhint 29
ld4.c.clr.acq.ldhint 2A
ld8.c.clr.acq.ldhint 2B



HP/Intel IA-64 Instruction Formats C-33

IA-64 Application ISA Guide 1.0

C.4.1.3 Integer Load – Increment by Immediate

M3

C.4.1.4 Integer Store

M4

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

5 s x6 hint i r3 imm7b r1 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint
ld1.ldhint

r1 = [r3], imm9 5

00

See 
Table C-37 

on 
page C-30

ld2.ldhint 01
ld4.ldhint 02
ld8.ldhint 03
ld1.s.ldhint 04
ld2.s.ldhint 05
ld4.s.ldhint 06
ld8.s.ldhint 07
ld1.a.ldhint 08
ld2.a.ldhint 09
ld4.a.ldhint 0A
ld8.a.ldhint 0B
ld1.sa.ldhint 0C
ld2.sa.ldhint 0D
ld4.sa.ldhint 0E
ld8.sa.ldhint 0F
ld1.bias.ldhint 10
ld2.bias.ldhint 11
ld4.bias.ldhint 12
ld8.bias.ldhint 13
ld1.acq.ldhint 14
ld2.acq.ldhint 15
ld4.acq.ldhint 16
ld8.acq.ldhint 17
ld8.fill.ldhint 1B
ld1.c.clr.ldhint 20
ld2.c.clr.ldhint 21
ld4.c.clr.ldhint 22
ld8.c.clr.ldhint 23
ld1.c.nc.ldhint 24
ld2.c.nc.ldhint 25
ld4.c.nc.ldhint 26
ld8.c.nc.ldhint 27
ld1.c.clr.acq.ldhint 28
ld2.c.clr.acq.ldhint 29
ld4.c.clr.acq.ldhint 2A
ld8.c.clr.acq.ldhint 2B

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

4 m x6 hint x r3 r2 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint
st1.sthint

[r3] = r2 4 0 0

30

See 
Table C-38 

on 
page C-30

st2.sthint 31
st4.sthint 32
st8.sthint 33
st1.rel.sthint 34
st2.rel.sthint 35
st4.rel.sthint 36
st8.rel.sthint 37
st8.spill.sthint 3B



C-34 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.4.1.5 Integer Store – Increment by Immediate

M5

C.4.1.6 Floating-point Load

M6

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

5 s x6 hint i r3 r2 imm7a qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint
st1.sthint

[r3] = r2, imm9 5

30

See 
Table C-38 

on 
page C-30

st2.sthint 31
st4.sthint 32
st8.sthint 33
st1.rel.sthint 34
st2.rel.sthint 35
st4.rel.sthint 36
st8.rel.sthint 37
st8.spill.sthint 3B

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

6 m x6 hint x r3 f1 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint
ldfs.ldhint

f1 = [r3] 6 0 0

02

See 
Table C-37 

on 
page C-30

ldfd.ldhint 03
ldf8.ldhint 01
ldfe.ldhint 00
ldfs.s.ldhint 06
ldfd.s.ldhint 07
ldf8.s.ldhint 05
ldfe.s.ldhint 04
ldfs.a.ldhint 0A
ldfd.a.ldhint 0B
ldf8.a.ldhint 09
ldfe.a.ldhint 08
ldfs.sa.ldhint 0E
ldfd.sa.ldhint 0F
ldf8.sa.ldhint 0D
ldfe.sa.ldhint 0C
ldf.fill.ldhint 1B
ldfs.c.clr.ldhint 22
ldfd.c.clr.ldhint 23
ldf8.c.clr.ldhint 21
ldfe.c.clr.ldhint 20
ldfs.c.nc.ldhint 26
ldfd.c.nc.ldhint 27
ldf8.c.nc.ldhint 25
ldfe.c.nc.ldhint 24



HP/Intel IA-64 Instruction Formats C-35

IA-64 Application ISA Guide 1.0

C.4.1.7 Floating-point Load – Increment by Register

M7

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

6 m x6 hint x r3 r2 f1 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint
ldfs.ldhint

f1 = [r3], r2 6 1 0

02

See 
Table C-37 

on 
page C-30

ldfd.ldhint 03
ldf8.ldhint 01
ldfe.ldhint 00
ldfs.s.ldhint 06
ldfd.s.ldhint 07
ldf8.s.ldhint 05
ldfe.s.ldhint 04
ldfs.a.ldhint 0A
ldfd.a.ldhint 0B
ldf8.a.ldhint 09
ldfe.a.ldhint 08
ldfs.sa.ldhint 0E
ldfd.sa.ldhint 0F
ldf8.sa.ldhint 0D
ldfe.sa.ldhint 0C
ldf.fill.ldhint 1B
ldfs.c.clr.ldhint 22
ldfd.c.clr.ldhint 23
ldf8.c.clr.ldhint 21
ldfe.c.clr.ldhint 20
ldfs.c.nc.ldhint 26
ldfd.c.nc.ldhint 27
ldf8.c.nc.ldhint 25
ldfe.c.nc.ldhint 24



C-36 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.4.1.8 Floating-point Load – Increment by Immediate

M8

C.4.1.9 Floating-point Store

M9

C.4.1.10 Floating-point Store – Increment by Immediate

M10

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

7 s x6 hint i r3 imm7b f1 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint
ldfs.ldhint

f1 = [r3], imm9 7

02

See 
Table C-37 

on 
page C-30

ldfd.ldhint 03
ldf8.ldhint 01
ldfe.ldhint 00
ldfs.s.ldhint 06
ldfd.s.ldhint 07
ldf8.s.ldhint 05
ldfe.s.ldhint 04
ldfs.a.ldhint 0A
ldfd.a.ldhint 0B
ldf8.a.ldhint 09
ldfe.a.ldhint 08
ldfs.sa.ldhint 0E
ldfd.sa.ldhint 0F
ldf8.sa.ldhint 0D
ldfe.sa.ldhint 0C
ldf.fill.ldhint 1B
ldfs.c.clr.ldhint 22
ldfd.c.clr.ldhint 23
ldf8.c.clr.ldhint 21
ldfe.c.clr.ldhint 20
ldfs.c.nc.ldhint 26
ldfd.c.nc.ldhint 27
ldf8.c.nc.ldhint 25
ldfe.c.nc.ldhint 24

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

6 m x6 hint x r3 f2 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint
stfs.sthint

[r3] = f2 6 0 0

32
See 

Table C-38 
on page C-30

stfd.sthint 33
stf8.sthint 31
stfe.sthint 30
stf.spill.sthint 3B

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

7 s x6 hint i r3 f2 imm7a qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint
stfs.sthint

[r3] = f2, imm9 7

32
See 

Table C-38 
on page C-30

stfd.sthint 33
stf8.sthint 31
stfe.sthint 30
stf.spill.sthint 3B



HP/Intel IA-64 Instruction Formats C-37

IA-64 Application ISA Guide 1.0

C.4.1.11 Floating-point Load Pair

M11

C.4.1.12 Floating-point Load Pair – Increment by Immediate

M12

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

6 m x6 hint x r3 f2 f1 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint
ldfps.ldhint

f1, f2 = [r3] 6 0 1

02

See 
Table C-37 

on 
page C-30

ldfpd.ldhint 03
ldfp8.ldhint 01
ldfps.s.ldhint 06
ldfpd.s.ldhint 07
ldfp8.s.ldhint 05
ldfps.a.ldhint 0A
ldfpd.a.ldhint 0B
ldfp8.a.ldhint 09
ldfps.sa.ldhint 0E
ldfpd.sa.ldhint 0F
ldfp8.sa.ldhint 0D
ldfps.c.clr.ldhint 22
ldfpd.c.clr.ldhint 23
ldfp8.c.clr.ldhint 21
ldfps.c.nc.ldhint 26
ldfpd.c.nc.ldhint 27
ldfp8.c.nc.ldhint 25

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

6 m x6 hint x r3 f2 f1 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint
ldfps.ldhint f1, f2 = [r3], 8

6 1 1

02

See 
Table C-37 

on 
page C-30

ldfpd.ldhint
f1, f2 = [r3], 16 03

ldfp8.ldhint 01
ldfps.s.ldhint f1, f2 = [r3], 8 06
ldfpd.s.ldhint

f1, f2 = [r3], 16 07
ldfp8.s.ldhint 05
ldfps.a.ldhint f1, f2 = [r3], 8 0A
ldfpd.a.ldhint

f1, f2 = [r3], 16 0B
ldfp8.a.ldhint 09
ldfps.sa.ldhint f1, f2 = [r3], 8 0E
ldfpd.sa.ldhint

f1, f2 = [r3], 16 0F
ldfp8.sa.ldhint 0D
ldfps.c.clr.ldhint f1, f2 = [r3], 8 22
ldfpd.c.clr.ldhint

f1, f2 = [r3], 16 23
ldfp8.c.clr.ldhint 21
ldfps.c.nc.ldhint f1, f2 = [r3], 8 26
ldfpd.c.nc.ldhint

f1, f2 = [r3], 16 27
ldfp8.c.nc.ldhint 25



C-38 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.4.2 Line Prefetch

The line prefetch instructions are encoded in major opcodes 6 and 7 along with the floating-point load/store instructions.
See “Loads and Stores” on page C-26 for a summary of the opcode extensions.

The line prefetch instructions all have a 2-bit opcode extension field in bits 29:28 (hint) which encodes locality hint infor-
mation as shown in Table C-39.

C.4.2.1 Line Prefetch

M13

C.4.2.2 Line Prefetch – Increment by Register

M14

C.4.2.3 Line Prefetch – Increment by Immediate

M15

Table C-39. Line Prefetch Hint Completer

Hint
Bits 29:28

lfhint

0 none 
1 .nt1
2 .nt2
3 .nta

40 37 36 35 30 29 28 27 26 20 19 6 5 0

6 m x6 hint x r3 qp
4 1 6 2 1 7 14 6

Instruction Operands Opcode
Extension

m x x6 hint
lfetch.lfhint

[r3] 6 0 0

2C See 
Table C-39 on 

page C-38

lfetch.excl.lfhint 2D
lfetch.fault.lfhint 2E
lfetch.fault.excl.lfhint 2F

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

6 m x6 hint x r3 r2 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint
lfetch.lfhint

[r3], r2 6 1 0

2C See 
Table C-39 on 

page C-38

lfetch.excl.lfhint 2D
lfetch.fault.lfhint 2E
lfetch.fault.excl.lfhint 2F

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

7 s x6 hint i r3 imm7b qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

x6 hint
lfetch.lfhint

[r3], imm9 7

2C See 
Table C-39 on 

page C-38

lfetch.excl.lfhint 2D
lfetch.fault.lfhint 2E
lfetch.fault.excl.lfhint 2F



HP/Intel IA-64 Instruction Formats C-39

IA-64 Application ISA Guide 1.0

C.4.3 Semaphores

The semaphore instructions are encoded in major opcode 4 along with the integer load/store instructions. See “Loads and
Stores” on page C-26 for a summary of the opcode extensions.

C.4.3.1 Exchange/Compare and Exchange

M16

C.4.3.2 Fetch and Add – Immediate

M17

C.4.4 Set/Get FR

The set FR instructions are encoded in major opcode 6 along with the floating-point load/store instructions. The get FR
instructions are encoded in major opcode 4 along with the integer load/store instructions. See “Loads and Stores” on
page C-26 for a summary of the opcode extensions.

C.4.4.1 Set FR

M18

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

4 m x6 hint x r3 r2 r1 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6 hint
cmpxchg1.acq.ldhint

r1 = [r3], r2, ar.ccv

4 0 1

00

See 
Table C-37 

on 
page C-30

cmpxchg2.acq.ldhint 01
cmpxchg4.acq.ldhint 02
cmpxchg8.acq.ldhint 03
cmpxchg1.rel.ldhint 04
cmpxchg2.rel.ldhint 05
cmpxchg4.rel.ldhint 06
cmpxchg8.rel.ldhint 07
xchg1.ldhint

r1 = [r3], r2

08
xchg2.ldhint 09
xchg4.ldhint 0A
xchg8.ldhint 0B

40 37 36 35 30 29 28 27 26 20 19 16 15 14 13 12 6 5 0

4 m x6 hint x r3 s i2b r1 qp
4 1 6 2 1 7 4 1 2 7 6

Instruction Operands Opcode
Extension

m x x6 hint
fetchadd4.acq.ldhint

r1 = [r3], inc3 4 0 1

12 See 
Table C-37 

on page C-30

fetchadd8.acq.ldhint 13
fetchadd4.rel.ldhint 16
fetchadd8.rel.ldhint 17

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

6 m x6 x r2 f1 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6
setf.sig

f1 = r2 6 0 1

1C
setf.exp 1D
setf.s 1E
setf.d 1F



C-40 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.4.4.2 Get FR

M19

C.4.5 Speculation and Advanced Load Checks

The speculation and advanced load check instructions are encoded in major opcodes 0 and 1 along with the system/mem-
ory management instructions. See “Memory Management” on page C-43 for a summary of the opcode extensions.

C.4.5.1 Integer Speculation Check (M-Unit)

M20

C.4.5.2 Floating-point Speculation Check

M21

C.4.5.3 Integer Advanced Load Check

M22

C.4.5.4 Floating-point Advanced Load Check

M23

40 37 36 35 30 29 28 27 26 20 19 13 12 6 5 0

4 m x6 x f2 r1 qp
4 1 6 2 1 7 7 7 6

Instruction Operands Opcode
Extension

m x x6
getf.sig

r1 = f2 4 0 1

1C
getf.exp 1D
getf.s 1E
getf.d 1F

40 37 36 35 33 32 20 19 13 12 6 5 0

1 s x3 imm13c r2 imm7a qp
4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3
chk.s.m r2, target25 1 1

40 37 36 35 33 32 20 19 13 12 6 5 0

1 s x3 imm13c f2 imm7a qp
4 1 3 13 7 7 6

Instruction Operands Opcode
Extension

x3
chk.s f2, target25 1 3

40 37 36 35 33 32 13 12 6 5 0

0 s x3 imm20b r1 qp
4 1 3 20 7 6

Instruction Operands Opcode
Extension

x3
chk.a.nc

r1, target25 0 4
chk.a.clr 5

40 37 36 35 33 32 13 12 6 5 0

0 s x3 imm20b f1 qp
4 1 3 20 7 6

Instruction Operands Opcode
Extension

x3
chk.a.nc

f1, target25 0 6
chk.a.clr 7



HP/Intel IA-64 Instruction Formats C-41

IA-64 Application ISA Guide 1.0

C.4.6 Cache/Synchronization/RSE/ALAT

The cache/synchronization/RSE/ALAT instructions are encoded in major opcode 0 along with the memory management
instructions. See “Memory Management” on page C-43 for a summary of the opcode extensions.

C.4.6.1 Sync/Fence/Serialize/ALAT Control

M24

C.4.6.2 RSE Control

M25

C.4.6.3 Integer ALAT Entry Invalidate

M26

C.4.6.4 Floating-point ALAT Entry Invalidate

M27

C.4.6.5 Flush Cache

M28

40 37 36 35 33 32 31 30 27 26 6 5 0

0 x3 x2 x4 qp
4 1 3 2 4 21 6

Instruction Opcode
Extension

x3 x4 x2
invala

0 0

0 1
mf 2 2mf.a 3
srlz.i 1 3sync.i 3

40 37 36 35 33 32 31 30 27 26 6 5 0

0 x3 x2 x4 0
4 1 3 2 4 21 6

Instruction Opcode
Extension

x3 x4 x2
flushrs f 0 0 C 0

40 37 36 35 33 32 31 30 27 26 13 12 6 5 0

0 x3 x2 x4 r1 qp
4 1 3 2 4 14 7 6

Instruction Operands Opcode
Extension

x3 x4 x2
invala.e r1 0 0 2 1

40 37 36 35 33 32 31 30 27 26 13 12 6 5 0

0 x3 x2 x4 f1 qp
4 1 3 2 4 14 7 6

Instruction Operands Opcode
Extension

x3 x4 x2
invala.e f1 0 0 3 1

40 37 36 35 33 32 27 26 20 19 6 5 0

1 x3 x6 r3 qp
4 1 3 6 7 14 6

Instruction Operands Opcode
Extension
x3 x6

fc r3 1 0 30



C-42 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.4.7 GR/AR Moves (M-Unit)

The M-Unit GR/AR move instructions are encoded in major opcode 0 along with the system/memory management
instructions. (some ARs are accessed using system control instructions on the I-unit. See “GR/AR Moves (I-Unit)” on
page C-25.) See “Memory Management” on page C-43 for a summary of the M-Unit GR/AR opcode extensions.

C.4.7.1 Move to AR – Register (M-Unit)

M29

C.4.7.2 Move to AR – Immediate 8 (M-Unit)

M30

C.4.7.3 Move from AR (M-Unit)

M31

C.4.8 Miscellaneous M-Unit Instructions

The miscellaneous M-unit instructions are encoded in major opcode 0 along with the memory management instructions.
See “Memory Management” on page C-43 for a summary of the opcode extensions.

C.4.8.1 Allocate Register Stack Frame

M34

NOTE: The three immediates in the instruction encoding are formed from the operands as follows:

sof = i + l + o
sol = i + l
sor = r >> 3

C.4.8.2 Move to PSR

M35

40 37 36 35 33 32 27 26 20 19 13 12 6 5 0

1 x3 x6 ar3 r2 qp
4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension
x3 x6

mov.m ar3 = r2 1 0 2A

40 37 36 35 33 32 31 30 27 26 20 19 13 12 6 5 0

0 s x3 x2 x4 ar3 imm7b qp
4 1 3 2 4 7 7 7 6

Instruction Operands Opcode
Extension

x3 x4 x2
mov.m ar3 = imm8 0 0 8 2

40 37 36 35 33 32 27 26 20 19 13 12 6 5 0

1 x3 x6 ar3 r1 qp
4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension
x3 x6

mov.m r1 = ar3 1 0 22

40 37 36 35 33 32 31 30 27 26 20 19 13 12 6 5 0

1 x3 sor sol sof r1 0
4 1 3 2 4 7 7 7 6

Instruction Operands Opcode
Extension

x3
alloc f r1 = ar.pfs, i, l, o, r 1 6

40 37 36 35 33 32 27 26 20 19 13 12 6 5 0

1 x3 x6 r2 qp
4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension
x3 x6

mov psr.um = r2 1 0 29



HP/Intel IA-64 Instruction Formats C-43

IA-64 Application ISA Guide 1.0

C.4.8.3 Move from PSR

M36

C.4.8.4 Break/Nop (M-Unit)

M37

C.4.9 Memory Management

All system/memory management instructions are encoded within major opcodes 0 and 1 using a 3-bit opcode extension
field (x3) in bits 35:33. Some instructions also have a 4-bit opcode extension field (x4) in bits 30:27, or a 6-bit opcode
extension field (x6) in bits 32:27. Most of the instructions having a 4-bit opcode extension field also have a 2-bit extension
field (x2) in bits 32:31. Table C-40 shows the 3-bit assignments for opcode 0, Table C-41 summarizes the 4-bit+2-bit
assignments for opcode 0, Table C-42 shows the 3-bit assignments for opcode 1, and Table C-43 summarizes the 6-bit
assignments for opcode 1.

40 37 36 35 33 32 27 26 13 12 6 5 0

1 x3 x6 r1 qp
4 1 3 6 14 7 6

Instruction Operands Opcode
Extension
x3 x6

mov r1 = psr.um 1 0 21

40 37 36 35 33 32 31 30 27 26 25 6 5 0

0 i x3 x2 x4 imm20a qp
4 1 3 2 4 1 20 6

Instruction Operands Opcode
Extension

x3 x4 x2
break.m

imm21 0 0 0 0nop.m 1

Table C-40. Opcode 0 Memory Management 3-bit Opcode Extensions

Opcode
Bits 

40:37

x3
Bits 

35:33

0

0
System/Memory Management 
4-bit+2-bit Ext (Table C-41)

1
2
3
4 chk.a.nc – int M22
5 chk.a.clr – int M22
6 chk.a.nc – fp M23
7 chk.a.clr – fp M23



C-44 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

Table C-41. Opcode 0 Memory Management 4-bit+2-bit Opcode Extensions

Opcode
Bits 

40:37

x3
Bits 

35:33

x4
Bits 

30:27

x2
Bits 32:31

0 1 2 3

0 0

0 break.m M37 invala M24
1 nop.m M37 srlz.i M24
2 invala.e – int M26 mf M24
3 invala.e – fp M27 mf.a M24 sync.i M24
4 sum M44
5 rum M44
6
7
8 mov.m to ar – imm8 M30
9
A
B
C flushrs M25
D
E
F

Table C-42. Opcode 1 Memory Management 3-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 35:33

1

0
Memory Management 6-bit Ext 

(Table C-43)
1 chk.s.m – int M20
2
3 chk.s – fp M21
4
5
6 alloc M34
7

Table C-43. Opcode 1 Memory Management 6-bit Opcode Extensions

Opcode
Bits 

40:37

x3
Bits 

35:33

x6
Bits 

30:27
Bits 32:31

0 1 2 3

1 0

0 fc M28
1 mov from psr.um M36
2 mov.m from ar M31
3
4
5 mov from pmd M43
6
7 mov from cpuid M43
8
9 mov to psr.um M35
A mov.m to ar M29
B
C
D
E
F



HP/Intel IA-64 Instruction Formats C-45

IA-64 Application ISA Guide 1.0

C.4.9.1 Move from Indirect Register

M43

C.4.9.2 Set/Reset User Mask

M44

C.5 B-Unit Instruction Encodings
The branch-unit includes branch and miscellaneous instructions.

C.5.1 Branches

Opcode 0 is used for indirect branch, opcode 1 for indirect call, opcode 4 for IP-relative branch, and opcode 5 for IP-rela-
tive call.

The IP-relative branch instructions encoded within major opcode 4 use a 3-bit opcode extension field in bits 8:6 (btype) to
distinguish the branch types as shown in Table C-44.

The indirect branch, indirect return, and miscellaneous branch-unit instructions are encoded within major opcode 0 using
a 6-bit opcode extension field in bits 32:27 (x6). Table C-45 summarizes these assignments.

40 37 36 35 33 32 27 26 20 19 13 12 6 5 0

1 x3 x6 r3 r1 qp
4 1 3 6 7 7 7 6

Instruction Operands Opcode
Extension
x3 x6

mov r1 = pmd[r3] 1 0 15
r1 = cpuid[r3] 17

40 37 36 35 33 32 31 30 27 26 6 5 0

0 i x3 i2d x4 imm21a qp
4 1 3 2 4 21 6

Instruction Operands Opcode
Extension
x3 x4

sum imm24 0 0 4
rum 5

Table C-44. IP-Relative Branch Types

Opcode
Bits 40:37

btype
bits 8:6

4

0 br.cond B1
1
2 br.wexit B1
3 br.wtop B1
4
5 br.cloop B2
6 br.cexit B2
7 br.ctop B2



C-46 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

The indirect branch instructions encoded within major opcodes 0 use a 3-bit opcode extension field in bits 8:6 (btype) to
distinguish the branch types as shown in Table C-46.

The indirect return branch instructions encoded within major opcodes 0 use a 3-bit opcode extension field in bits 8:6
(btype) to distinguish the branch types as shown in Table C-47.

All of the branch instructions have a 1-bit opcode extension field, p, in bit 12 which provides a sequential prefetch hint.
Table C-48 summarizes these assignments.

Table C-45. Indirect/Miscellaneous Branch Opcode Extensions

Opcode
Bits 

40:37

x6
Bits 

30:27
Bits 32:31

0 1 2 3

0

0 break.b B9
Indirect Branch 

(Table C-46)

1
Indirect Return 
(Table C-47)

2
3
4 clrrrb B8
5 clrrrb.pr B8
6
7
8
9
A
B
C
D
E
F

Table C-46. Indirect Branch Types

Opcode
Bits 40:37

x6
Bits 32:27

btype
Bits 8:6

0 20

0 br.cond B4
1 br.ia B4
2
3
4
5
6
7

Table C-47. Indirect Return Branch Types

Opcode
Bits 40:37

x6
Bits 32:27

btype
Bits 8:6

0 21

0
1
2
3
4 br.ret B4
5
6
7

Table C-48. Sequential Prefetch Hint Completer

p
Bit 12

ph

0 .few
1 .many



HP/Intel IA-64 Instruction Formats C-47

IA-64 Application ISA Guide 1.0

The IP-relative and indirect branch instructions all have a 2-bit opcode extension field in bits 34:33 (wh) which encodes
branch prediction “whether” hint information as shown in Table C-49. Indirect call instructions have a 3-bit opcode exten-
sion field in bits 34:32 (wh) for “whether” hint information as shown in Table C-50.

The branch instructions also have a 1-bit opcode extension field in bit 35 (d) which encodes a branch cache deallocation
hint as shown in Table C-51.

C.5.1.1 IP-Relative Branch

B1

C.5.1.2 IP-Relative Counted Branch

B2

Table C-49. Branch Whether Hint Completer

wh
Bits 34:33

bwh

0 .sptk
1 .spnt
2 .dptk
3 .dpnt

Table C-50. Indirect Call Whether Hint Completer

wh
Bits 34:32

bwh

0
1 .sptk
2
3 .spnt
4
5 .dptk
6
7 .dpnt

Table C-51. Branch Cache Deallocation Hint Completer

d
Bit 35

dh

0 none 
1 .clr

40 37 36 35 34 33 32 13 12 11 9 8 6 5 0

4 s d wh imm20b p btype qp
4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

btype p wh d
br.cond.bwh.ph.dh

target25 4
0 See 

Table C-48 on 
page C-46

See 
Table C-49 on 

page C-47

See 
Table C-51 on 

page C-47
br.wexit.bwh.ph.dh t 2
br.wtop.bwh.ph.dh t 3

40 37 36 35 34 33 32 13 12 11 9 8 6 5 0

4 s d wh imm20b p btype 0
4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

btype p wh d
br.cloop.bwh.ph.dh t

target25 4
5 See 

Table C-48 on 
page C-46

See 
Table C-49 on 

page C-47

See 
Table C-51 on 

page C-47
br.cexit.bwh.ph.dh t 6
br.ctop.bwh.ph.dh t 7



C-48 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.5.1.3 IP-Relative Call

B3

C.5.1.4 Indirect Branch

B4

C.5.1.5 Indirect Call

B5

C.5.2 Nop

The nop instruction is encoded in major opcode 2. The nop instruction in major opcode 2 uses a 6-bit opcode extension
field in bits 32:27 (x6). Table C-52 summarizes these assignments.

40 37 36 35 34 33 32 13 12 11 9 8 6 5 0

5 s d wh imm20b p b1 qp
4 1 1 2 20 1 3 3 6

Instruction Operands Opcode
Extension

p wh d

br.call.bwh.ph.dh b1 = target25 5
See 

Table C-48 on 
page C-46

See 
Table C-49 on 

page C-47

See 
Table C-51 on 

page C-47

40 37 36 35 34 33 32 27 26 16 15 13 12 11 9 8 6 5 0

0 d wh x6 b2 p btype qp
4 1 1 2 6 11 3 1 3 3 6

Instruction Operands Opcode
Extension

x6 btype p wh d

br.cond.bwh.ph.dh

b2 0
20

0 See 
Table C-

48 on 
page C-4

6

See 
Table C-

49 on 
page C-4

7

See 
Table C-

51 on 
page C-4

7

br.ia.bwh.ph.dh 1

br.ret.bwh.ph.dh 21 4

40 37 36 35 34 32 31 16 15 13 12 11 9 8 6 5 0

1 d wh b2 p b1 qp
4 1 1 3 16 3 1 3 3 6

Instruction Operands Opcode
Extension

p wh d

br.call.bwh.ph.dh b1 = b2 1
See 

Table C-48 on 
page C-46

See 
Table C-50 on 

page C-47

See 
Table C-51 on 

page C-47

Table C-52. Indirect Predict/Nop Opcode Extensions

Opcode
Bits 

40:37

x6
Bits 

30:27
Bits 32:31

0 1 2 3

2

0 nop.b B9
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F



HP/Intel IA-64 Instruction Formats C-49

IA-64 Application ISA Guide 1.0

C.5.3 Miscellaneous B-Unit Instructions

The miscellaneous branch-unit instructions include a number of instructions encoded within major opcode 0 using a 6-bit
opcode extension field in bits 32:27 (x6) as described in Table C-45 on page C-46.

C.5.3.1 Miscellaneous (B-Unit)

B8

C.5.3.2 Break/Nop (B-Unit)

B9

C.6 F-Unit Instruction Encodings
The floating-point instructions are encoded in major opcodes 8 – E for floating-point and fixed-point arithmetic, opcode 4
for floating-point compare, opcode 5 for floating-point class, and opcodes 0 and 1 for miscellaneous floating-point
instructions.

The miscellaneous and reciprocal approximation floating-point instructions are encoded within major opcodes 0 and 1
using a 1-bit opcode extension field (x) in bit 33 and either a second 1-bit extension field in bit 36 (q) or a 6-bit opcode
extension field (x6) in bits 32:27. Table C-53 shows the 1-bit x assignments, Table C-56 shows the additional 1-bit q
assignments for the reciprocal approximation instructions; Table C-54 and Table C-55 summarize the 6-bit x6 assign-
ments.

40 37 36 33 32 27 26 6 5 0

0 x6 0
4 4 6 21 6

Instruction Opcode
Extension

x6
clrrrb l

0 04
clrrrb.pr l 05

40 37 36 35 33 32 27 26 25 6 5 0

0/2 i x6 imm20a qp
4 1 3 6 1 20 6

Instruction Operands Opcode
Extension

x6
break.b

imm21
0 00nop.b 2

Table C-53. Miscellaneous Floating-point 1-bit Opcode Extensions

Opcode
Bits 40:37

x
Bit 33

0 0 6-bit Ext (Table C-54)
1 Reciprocal Approximation (Table C-56)

1 0 6-bit Ext (Table C-55)
1 Reciprocal Approximation (Table C-56)



C-50 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

Table C-54. Opcode 0 Miscellaneous Floating-point 6-bit Opcode Extensions

Opcode
Bits 

40:37

x
Bit 
33

x6
Bits 

30:27
Bits 32:31

0 1 2 3

0 0

0 break.f F15 fmerge.s F9
1 nop.f F15 fmerge.ns F9
2 fmerge.se F9
3
4 fsetc F12 fmin F8 fswap F9
5 fclrf F13 fmax F8 fswap.nl F9
6 famin F8 fswap.nr F9
7 famax F8
8 fchkf F14 fcvt.fx F10 fpack F9
9 fcvt.fxu F10 fmix.lr F9
A fcvt.fx.trunc F10 fmix.r F9
B fcvt.fxu.trunc F10 fmix.l F9
C fcvt.xf F11 fand F9 fsxt.r F9
D fandcm F9 fsxt.l F9
E for F9
F fxor F9

Table C-55. Opcode 1 Miscellaneous Floating-point 6-bit Opcode Extensions

Opcode
Bits 

40:37

x
Bit 
33

x6
Bits 

30:27
Bits 32:31

0 1 2 3

1 0

0 fpmerge.s F9 fpcmp.eq F8
1 fpmerge.ns F9 fpcmp.lt F8
2 fpmerge.se F9 fpcmp.le F8
3 fpcmp.unord F8
4 fpmin F8 fpcmp.neq F8
5 fpmax F8 fpcmp.nlt F8
6 fpamin F8 fpcmp.nle F8
7 fpamax F8 fpcmp.ord F8
8 fpcvt.fx F10
9 fpcvt.fxu F10
A fpcvt.fx.trunc F10
B fpcvt.fxu.trunc F10
C
D
E
F

Table C-56. Reciprocal Approximation 1-bit Opcode Extensions

Opcode
Bits 40:37

x
Bit 
33

q
Bit 
36

0
1

0 frcpa F6
1 frsqrta F7

1 0 fprcpa F6
1 fprsqrta F7



HP/Intel IA-64 Instruction Formats C-51

IA-64 Application ISA Guide 1.0

Most floating-point instructions have a 2-bit opcode extension field in bits 35:34 (sf) which encodes the FPSR status field
to be used. Table C-57 summarizes these assignments.

C.6.1 Arithmetic

The floating-point arithmetic instructions are encoded within major opcodes 8 – D using a 1-bit opcode extension field (x)
in bit 36 and a 2-bit opcode extension field (sf) in bits 35:34. The opcode and x assignments are shown in Table C-58.

The fixed-point arithmetic and parallel floating-point select instructions are encoded within major opcode E using a 1-bit
opcode extension field (x) in bit 36. The fixed-point arithmetic instructions also have a 2-bit opcode extension field (x2) in
bits 35:34. These assignments are shown in Table C-59.

C.6.1.1 Floating-point Multiply Add

F1

Table C-57. Floating-point Status Field Completer

sf
Bits 35:34

sf

0 .s0
1 .s1
2 .s2
3 .s3

Table C-58. Floating-point Arithmetic 1-bit Opcode Extensions

x
Bit 36

Opcode
Bits 40:37

8 9 A B C D
0 fma F1 fma.d F1 fms F1 fms.d F1 fnma F1 fnma.d F1
1 fma.s F1 fpma F1 fms.s F1 fpms F1 fnma.s F1 fpnma F1

Table C-59. Fixed-point Multiply Add and Select Opcode Extensions

Opcode
Bits 

40:37

x
Bit 
36

x2
Bits 35:34

0 1 2 3

E 0 fselect F3
1 xma.l F2 xma.hu F2 xma.h F2

40 37 36 35 34 33 27 26 20 19 13 12 6 5 0

8 - D x sf f4 f3 f2 f1 qp
4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension

x sf
fma.sf

f1 = f3, f4, f2

8 0

See 
Table C-57 

on 
page C-51

fma.s.sf 1
fma.d.sf 9 0
fpma.sf 1
fms.sf A 0
fms.s.sf 1
fms.d.sf B 0
fpms.sf 1
fnma.sf C 0
fnma.s.sf 1
fnma.d.sf D 0
fpnma.sf 1



C-52 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.6.1.2 Fixed-point Multiply Add

F2

C.6.2 Parallel Floating-point Select

F3

C.6.3 Compare and Classify

The predicate setting floating-point compare instructions are encoded within major opcode 4 using three 1-bit opcode
extension fields in bits 33 (ra), 36 (rb), and 12 (ta), and a 2-bit opcode extension field (sf) in bits 35:34. The opcode, ra, rb,
and ta assignments are shown in Table C-60. The sf assignments are shown in Table C-57 on page C-51.

The parallel floating-point compare instructions are described on page C-54.

The floating-point class instructions are encoded within major opcode 5 using a 1-bit opcode extension field in bit 12 (ta)
as shown in Table C-61.

C.6.3.1 Floating-point Compare

F4

40 37 36 35 34 33 27 26 20 19 13 12 6 5 0

E x x2 f4 f3 f2 f1 qp
4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension
x x2

xma.l
f1 = f3, f4, f2 E 1

0
xma.h 3
xma.hu 2

40 37 36 35 34 33 27 26 20 19 13 12 6 5 0

E x f4 f3 f2 f1 qp
4 1 2 7 7 7 7 6

Instruction Operands Opcode
Extension

x
fselect f1 = f3, f4, f2 E 0

Table C-60. Floating-point Compare Opcode Extensions

Opcode
Bits 

40:37

ra
Bit 
33

rb
Bit 
36

ta
Bit 12

0 1

4
0 0 fcmp.eq F4 fcmp.eq.unc F4

1 fcmp.lt F4 fcmp.lt.unc F4

1 0 fcmp.le F4 fcmp.le.unc F4
1 fcmp.unord F4 fcmp.unord.unc F4

Table C-61. Floating-point Class 1-bit Opcode Extensions

Opcode
Bits 40:37

ta
Bit 12

5 0 fclass.m F5
1 fclass.m.unc F5

40 37 36 35 34 33 32 27 26 20 19 13 12 11 6 5 0

4 rb sf ra p2 f3 f2 ta p1 qp
4 1 2 1 6 7 7 1 6 6

Instruction Operands Opcode
Extension

ra rb ta sf
fcmp.eq.sf

p1, p2 = f2, f3 4

0 0

0
See 

Table C-57 
on page C-51

fcmp.lt.sf 1
fcmp.le.sf 1 0
fcmp.unord.sf 1
fcmp.eq.unc.sf 0 0

1fcmp.lt.unc.sf 1
fcmp.le.unc.sf 1 0
fcmp.unord.unc.sf 1



HP/Intel IA-64 Instruction Formats C-53

IA-64 Application ISA Guide 1.0

C.6.3.2 Floating-point Class

F5

C.6.4 Approximation

C.6.4.1 Floating-point Reciprocal Approximation

There are two Reciprocal Approximation instructions. The first, in major op 0, encodes the full register variant. The sec-
ond, in major op 1, encodes the parallel variant.

F6

C.6.4.2 Floating-point Reciprocal Square Root Approximation

There are two Reciprocal Square Root Approximation instructions. The first, in major op 0, encodes the full register vari-
ant. The second, in major op 1, encodes the parallel variant.

F7

40 37 36 35 34 33 32 27 26 20 19 13 12 11 6 5 0

5 fc2 p2 fclass7c f2 ta p1 qp
4 2 2 6 7 7 1 6 6

Instruction Operands Opcode
Extension

ta
fclass.m

p1, p2 = f2, fclass9 5 0
fclass.m.unc 1

40 37 36 35 34 33 32 27 26 20 19 13 12 6 5 0

0 - 1 q sf x p2 f3 f2 f1 qp
4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x q sf

frcpa.sf
f1, p2 = f2, f3

0 1 0
See Table C-57 
on page C-51

fprcpa.sf 1

40 37 36 35 34 33 32 27 26 20 19 13 12 6 5 0

0 - 1 q sf x p2 f3 f1 qp
4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x q sf

frsqrta.sf
f1, p2 = f3

0 1 1
See Table C-57 
on page C-51fprsqrta.sf 1



C-54 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.6.5 Minimum/Maximum and Parallel Compare

There are 2 groups of Minimum/Maximum instructions. The first group, in major op 0, encodes the full register variants.
The second group, in major op 1, encodes the parallel variants. The parallel compare instructions are all encoded in major
op 1.

F8

C.6.6 Merge and Logical

F9

40 37 36 35 34 33 32 27 26 20 19 13 12 6 5 0

0 - 1 sf x x6 f3 f2 f1 qp
4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf
fmin.sf

f1 = f2, f3

0

0

14

See 
Table C-57 

on 
page C-51

fmax.sf 15
famin.sf 16
famax.sf 17
fpmin.sf

1

14
fpmax.sf 15
fpamin.sf 16
fpamax.sf 17
fpcmp.eq.sf 30
fpcmp.lt.sf 31
fpcmp.le.sf 32
fpcmp.unord.sf 33
fpcmp.neq.sf 34
fpcmp.nlt.sf 35
fpcmp.nle.sf 36
fpcmp.ord.sf 37

40 37 36 34 33 32 27 26 20 19 13 12 6 5 0

0 - 1 x x6 f3 f2 f1 qp
4 3 1 6 7 7 7 6

Instruction Operands Opcode
Extension
x x6

fmerge.s

f1 = f2, f3

0

0

10
fmerge.ns 11
fmerge.se 12
fmix.lr 39
fmix.r 3A
fmix.l 3B
fsxt.r 3C
fsxt.l 3D
fpack 28
fswap 34
fswap.nl 35
fswap.nr 36
fand 2C
fandcm 2D
for 2E
fxor 2F
fpmerge.s

1
10

fpmerge.ns 11
fpmerge.se 12



HP/Intel IA-64 Instruction Formats C-55

IA-64 Application ISA Guide 1.0

C.6.7 Conversion

C.6.7.1 Convert Floating-point to Fixed-point

F10

C.6.7.2 Convert Fixed-point to Floating-point

F11

C.6.8 Status Field Manipulation

C.6.8.1 Floating-point Set Controls

F12

C.6.8.2 Floating-point Clear Flags

F13

C.6.8.3 Floating-point Check Flags

F14

40 37 36 35 34 33 32 27 26 20 19 13 12 6 5 0

0 - 1 sf x x6 f2 f1 qp
4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf
fcvt.fx.sf

f1 = f2

0

0

18

See 
Table C-57 

on 
page C-51

fcvt.fxu.sf 19
fcvt.fx.trunc.sf 1A
fcvt.fxu.trunc.sf 1B
fpcvt.fx.sf

1

18
fpcvt.fxu.sf 19
fpcvt.fx.trunc.sf 1A
fpcvt.fxu.trunc.sf 1B

40 37 36 34 33 32 27 26 20 19 13 12 6 5 0

0 x x6 f2 f1 qp
4 3 1 6 7 7 7 6

Instruction Operands Opcode
Extension
x x6

fcvt.xf f1 = f2 0 0 1C

40 37 36 35 34 33 32 27 26 20 19 13 12 6 5 0

0 sf x x6 omask7c amask7b qp
4 1 2 1 6 7 7 7 6

Instruction Operands Opcode
Extension

x x6 sf

fsetc.sf amask7, omask7 0 0 04
See Table C-57 
on page C-51

40 37 36 35 34 33 32 27 26 6 5 0

0 sf x x6 qp
4 1 2 1 6 21 6

Instruction Opcode
Extension

x x6 sf

fclrf.sf 0 0 05
See Table C-57 
on page C-51

40 37 36 35 34 33 32 27 26 25 6 5 0

0 s sf x x6 imm20a qp
4 1 2 1 6 1 20 6

Instruction Operands Opcode
Extension

x x6 sf

fchkf.sf target25 0 0 08
See Table C-57 
on page C-51



C-56 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

C.6.9 Miscellaneous F-Unit Instructions

C.6.9.1 Break/Nop (F-Unit)

F15

C.7 X-Unit Instruction Encodings
The X-unit instructions occupy two instruction slots, L+X. The major opcode, opcode extensions and hints, qp, and small
immediate fields occupy the X instruction slot. For movl, break.x, and nop.x, the imm41 field occupies the L instruction
slot.

C.7.1 Miscellaneous X-Unit Instructions

The miscellaneous X-unit instructions are encoded in major opcode 0 using a 3-bit opcode extension field (x3) in bits
35:33 and a 6-bit opcode extension field (x6) in bits 32:27. Table C-62 shows the 3-bit assignments and Table C-63 sum-
marizes the 6-bit assignments. These instructions are executed by an I-unit.

40 37 36 35 34 33 32 27 26 25 6 5 0

0 i x x6 imm20a qp
4 1 2 1 6 1 20 6

Instruction Operands Opcode
Extension
x x6

break.f
imm21 0 0 00

nop.f 01

Table C-62. Misc X-Unit 3-bit Opcode Extensions

Opcode
Bits 40:37

x3
Bits 

35:33

0

0 6-bit Ext (Table C-63)
1
2
3
4
5
6
7

Table C-63. Misc X-Unit 6-bit Opcode Extensions

Opcode
Bits 

40:37

x3
Bits 

35:33

x6
Bits 

30:27
Bits 32:31

0 1 2 3

0 0

0 break.x X1
1 nop.x X1
2
3
4
5
6
7
8
9
A
B
C
D
E
F



HP/Intel IA-64 Instruction Formats C-57

IA-64 Application ISA Guide 1.0

C.7.1.1 Break/Nop (X-Unit)

X1

C.7.2 Move Long Immediate64

The move long immediate instruction is encoded within major opcode 6 using a 1-bit reserved opcode extension in bit 20
(vc) as shown in Table C-64. This instruction is executed by an I-unit.

X2

C.8 Immediate Formation
The following table shows, for each instruction format that has one or more immediates, how those immediates are
formed. In each equation, the symbol to the left of the equals is the assembly language name for the immediate. The sym-
bols to the right are the field names in the instruction encoding.

40 37 36 35 33 32 27 26 25 6 5 0 40 0

0 i x3 x6 imm20a qp imm41
4 1 3 6 1 20 6 41

Instruction Operands Opcode
Extension
x3 x6

break.x
imm62 0 0 00

nop.x 01

Table C-64. Move Long 1-bit Opcode Extensions

Opcode
bits 40:37

vc
bit 20

6 0 movl X2
1

40 37 36 35 27 26 22 21 20 19 13 12 6 5 0 40 0

6 i imm9d imm5c ic vc imm7b r1 qp imm41
4 1 9 5 1 1 7 7 6 41

Instruction Operands Opcode
Extension

vc
movl r1 = imm64 6 0

Table C-65. Immediate Formation

Instruction
Format

Immediate Formation

A2 count2 = ct2d + 1

A3 A8 I27 M30 imm8 = sign_ext(s << 7 | imm7b, 8)

A4 imm14 = sign_ext(s << 13 | imm6d << 7 | imm7b, 14)

A5 imm22 = sign_ext(s << 21 | imm5c << 16 | imm9d << 7 | imm7b, 22)

A10 count2 = (ct2d > 2) ? reservedQPa : ct2d + 1

I1 count2 = (ct2d == 0) ? 0 : (ct2d == 1) ? 7 : (ct2d == 2) ? 15 : 16

I3
mbtype4 = (mbt4c == 0) ? @brcst : (mbt4c == 8) ? @mix : (mbt4c == 9) ? @shuf : 

(mbt4c == 0xA) ? @alt : (mbt4c == 0xB) ? @rev : reservedQPa

I4 mhtype8 = mht8c

I6 count5 = count5b

I8 count5 = 31 – ccount5c

I10 count6 = count6d

I11
len6 = len6d + 1

pos6 = pos6b

I12
len6 = len6d + 1

pos6 = 63 – cpos6c



C-58 IA-64 Instruction Formats HP/Intel

IA-64 Application ISA Guide 1.0

I13
len6 = len6d + 1

pos6 = 63 – cpos6c
imm8 = sign_ext(s << 7 | imm7b, 8)

I14
len6 = len6d + 1

pos6 = 63 – cpos6b
imm1 = sign_ext(s, 1)

I15
len4 = len4d + 1

pos6 = 63 – cpos6d

I16 pos6 = pos6b

I19 M37 imm21 = i << 20 | imm20a

I23 mask17 = sign_ext(s << 16 | mask8c << 8 | mask7a << 1, 17)

I24 imm44 = sign_ext(s << 43 | imm27a << 16, 44)

M3 M8 M15 imm9 = sign_ext(s << 8 | i << 7 | imm7b, 9)

M5 M10 imm9 = sign_ext(s << 8 | i << 7 | imm7a, 9)

M17 inc3 = sign_ext(((s) ? –1 : 1) * ((i2b == 3) ? 1 : 1 << (4 – i2b)), 6)

I20 M20 M21 target25 = IP + (sign_ext(s << 20 | imm13c << 7 | imm7a, 21) << 4)

M22 M23 target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

M34
il = sol

o = sof – sol
r = sor << 3

M44 imm24 = i << 23 | i2d << 21 | imm21a

B1 B2 B3 target25 = IP + (sign_ext(s << 20 | imm20b, 21) << 4)

B9 imm21 = i << 20 | imm20a

F5 fclass9 = fclass7c << 2 | fc2

F12
amask7 = amask7b
omask7 = omask7c

F14 target25 = IP + (sign_ext(s << 20 | imm20a, 21) << 4)

F15 imm21 = i << 20 | imm20a

X1 imm62 = imm41 << 21 | i << 20 | imm20a

X2 imm64 = i << 63 | imm41 << 22 | ic << 21 | imm5c << 16 | imm9d << 7 | imm7b

a. This encoding causes an Illegal Operation fault if the value of the qualifying predicate is 1.

Table C-65. Immediate Formation (Continued)

Instruction
Format

Immediate Formation


	IA-64 Application Instruction Set Architecture Guide
	1 About the IA-64 Application ISA Guide
	1.1 Overview of IA-64 Application Instruction Set Architecture (ISA) Guide
	1.2 Terminology

	2 Introduction to the IA-64 Processor Architecture
	2.1 IA-64 Operating Environments
	2.2 Instruction Set Transition Model Overview
	2.3 PA-RISC Compatibility
	2.4 IA-64 Instruction Set Features
	2.5 Instruction Level Parallelism
	2.6 Compiler to Processor Communication
	2.7 Speculation
	2.7.1 Control Speculation
	2.7.2 Data Speculation

	2.8 Predication
	2.9 Register Stack
	2.10 Branching
	2.11 Register Rotation
	2.12 Floating-point Architecture
	2.13 Multimedia Support

	3 IA-64 Execution Environment
	3.1 Application Register State
	3.1.1 Reserved and Ignored Registers
	3.1.2 General Registers
	3.1.3 Floating-Point Registers
	3.1.4 Predicate Registers
	3.1.5 Branch Registers
	3.1.6 Instruction Pointer
	3.1.7 Current Frame Marker
	3.1.8 Application Registers
	3.1.9 Performance Monitor Data Registers (PMD)

	3.2 Memory
	3.2.1 Application Memory Addressing Model
	3.2.2 Addressable Units and Alignment
	3.2.3 Byte Ordering

	3.3 Instruction Encoding Overview
	3.4 Instruction Sequencing

	4 IA-64 Application Programming Model
	4.1 Register Stack
	4.1.1 Register Stack Operation
	4.1.2 Register Stack Instructions

	4.2 Integer Computation Instructions
	4.2.1 Arithmetic Instructions
	4.2.2 Logical Instructions
	4.2.3 32-Bit Addresses and Integers
	4.2.4 Bit Field and Shift Instructions
	4.2.5 Large Constants

	4.3 Compare Instructions and Predication
	4.3.1 Predication
	4.3.2 Compare Instructions
	4.3.3 Compare Types
	4.3.4 Predicate Register Transfers

	4.4 Memory Access Instructions
	4.4.1 Load Instructions
	4.4.2 Store Instructions
	4.4.3 Semaphore Instructions
	4.4.4 Control Speculation
	4.4.5 Data Speculation
	4.4.6 Memory Hierarchy Control and Consistency
	4.4.7 Memory Access Ordering

	4.5 Branch Instructions
	4.5.1 Modulo-Scheduled Loop Support
	4.5.2 Branch Prediction Hints

	4.6 Multimedia Instructions
	4.6.1 Parallel Arithmetic
	4.6.2 Parallel Shifts
	4.6.3 Data Arrangement

	4.7 Register File Transfers
	4.8 Character Strings and Population Count
	4.8.1 Character Strings
	4.8.2 Population Count


	5 IA-64 Floating-point Programming Model
	5.1 Data Types and Formats
	5.1.1 Real Types
	5.1.2 Floating-point Register Format
	5.1.3 Representation of Values in Floating-point Registers

	5.2 Floating-point Status Register
	5.3 Floating-point Instructions
	5.3.1 Memory Access Instructions
	5.3.2 Floating-Point Register to/from General Register Transfer Instructions
	5.3.3 Arithmetic Instructions
	5.3.4 Non-Arithmetic Instructions
	5.3.5 Floating-point Status Register (FPSR) Status Field Instructions
	5.3.6 Integer Multiply and Add Instructions

	5.4 Additional IEEE Considerations
	5.4.1 Definition of SNaNs, QNaNs, and Propagation of NaNs
	5.4.2 IEEE Standard Mandated Operations Deferred to Software
	5.4.3 Additions beyond the IEEE Standard


	6 IA-64 Instruction Reference
	6.1 Instruction Page Conventions
	6.2 Instruction Descriptions

	A Instruction Sequencing Considerations
	A.1 RAW Ordering Exceptions
	A.2 WAW Ordering Exceptions
	A.3 WAR Ordering Exceptions

	B IA-64 Pseudo-Code Functions
	C IA-64 Instruction Formats
	C.1 Format Summary
	C.2 A-Unit Instruction Encodings
	C.2.1 Integer ALU
	C.2.2 Integer Compare
	C.2.3 Multimedia

	C.3 I-Unit Instruction Encodings
	C.3.1 Multimedia and Variable Shifts
	C.3.2 Integer Shifts
	C.3.3 Test Bit
	C.3.4 Miscellaneous I-Unit Instructions
	C.3.5 GR/BR Moves
	C.3.6 GR/Predicate/IP Moves
	C.3.7 GR/AR Moves (I-Unit)
	C.3.8 Sign/Zero Extend/Compute Zero Index

	C.4 M-Unit Instruction Encodings
	C.4.1 Loads and Stores
	C.4.2 Line Prefetch
	C.4.3 Semaphores
	C.4.4 Set/Get FR
	C.4.5 Speculation and Advanced Load Checks
	C.4.6 Cache/Synchronization/RSE/ALAT
	C.4.7 GR/AR Moves (M-Unit)
	C.4.8 Miscellaneous M-Unit Instructions
	C.4.9 Memory Management

	C.5 B-Unit Instruction Encodings
	C.5.1 Branches
	C.5.2 Nop
	C.5.3 Miscellaneous B-Unit Instructions

	C.6 F-Unit Instruction Encodings
	C.6.1 Arithmetic
	C.6.2 Parallel Floating-point Select
	C.6.3 Compare and Classify
	C.6.4 Approximation
	C.6.5 Minimum/Maximum and Parallel Compare
	C.6.6 Merge and Logical
	C.6.7 Conversion
	C.6.8 Status Field Manipulation
	C.6.9 Miscellaneous F-Unit Instructions

	C.7 X-Unit Instruction Encodings
	C.7.1 Miscellaneous X-Unit Instructions
	C.7.2 Move Long Immediate 64

	C.8 Immediate Formation



